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A wide range of electrochemical reactions of practical importance occur at the interface between
a semiconductor and an electrolyte. We present an embedded density-functional theory method
using the recently released self-consistent continuum solvation (SCCS) approach to study these
interfaces. In this model, a quantum description of the surface is incorporated into a continuum
representation of the bending of the bands within the electrode. The model is applied to understand
the electrical response of ten relevant surface terminations for silicon electrodes in solution, providing
microscopic insights into the low-voltage region, where surface states determine the electrification
of the semiconductor electrode.

I. INTRODUCTION

Predicting the electrical response and stability of
semiconductor–solution interfaces is of central relevance
to a wide array of electrochemical and photoelectro-
chemical systems. These interfaces are involved in the
photocatatytic splitting of water,1 the photoreduction of
carbon dioxide into hydrocarbons,2 the electrochemical
etching of semiconductor surfaces,3–5 the storage of en-
ergy at metal oxide electrodes,6 and the use of quantum
dots as biological markers.7 The pivotal role of semi-
conductor electrodes at the frontier between solid state
physics and electrochemistry provides a compelling mo-
tivation to study their behavior in solution.

Density-functional theory has been used to search for
new photocatalysts,8–10 assess the alignment of the va-
lence and conduction bands of semiconductor electrodes
with the redox potentials of species in solution,11–15

determine reaction pathways for photoelectrochemical
reactions,16–19 and elucidate the dynamical interac-
tions of the solvent molecules with the surface of the
semiconductor.20–25 The same calculations can be ap-
plied to predict the electrical response of semiconductor–
solution interfaces as long as they account for the long-
range decay of the electrostatic potential within the
semiconductor depletion region. However, electrostatic
screening in doped semiconductors is much less effective
than in metals,26 causing the interfacial electric field to
penetrate up to 10–103 nm into the electrode for typical
dopant concentrations of 1016–1018 cm−3. These length
scales render the first-principles simulation of the inter-
face computationally demanding.

Therefore, it is necessary to develop efficient mod-
els that will capture the essential features of a
semiconductor–electrolyte interface at reduced computa-
tional cost. To this end, we exploit and further develop
the self–consistent continuum solvation (SCCS) approach
proposed by Andreussi et al.27 to simulate semiconduc-
tor electrodes under applied voltage in electrolytic me-
dia. While this method has been successful in modeling
metal electrodes,28–32 no previous study has focused on
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FIG. 1. (a) Atomic-level view of a semiconductor–solution
interface. (b) Electrostatic profile across the semiconductor–
solution interface, showing the band bending of the electronic
bands on the semiconductor side, described by an extended
Mott–Schottky layer, and the electrical double layer on the
solution side, represented by a Helmholtz–Stern layer in series
with a Gouy–Chapman layer of oppositely charged ions.

describing band bending at semiconductor electrodes us-
ing a self–consistent continuum solvation approach.

To illustrate band bending, the electrostatic profile of
a semiconductor–electrolyte interface is shown in Fig. 1.
In order to reach equilibrium, the electrochemical poten-
tial of the semiconductor and the solution need to be
equal. Since the excess charge is accommodated within
the semiconductor by a low concentration of dopants, the
electrostatic potential is seen to decay gradually across
the extended depletion region (the Mott–Schottky layer).
This ideal picture is made more complicated, however,
by the presence of surface states, which result from the
adsorption of ionic species. By trapping charge at the
interface, these surface states lead to much stronger elec-
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FIG. 2. (a) Partition of a rutile SiO2(110)–electrolyte in-
terface into three regions. Region I represents the continuum
bulk semiconductor section, Region II the quantum surface of
the semiconductor, and Region III the continuum electrolyte
solution. Both Regions I and III extend infinitely. The colors
indicate the changing dielectric constant in the simulation;
red corresponds a dielectric constant of ∼3.9 for SiO2 and
blue corresponds to a dielectric constant of ∼78 for water at
room temperature. (b) Profile of the electrostatic potential
across the SiO2–electrolyte interface with the dotted horizon-
tal line representing the Fermi level εF of the slab. Having
set the potential to zero at the boundaries of the cell, the
flatband potential ΦFB equals the negative of the Fermi level.

trostatic screening within the semiconductor. It is the
goal of this work to develop a quantum–continuum model
for simulating the response of semiconductor–electrolyte
interfaces under electrification, including the influence of
the surface states. We apply the model to prototypical
silicon electrodes in solution in an effort to elucidate the
connection between their electrical response and surface
structure at the molecular level.

II. METHOD

A. Interface energy

The first step in constructing the model is to partition
the system into the three regions shown in Fig. 2. Region
I represents the bulk of the semiconductor, which will be
modeled at the continuum level. Region II corresponds to
the surface of the electrode; this region will be described
quantum mechanically to represent the adsorbed species
and resulting surface states. Region III denotes the elec-
trolytic solution, which consists of a diffuse distribution
of ions in a polarizable continuum. Also illustrated is the

flatband potential ΦFB, which corresponds to the differ-
ence between the asymptotic value ϕ0 of the potential
inside Region I and the Fermi energy of the neutral slab:

ΦFB = (ϕ0 − εF)/e. (1)

Having defined the three regions, the free energy of the
system is written as

F = FI + FII + FIII −
1

2

∫
drε0ε(r) |∇ϕ(r)|2 , (2)

where ε denotes the space-dependent dielectric permit-
tivity across the interface, and FI, FII, and FIII stand for
the free energies of the continuum space charge, quantum
surface slab, and continuum electrolyte, respectively.

This dielectric permittivity is defined using the self-
consistent continuum solvation model (SCCS).27 In this
model, a dielectric cavity is created at each lateral
facet. On the semiconductor side, the local dielec-
tric permittivity can be written as ε(r) = exp[(ζ(r) −
sin(2πζ(r))/2π) ln εI] where εI is the dielectric constant
of the bulk of the semiconductor and ζ(r) = (ln ρmax −
ln ρ(r))/(ln ρmax− ln ρmin) is used as a smooth switching
function, marking the transition between the quantum
and continuum regions. Here, ρmin and ρmax serve as
the density thresholds specifying the inner and outer iso-
contours of the dielectric cavity. We employ the same
parametrization in Region III, replacing εI with εIII, the
dielectric constant of the electrolyte. We specifically use
ρmax = 5× 10−3 a.u. and ρmin = 10−4 a.u. for our
calculations.

Focusing first on Region I, the contribution to the free
energy can be expressed in terms of the local density of
negative charge carriers n and positive charge carriers p
as the sum of electrostatic and entropic terms:

FI =

∫
dr(ϕ(r) + εV − εF)p(r)− Ts(p(r), pd(r))

−
∫
dr(ϕ(r) + εC − εF)n(r) + Ts(n(r), nd(r))

+

∫
drϕ(r)(nd(r)− pd(r)) (3)

with

s(f, fd) = −kB

[
(fd − f) ln

(
1− f

fd

)
+ f ln

(
f

fd

)]
.

In Eq. (3), εF denotes the Fermi energy, εV is the elec-
tronic energy at the top of the valence band, and εC is the
energy at the bottom of the conduction band. Further-
more, it is assumed that the donor and acceptor levels
are shallow so that their energy levels sit at the band
edges. Moreover, s stands for the Fermi–Dirac entropy;
it depends locally on the smooth switching functions

nd(r) =
N

2

[
erfc

(
z − zI

σI

)
+ 1

]
pd(r) =

P

2

[
erfc

(
z − zI

σI

)
+ 1

]
(4)
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with N and P being the concentrations of electron-
donating and electron-accepting defects, and zI and σI

being the location and spatial extent of the transition
between the semiconductor and surface.

Likewise, the free energy of the electrolyte can be ex-
pressed in terms of the concentrations c+ and c− of the
positive and negative ions as

FIII =

∫
drϕ(r)c+(r)− Tσ(c+(r), c◦(r))

−
∫
drϕ(r)c−(r) + Tσ(c−(r), c◦(r)) (5)

with

σ(c±, c
◦) = −kB

[
f ln

(c±
c◦

)
− c±

]
In Eq. (5), we take a symmetric 1:1 ionic solution, in
which the maximal ion concentration is defined as

c◦(r) =
C

2

[
erfc

(
zIII − z
σIII

)
+ 1

]
, (6)

where C is the equilibrium ionic concentration inside the
electrolyte, and zIII and σIII are the location and spread
of the frontier between the surface and electrolyte.

Finally, the free energy FII is expressed as a Kohn–
Sham functional of the density of the electrons ρ− and
distribution of the atomic cores ρ+:

FII = Ts + EHxc − θS −
∫
drϕρ+ − (ϕ− εF)ρ−, (7)

where Ts is the kinetic energy of the auxiliary system
within the independent-electron mapping and EHxc is
the sum of the Hartree and exchange-correlation ener-
gies. The electronic temperature and the entropy of the
electronic smearing are denoted θ and S , respectively.

B. Interface electrostatics

With the expression of the free energy in hand, the
equilibrium charge density can be obtained by variations
with respect to the occupations of the doping levels, ionic
concentrations, and electrostatic potential, yielding the
following electrostatic problem:

∇ (ε0ε(r)∇ϕ(r)) = p(r)− n(r)− pd(r) + nd(r) (8)

+ c+(r)− c−(r) + ρ+(r)− ρ−(r),

where the source terms can be expressed as

n(r) = nd(r)

[
1 + exp

(
ϕ(r) + εC − εF

kBT

)]−1

(9)

p(r) = pd(r)

[
1 + exp

(
εF − εV − ϕ(r)

kBT

)]−1

(10)

c±(r) = c◦(r) exp

(
∓ϕ(r)

kBT

)
(11)

Here, it is understood that ρ− is obtained by solving the
self-consistent Kohn-Sham equation for a given distribu-
tion ρ+ of the atomic cores.

For a n-type semiconductor, using the Boltzman dis-
tribution, these equations become

p(r) = pd(r) = 0 (12)

n(r) = nd(r) exp

(
ϕ0 − ϕ(r)

kBT

)
, (13)

where ϕ0 stands for the asymptotic value of the potential
in Region I. Conversely, for a p-type semiconductor, we
can write

n(r) = nd(r) = 0 (14)

p(r) = pd(r) exp

(
ϕ(r)− ϕ0

kBT

)
. (15)

Furthermore, it is important to note that deep in-
side the semiconductor region, the electrostatic potential
obeys the one-dimensional Poisson equations:

d2ϕ

dz2
=

N

ε0εI

[
1− exp

(
ϕ0 − ϕ
kBT

)]
(16)

d2ϕ

dz2
=

P

ε0εI

[
exp

(
ϕ− ϕ0

kBT

)
− 1

]
(17)

under conditions of n-type and p-type doping, respec-
tively. In the long-range limit where ϕ approaches ϕ0,
these equations imply that(

dϕ

dz

)2

=
2N

ε0εI

[
ϕ− ϕ0 + kBT

(
e
ϕ0−ϕ
kBT − 1

)]
(18)

(
dϕ

dz

)2

=
2P

ε0εI

[
ϕ0 − ϕ+ kBT

(
e
ϕ−ϕ0

kBT − 1

)]
. (19)

As explained in Sec. II C, these expressions are of central
utility in describing the bending of the electronic bands
and overcome the length scales that characterize electro-
static screening in the depletion region of the electrode.

C. Band bending

Equation (8) can be solved by implementing a fully
self-consistent solution of the electrostatic problem. We
plan to implement this method in the continuation of this
study. For the moment, we use a simpler implementation
to assess the model. The details of this approach are
presented below.
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To obtain the equilibrium charge-voltage distribution
of the system, we start by specifying a total charge for
the electrode, from which the potential of the system can
be found. To this end, we place a plane of charge qI in
Region I, representing the defect charge in the bulk of
the semiconductor, and another plane of countercharge
qIII in Region III, representing the ionic charge of the
electrolyte. Accordingly, an explicit charge qII is added
to the slab of Region II to fulfill charge neutrality:

qI + qII + qIII = 0.

This planar setup provides an accurate approximation
of the electrolytic side (Region III) as long as the ionic
concentrations (1020–1021 cm−3) in the electrolyte are
significantly larger than typical doping concentrations in
the semiconductor (1016–1018 cm−3). This means that
most of the potential drop takes place in the bulk of the
semiconductor (Region I), making a plane of counter-
charge a reliable representation of the response of the
electrolyte (Region III) (the Stern model).

Furthermore, on the semiconductor side, adding a
plane of countercharge within Region I does not lead
to any loss of generality in the solution of the problem
within Region II and Region III. This can be seen by
noting that once the Helmholtz plane of countercharges
in Region III is set and the asymptotic boundary condi-
tions of Poisson’s equation inside the electrolyte is fixed,
the Fermi energy εF and charge density ρ− at the surface
are fully determined; they do not depend on the specific
shape of the defect charge profile in virtue of Gauss’ law.
In other words, the charge distribution and potential pro-
file on the right hand side provide an accurate description
of the interaction of the electrode with solution.

Although the electrostatic profile in Regions II and III
is accurate, the potential in Region I is still not a reliable
representation of the electrostatics of a semiconductor
electrode where Region I consists of an infinite extension
of Region II. To accurately describe the electrostatic po-
tential in Region I, a cutoff plane is introduced within
the slab as illustrated in Fig. 3, and the electrostatic po-
tential to the left of the cutoff is set to follow the solution
of the electrostatic equations of a continuum dielectric.
The region to the right of the cutoff (but still within the
explicit slab) will be taken as Region II, representing the
surface states. The position of the cutoff plane is a user
defined value which should correspond to around the in-
flection of the potential ϕ̄. It should be far enough within
the slab that a bulk like state has occurred, making a
smooth transition from the surface states to the bulk of
the semiconductor. From the value of the electrostatic
potential and its derivative at the cutoff plane, the Fermi
level of the bulk of the semiconductor in Region I can be
easily determined from Eqs. (18) and (19):

εF,I = ϕ̄0 − eΦFB (20)

with

ϕ̄0 = ϕ̄(zc)− kBT −
ε0εI
2N

(
dϕ̄

dz
(zc)

)2

(21)
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FIG. 3. (a) The potential of a charged slab with planes of
countercharge on each side, creating a potential drop. The
dotted line represents the electrostatic potential ϕ̄ of the
charged slab subtracted from that of a slab with zero charge
as shown in Fig. 2. (b) A cutoff value zc corresponding to the
inflection of the potential ϕ̄ is determined. To the left of this
cutoff a Mott–Schottky extrapolation is applied, as shown by
the new dotted line. By examining several different charge
distributions, the specific distribution where the Fermi levels
match is found. The width of the depletion region is short-
ened here for illustrative purposes and would normally extend
for several nanometers.

ϕ̄0 = ϕ̄(zc) + kBT +
ε0εI
2P

(
dϕ̄

dz
(zc)

)2

(22)

for n-type and p-type semiconductor, respectively. In
these equations, the cutoff position zc represents the lo-
cation of the frontier between Region I and Region II in
Fig. 3b and ϕ̄ is the difference between the electrostatic
potential of the charged slab and that of the neutral slab,
corresponding to the dashed line in Fig. 3a. The bulk po-
tential of the electrode can then be taken as εF,I.

Finally, to find the equilibrium state of the charge elec-
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trode, we impose that the Fermi level of the bulk of the
semiconductor must equal the Fermi level of the quantum
slab:

εF,I = εF,II. (23)

By satisfying this condition, the charge density of the
electrode can be calculated as a function of voltage, and
the surface state density can finally be obtained as the
total charge on the right hand side of the frontier defined
by zc divided by the elementary charge. Different algo-
rithms can be used to find the conditions of matching
Fermi levels such as a dichotomy procedure. The proce-
dure we use is defined in Sec. III.

This protocol enables us to determine how surface
states and adsorption affect the potential profile and ca-
pacitance of the system. This approach is, however, lim-
ited in a few respects. First, the position of the frontier
between Region I and Region II defined by zc may affect
the asymptotic value ϕ̄0 of the potential ϕ̄ describing the
overall trend of the potential ϕ across the interface. This
variation is, however, small and can be easily evaluated
from ∆ϕ̄0 = ∆zc

LI

dϕ̄
dz (zc) with LI being the electrostatic

screening length of the semiconductor. Since LI is on the
order of 10–103 nm, the sensitivity of ϕ̄0 to zc is negligi-
ble under relevant doping conditions. Second, the range
of charge that can be tested is dependent on the size of
the slab. In fact, if the voltage drop between the two
countercharge planes is larger than the band gap of the
material, unphysical charge transfer by Zener tunneling
will take place between the two sides of the slab. In these
cases, smaller slabs serve to reduce the voltage drop for
a constant Helmholtz charge density. It is important,
however, to verify that the Fermi level converges with
respect to the size of the slab used for the calculation.
Third, the solution is essentially planar within Region I
and III. This assumes that both the bulk of the semi-
conductor and the solution see no variation in the planar
directions. For a few applications such as quantum dots,
this assumption may need to be revisited. Nevertheless,
this is a valid assumption within most applications of
interest to first-principles surface electrochemistry.

III. COMPUTATIONAL DETAILS

Density-functional theory calculations are per-
formed using the pw code of the Quantum-Espresso
distribution.33 As shown in Fig. 4, surface slabs of 1 ×
1 Si(110) and rutile, cristobalite, and quartz SiO2 (110)
and cristobalite and quartz SiO2 (100) are constructed
with a slab width of 5 layers, which is sufficient to
give converged Fermi levels within 0.01 eV. The slab
is centered in the supercell with a vacuum height of 7
Å to ensure convergence of the atomic forces within a
few meV/Å. We use ultrasoft pseudopotentials with the
Perdew–Burke–Ernzerhof parameterization of exchange–
correlation interactions.34 The cutoffs of kinetic energy
of the charge density and electrons are set at 50 Ry and
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FIG. 4. Lateral and top views of representative surface termi-
nations for silicon: (a) Si(110) with oxygen (O*), (b) Si(110)
with a hydroxyl group (O* + H*), (c) Si(110) with two
oxygens absorbed into the surface layers (2O*), (d) Si(110)
with an oxygen absorbed into the second layer with and ad-
sorbed hydroxyl group (2O* + H*), (e) Si(110) with a SiO4

tetrahedron terminated by a hydrogen (4O* + H*), (f) Ru-
tile SiO2(110), (g) Cristobalite SiO2(100), (h) Cristobalite
SiO2(110), (i) Quartz SiO2(1000), and (j) Quartz SiO2(112̄0).

750 Ry, respectively. The Brillioun zone is sampled with
a shifted 5 × 5 × 1 Monkhorst–Pack grid and 0.03 Ry
of Marzari–Vanderbilt smearing.35

As explained above, the electrostatic response of the
electrolyte interface is modeled using the environ mod-
ule with the parameterizations developed for water.27

Several surface configurations of the Si and SiO2 surfaces
are examined. In finding the equilibrium structure for
these configurations, the three layers closest to Region
I are frozen to create a bulk-like condition. The final
relaxed positions are then used in the semiconductor–
interface model discussed above. To find the equilib-
rium charge distribution between the surface states and
the bulk of the semiconductor, several partitions of the
charge qIII between qI and qII are tested for a fixed qIII.
In explicit terms, for each total electrode charge, 11 dif-
ferent partitions were considered: one where 0% of the
electrode charge is in Region I and 100% in Region II, one
where 10% of the electrode charge is Region I and 90%
of the electrode charge is in Region II, and so on. Using
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FIG. 5. (a) The total charge versus voltage curves for Si (110)
structures. (b) The total charge versus potential curves for
SiO2 structures. The lines correspond to the fitted trends of
an empirical model that consists of an ideal Mott-Schottky
semiconductor in series with a linear capacitor representing
the surface states.

a fixed cutoff position, zc, we find the charge distribu-
tion that minimizes the difference in Fermi level between
Regions I and II from Eq. (23). A dopant concentration
of 1018 cm−3 was used along with a dielectric constant
of silicon as εI = 11.7 and a dielectric constant of wa-
ter of εIII = 78.3. The results of these simulations are
presented and discussed in Sec. IV.

IV. RESULTS AND DISCUSSION

Silicon electrodes represent an important test for the
proposed method. Experiment shows that an amorphous
layer of SiO2 forms on the surface of Si in contact with
water.36,37 However, the underlying driving force for this
oxidation is not clearly understood and can vary with

both pH and voltage.38,39 In response, several different
terminations of silicon were tested. The results of these
calculations can be seen in Fig. 5.

When charge is placed on a solvated silicon slab
with planes of countercharge for charge neutrality, all of
the electronic charge accumulates at the semiconductor
edge.40 This contrasts with the expected electron distri-
bution throughout a semiconductor electrode with sur-
face states, implying that all the charge on a silicon semi-
conductor slab would accumulate deep inside the bulk of
the semiconductor. As a result, there is no combination
of charges qI and qII that equalizes the Fermi levels in
Region I and Region II [Eq. (23)]. This shows that no
equilibrium charge distribution exists between the sur-
face of silicon and its bulk state, offering insight into the
instability of pure silicon in water at low potentials.41

From this, we conclude that no surface states are likely
to form on a pure silicon surface. Thus, some significant
contribution from adsorption is expected for the electri-
fication of surface states on a silicon electrode in water.

To gain insight into the role that surface states play on
the charge-voltage curves semiconductor–solution inter-
faces, we use a simple model that consists of describing
the charge–voltage behavior of a semiconductor electrode
as an ideal Mott–Shottky semiconductor in series with a
metal surface state. This gives an overall capacitance of
the form 1/CI+II(Φ) = 1/CI(ΦB)+1/CII, where CI is the
capacitance of Region I obtained from Eq. (18), CII is the
capacitance of the interface region, and ΦB is the poten-
tial drop across Region I (the Schottky barrier). In this
model, CII does not depend on the potential Φ, whereas
CI depends on it through ΦB. Furthermore, we describe
the relation between ΦB and Φ in the vicinity of the flat-
band potential, that is, for a small amount of charge ac-
cumulation at the electrode, as ΦB = γI(Φ−ΦFB), where
γI is the fraction of the total potential drop that occurs
within the semiconductor, limited to values between 0
and 1. The value of γI accounts for the contribution
from surface states to the overall electrical response; the
value of γI decreases with increasing charge buildup in
the surface states. The parameters of the fitted curves,
shown in Fig. 5, are reported in Table IV.

Simulations using different surface terminations of sil-
icon show a strong buildup of charge upon increasing the
potential, as can be seen in Fig. 5a. This reflects the fact
that nearly all the charge is trapped in Region II of the
material, as confirmed by the observation that the frac-
tion γI of the potential drop taking place within the semi-
conductor is low for all of these structures. In general,
adding hydroxyl groups to the surface causes the charge
to be more distributed within the material than with just
an oxygen added. This is supported by noting that the
fraction of the potential drop within the semiconductor is
higher for structures with hydrogen added than the cor-
responding structures without hydrogen. One likely ex-
planation for this is that negatively charged adsorbates
lead to a trapping of positive charge near the surface.
Conversely, adding hydrogen to the surface reduces the
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γI (%) CII (µF/cm2)

Si+O* 3.75 78.9
Si+O*+H* 5.39 54.1
Si+2O* 3.38 75.2
Si+2O*+H 5.92 38.9
Si+4O*+H* 11.7 25.3
Rutile (110) 0.03 1.28
Cristobalite (100) 1.69 786
Cristobalite (110) 8.23 1.89
Quartz (1000) 1.95 41.3
Quartz (112̄0) 4.71 30.1

TABLE I. Fitted surface state properties for the 10 surface
configurations tested. The percentage of the total potential
drop that takes place within Region I, the bulk of the semicon-
ductor, is represented by γI (%). The capacitance of the sur-
face state, assuming a metal like distribution, is represented
as CII.

electronegativity of the adsorbate and allows for more
long-ranged charge distribution inside the semiconduc-
tor. This is further shown with the Si+4O*+H* struc-
ture, which has the most charge distribution within the
electrode. Under typical conditions, however, the type
of adsorbate at the silicon surface seems to have a mod-
erate effect on the overall trend; in all these curves, a
large initial buildup of charge due to surface states is fol-
lowed by a much slower buildup dominated by the bulk of
the semiconductor. All of the silicon adsorbate materials
have a capacitance CII on the order of 10 µF/cm2.

In contrast, simulations with SiO2 terminations show
large differences in the resulting charge–voltage response.
In general, these structures have a much more distributed
charge profile. This is reflected in Fig. 5b by the low-
ered charge density in comparison to the silicon adsor-
bate structures. In particular, the rutile SiO2(110) struc-
ture and cristobalite SiO2(110) structure present a stark
difference with the other shown structures. This can
be attributed to surface states with a much lower ca-
pacitance. This leads to much shallower growth of the
charge–voltage curve. One important aspect to note is
the change in electrode behavior is a function of the ex-
posed surface. Changing from the (100) to (110) orienta-
tion for a cristobalite and quartz SiO2 structure leads to
a lower accumulation of charge. This further underscores
the importance of the exposed facet in determining the
voltage-dependent charge distribution across the inter-
face. In a traditional Mott–Schottky model, the specific
surface termination would not change the charge–voltage
response.

It should be noted that for surfaces that quickly grow
positive with the application of a small amount of po-

tential, it is expected that negatively charged species
from the solution would adsorb at the surface. This
would result in surface oxidation until a passivating oxide
layer forms, providing insights into the experimentally
observed formation of an oxide layer when silicon is in
contact with water.36,37 For a more complete comparison
with experiment, it would be necessary to perform sim-
ulations on large-scale amorphous surface terminations
under applied voltage and controlled pH. This will be
the subject of a study in the continuation of this work.

The results presented here differ from the ideal Mott–
Schottky picture by providing a detailed description of
charge accumulation at low potential where the surface
states dominate the electrochemical properties of the
electrode.

V. CONCLUSION

Semiconductor–electrolyte interfaces encompass nu-
merous applications at the frontier of solid state physics
and electrochemistry. We have presented a method
to embed first-principles calculations of surface states
between a Mott–Schottky description of band bending
within the semiconductor and the Helmholtz representa-
tion of the surrounding electrolyte. We have applied the
method on different surface terminations for silicon with
a focus on Si and SiO2 structures. These simulations pro-
vide a comprehensive atom-level understanding of the ex-
perimentally observed electrification of silicon electrodes
in water, suggesting the rapid accumulation of positive
charge at the surface of solvated silicon electrodes lead-
ing to the formation of an oxide layer that shifts the
potential of charge neutrality to more positive voltages
and ultimately prevents further oxidation. This method
is ideally positioned to examine the low-potential regime
where surface state charges dominate the electrification
of the electrode in a manner not captured by the Mott–
Schottky theory alone. Future work will focus on the
implementation and distribution of algorithms to deter-
mine the three-dimensional charge distribution between
the bulk of the semiconductor, the surface states, and the
electrolyte for predicting the structure and response of
semiconductor–electrolyte interfaces under electrochem-
ical conditions.
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