

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Band alignment and p-type doping of ZnSnN_{2}

Tianshi Wang, Chaoying Ni, and Anderson Janotti Phys. Rev. B **95**, 205205 — Published 31 May 2017 DOI: 10.1103/PhysRevB.95.205205

Band alignment and *p*-type doping of $ZnSnN_2$

1

2

3

4

5

Tianshi Wang, Chaoying Ni, Anderson Janotti

Department of Materials Science and Engineering,

University of Delaware, Newark, DE 19716.

(Dated: May 3, 2017)

Abstract

Composed of earth abundant elements, $ZnSnN_2$ is a promising semiconductor for photovoltaic and photoelectrochemical applications. However, basic properties such as the precise value of the band gap and the band alignment to other semiconductors are still unresolved. For instance, reported values for the band gap vary from 1.4 to 2.0 eV. In addition, doping in $ZnSnN_2$ remains largely unexplored. Using density functional theory with the Heyd-Scuseria-Ernzerhof hybrid functional (HSE), we investigate the electronic structure of $ZnSnN_2$, its band alignment to GaN and ZnO, and the possibility of *p*-type doping. We find that the position of the valence-band maximum (VBM) of $ZnSnN_2$ is 0.39 eV higher than that in GaN, yet the conduction-band minimum (CBM) is close to that in ZnO, which suggests that achieving *p*-type conductivity is likely as in GaN, yet it may be difficult to control unintentional *n*-type conductivity as in ZnO. Among possible *p*-type dopants, we explore Li, Na, and K substituting on the Zn site. We show that while Li_{Zn} is a shallow acceptor, Na_{Zn} and K_{Zn} are deep acceptors, which we trace back to large local relaxations around the Na and K impurities due to the atomic size mismatches.

6 I. INTRODUCTION

The nitrides Zn-IV-N₂ are promising semiconductor materials for photovoltaic and pho-7 ⁸ toelectrochemical cells,¹ and could also complement the group-III nitrides and their alloys ⁹ in optoelectronic and electronic applications.² By adding Si and Ge, the direct band gap of ¹⁰ Zn(Si,Ge,Sn)N₂ alloys are predicted to cover all the visible-light spectrum,³⁻⁵ making them ¹¹ promising for full-spectrum LED applications. In contrast, InGaN alloys can be hardly used ¹² at longer wavelengths beyond the blue and green spectral regions, in part due to segregation $_{13}$ at high indium concentrations.^{6–8} In addition, in Zn-IV-N₂, Zn, Si and Sn are earth abundant ¹⁴ and environment friendly as opposed to the increasingly high cost of indium. The crystal ¹⁵ structure of Zn-IV-N₂ is derived from that of wurtzite III-nitride, where the group-III ions ¹⁶ are replaced by alternating Zn and group-IV ions, resulting in an orthorhombic structure as ¹⁷ shown in Fig. 1(a). The local valence requirement of two electrons per bond is still fulfilled. ¹⁸ ZnSnN₂ is an example of this class of ternary nitrides. It has been synthesized by different ¹⁹ methods, including vapor-liquid-solid method,³ reactive radio frequency magnetron sputter-²⁰ ing deposition,⁹ and molecular beam epitaxy (MBE);¹⁰ nevertheless, ZnSnN₂ is still at early ²¹ stages of development.⁵

²² The calculated band gap of ZnSnN₂ is direct at Γ , yet the reported values vary in a wide ²³ range, from 1.4 eV to 2.0 eV.^{2,5,9,11,12} Calculations based on the Heyd-Scuseria-Ernzerhof ²⁴ (HSE) hybrid functional give a gap of 1.42 eV for mixing parameter α =0.25 (25% Hartree-²⁵ Fock exchange)⁹ and 1.84 eV for α =0.31,^{2,13} while calculations based on the PBE0 hybrid ²⁶ functional give a gap of 2 eV.¹² Using the quasiparticle self-consistent GW method Punya ²⁷ et al.⁴ reported a gap of 2.15 eV using lattice parameters based on the local density approx-²⁸ imation (LDA) and, more recently, 1.8 ± 0.1 eV¹¹ using experimental values for the lattice ²⁹ parameters. Experimental values for the band gap, based on the absorption onset or photo-²⁰ luminescence spectra, lie in a wider range, from 0.95 to 2.38 eV.^{3,9,14–17} It has been argued ²¹ that ZnSnN₂ samples are typically *n*-type with high free carrier concentrations in the range ²² 10^{18} - 10^{21} cm⁻³,^{9,14} leading to a significant Burstein-Moss shift that explains the observed ²³ larger band gap values,⁹ while lower band gap values are attributed to high degrees of cation ²⁴ disorder.^{5,14} Recent experiments indicate that a wurtzite phase can be also stabilized at low ²⁵ growth temperatures,¹⁸ and this could also possibly explain the observed lower band gaps.

 $_{36}$ Based on results of first-principles calculations, Chen *et al.*¹³ explained that ZnSnN₂

FIG. 1. (Color online) (a) $\text{ZnSnN}_2 Pna2_1$ orthorhombic structure. The lattice parameters a, b, and c are indicated. (b) Structure of the $\text{ZnSnN}_2/\text{GaN}$ (ZnO) superlattice used for determining the alignment of the averaged electrostatic potential in the bulk regions of ZnSnN_2 and GaN (ZnO).

³⁷ is *n*-type because of low formation energy of native defects that act as shallow donors, ³⁸ such as Sn_{Zn} antisites, and possible contamination by O_N impurities. Recent experiments ³⁹ corroborate this picture by finding that the carrier density can be tuned by changing the ⁴⁰ cation composition ratio.¹⁷ As yet, *p*-type doping has not been explored. It is not clear if ⁴¹ ZnSnN₂ could be made *p*-type as GaN, or whether *p*-type conductivity would be difficult ⁴² to realize as in ZnO. Punya *et al.*¹¹ calculated band offsets between ZnSnN₂, GaN and ⁴³ ZnO using the quasiparticle self-consistent GW method. They reported that the VBM of ⁴⁴ ZnSnN₂ is higher than that of GaN by 1.9 eV.¹¹ This very large valence-band offset is difficult ⁴⁵ to explain because it represents a huge and unexpected deviation from the common anion ⁴⁶ rule.¹⁹ For furthering the development of ZnSnN₂ as a semiconductor for device applications, ⁴⁷ it is essential to know a series of basic properties besides the band gap, e.g., the position of ⁴⁸ the band edges with respect to that of other semiconductors, and how to control electrical ⁴⁹ conductivity— is it possible to achieve both *n*-type and *p*-type conductivity in ZnSnN₂?

⁵⁰ Here we use density functional calculations based on the HSE hybrid functional to de-

⁵¹ termine the electronic band structure of $ZnSnN_2$ and the band offsets between $ZnSnN_2$ and ⁵² two common wide-band-gap semiconductors, wurtzite GaN and ZnO. We also explore the ⁵³ possibility of *p*-type doping in $ZnSnN_2$. In the following, we first describe the details of the ⁵⁴ calculations, and present the results for the electronic band structure; then we discuss the ⁵⁵ results for the band alignment, and finally we address *p*-type doping, exploring alkali metals ⁵⁶ Li, Na, and K substituting on the Zn site as possible shallow acceptors.

57 II. COMPUTATIONAL METHODS

⁵⁸ Our calculations are based on the density functional theory (DFT)^{20,21} and the screened ⁵⁹ hybrid functional of Heyd-Scuseria-Ernzerhof (HSE)²² as implemented in the VASP code.^{23,24} ⁶⁰ In the HSE approach, the exchange potential is separated into short-range and long-range ⁶¹ parts, and the non-local Hartree-Fock exchange is mixed with the generalized gradient ap-⁶² proximation (GGA) exchange²⁵ only in the short-range part. The fraction of Hartree-Fock ⁶³ exchange is represented by a mixing parameter α , with a typical value of 0.25. The HSE ⁶⁴ functional has been shown to produce accurate band gaps for many semiconductors,^{26,27} in ⁶⁵ contrast to the LDA or the GGA which severely underestimate band gaps.²⁸ However, in the ⁶⁶ case of GaN and ZnO, α must be increased to 0.31 and 0.38 for a correct description of band ⁶⁷ gaps, band alignments, and defect levels.^{29–31} A test using the GW within the G₀W₀ ap-⁶⁸ proximation, as implemented in the VASP code, on top of the HSE calculation with α =0.25 ⁶⁹ gives a correction of only 0.1 eV to the quasiparticle band gap compared to that of HSE ⁷⁰ with α =0.31. Therefore, we use HSE with α =0.31, as in GaN, for the band structure and ⁷¹ impurity calculations in ZnSnN₂.

Projector augmented wave (PAW) potentials are used to describe the interaction between 73 the valence electrons and the frozen ion cores.³² The PAW potentials for Zn, Sn, and N 74 contain 12, 4, and 5 valence electrons, respectively, i.e., Zn: $3d^{10}4s^2$, Sn: $5s^25p^2$, N: $2s^23p^3$. 75 For obtaining the equilibrium lattice parameters of ZnSnN₂, we used the orthorhombic cell 76 with 16 atoms shown in Fig. 1(a), with a $4 \times 4 \times 4$ mesh of k-points for integrations over the 77 Brillouin zone. For GaN and ZnO, we used the primitive wurtzite cell with 4 atoms, with 78 $6 \times 6 \times 4$ mesh of k-points. We use a cutoff of 500 eV for the plane wave basis set in all 79 calculations. The formation enthalpy of $ZnSnN_2$ is given by:

$$\Delta H^{f}(\text{ZnSnN}_{2}) = E_{tot}(\text{ZnSnN}_{2}) - E_{tot}(\text{Zn}) - E_{tot}(\text{Sn}) - E_{tot}(\text{N}_{2}), \qquad (1)$$

⁸⁰ where $E_{tot}(\text{ZnSnN}_2)$ is the total energy per formula unit of ZnSnN_2 , $E_{tot}(\text{Zn})$ and $E_{tot}(\text{Sn})$ ⁸¹ are the total energies of bulk Zn in hexagonal-close-packed structure and Sn in the diamond ⁸² crystal structure. The last term, $E_{tot}(\text{N}_2)$, is the total energy of an isolated N₂ molecule.

The band alignment between $ZnSnN_2$ and GaN (ZnO) is calculated using a standard 83 $_{\rm 84}$ procedure as described elsewhere. 33 First, the VBM of $\rm ZnSnN_2$ and GaN (ZnO) are deter-⁸⁵ mined with respect to the averaged electrostatic potential in bulk calculations. Then, the ⁸⁶ averaged electrostatic potentials are aligned by performing an interface calculation. In this ⁸⁷ case, we used a supercell comprised of 12 layers of each material with two equivalent inter-⁸⁸ faces, in a superlattice configuration as shown in Fig. 1(b). We chose a superlattice along ⁸⁹ the non-polar [100] direction of the $ZnSnN_2$ orthorhombic structure and [1120] of the GaN (ZnO) wurtzite crystal structure to avoid the directions of spontaneous polarization, and 90 ⁹¹ the problems resulting from the polar discontinuity. The positions of the atoms in the bulk ⁹² regions of the superlattice were fixed and the positions of the atoms at the interface layers ⁹³ were allowed to relax. The in-plane lattice parameters were set to the average of those of ⁹⁴ ZnSnN₂ and GaN (ZnO) and the out-of-plane dimensions were chosen such that the equi-⁹⁵ librium volume of each material is conserved. We also have tested using the in-plane lattice $_{96}$ parameters of GaN and of ZnSnN₂, making sure that the volume of the strained material $_{97}$ is equal to its equilibrium volume. The results of these tests show an error of ± 0.07 eV ⁹⁸ in the averaged electrostatic potential differences. For the mixing parameter in HSE, we ⁹⁹ tested using $\alpha = 0.25, 0.31$, and 0.38 for the superlattice calculations. We find the averaged electrostatic potential differences for the three mixing parameters vary within 0.05 eV. This 100 is expected since the averaged electrostatic potential contains only the Hartree term, and 101 depends mostly on the volume as long as the PAW potentials and the number of electrons 102 are kept the same. 103

The calculations described above are for natural band offsets, i.e., the relative position of the band edges of two materials, in their equilibrium structures, with respect to the vacuum level. We have also considered a pseudomorphic interface where the in-plane lattice parameters are those of GaN and the out-of-plane lattice parameter of the heterostructure ¹⁰⁸ is allowed to relax, minimizing the total energy. Since the ZnSnN₂ layer is compressed in ¹⁰⁹ the in-plane directions, it expands in the out-of-plane direction but does not fully recover ¹¹⁰ its equilibrium volume. This is referred to strained ZnSnN₂ case below. By comparing the ¹¹¹ natural band offset with the band offset for GaN/ZnSnN₂ with strained ZnSnN₂, we derive ¹¹² absolute deformation potentials for the valence band (a_v) and for the conduction band (a_c) , ¹¹³ and compare to the reported values for GaN and ZnO.³³

The calculations for impurities in ZnSnN₂ are carried out using a supercell of 128 atoms, which is a $2\times2\times2$ repetition of the 16-atom unit cell, with $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ as special k-point for integrations over the Brillouin zone. As acceptor impurities, we considered Li, Na, and K substituting on the Zn site, in analogy to Mg doping in GaN. The likelihood of incorporating an impurity in a crystal is determined by its formation energy. In this case, the formation energy of a defect (e.g., Li_{Zn}) in charge state q is defined as:³¹

$$E^{f}(\mathrm{Li}_{\mathrm{Zn}}^{q}) = E_{tot}(\mathrm{Li}_{\mathrm{Zn}}^{q}) - E_{tot}(\mathrm{ZnSnN}_{2}) + E_{tot}(\mathrm{Zn}) + \mu_{\mathrm{Zn}}$$
$$- E_{tot}(\mathrm{Li}) - \mu_{\mathrm{Li}} + q(\varepsilon_{F} + E_{v}) + \Delta^{q}, \qquad (2)$$

¹¹⁴ where $E_{tot}(\text{Li}_{\text{Zn}}^q)$ is the total energy of the supercell containing one Li sitting on a Zn site in ¹¹⁵ charge state q, and $E_{tot}(\text{ZnSnN}_2)$ is the total energy of a perfect ZnSnN_2 crystal in the same ¹¹⁶ supercell. The chemical potential of Li (μ_{Li}) is referenced to the total energy per atom of Li ¹¹⁷ bulk [$E_{tot}(\text{Li})$], whereas μ_{Zn} is referenced to the total energy per atom of Zn bulk [$E_{tot}(\text{Zn})$]. ¹¹⁸ The energy of the electron reservoir is the Fermi level ε_F , referenced to the valence-band ¹¹⁹ maximum E_v of bulk ZnSnN₂. Finally, Δ^q is the correction due to the finite size of the ¹²⁰ supercell.³⁴

121 III. RESULTS AND DISCUSSION

122 A. Crystal structure and electronic structure

The calculated lattice parameters of ZnSnN_2 , GaN, and ZnO are listed in Table I. The results are in good agreement with previous calculations^{13,30,35} and experimental data.^{3,36,37} The calculated formation enthalpy of ZnSnN_2 is -0.23 eV, in agreement with the value of -0.17 eV from previous calculations.¹³ The small formation enthalpy indicates that the synthesis of high quality ZnSnN_2 using the stable phase of the composing elements can be quite challenging.⁵

TABLE I. Calculated equilibrium lattice parameters for ZnSnN_2 , GaN and ZnO using the HSE hybrid functional with mixing parameters $\alpha = 0$ (GGA), 0.25, 0.31, and 0.38. For comparison, the experimental values are also listed: for GaN from Ref. 36, for ZnO from Ref. 37, and for ZnSnN₂ from Ref. 3.

			GGA	$\alpha = 0.25$	$\alpha = 0.31$	$\alpha = 0.38$	Exp.
GaN	I	a (Å)	3.247	3.201	3.192	3.181	3.19
		c (Å)	5.281	5.202	5.185	5.167	5.19
ZnO)	a (Å)	3.282	3.261	3.255	3.249	3.248
		c (Å)	5.319	5.232	5.218	5.203	5.204
ZnSnI	N_2	a (Å)	6.810	6.743	6.733	6.712	6.753
		b (Å)	5.912	5.855	5.839	5.827	5.842
		c (Å)	5.543	5.468	5.452	5.436	5.462

The electronic band structure of $ZnSnN_2$ is shown in Fig. 2(a). $ZnSnN_2$ has a direct band 129 gap at the Γ point. The calculated band gap using the HSE functional depends on the mixing 130 parameter α . For $\alpha = 0.31$, we obtain a gap of 1.75 eV, in good agreement with previous 131 calculations.¹³ Room-temperature photoluminescence excitation spectroscopy measurements 132 give a value of 1.7 ± 0.1 eV.³ For comparison, GGA ($\alpha = 0$) severely underestimates the 133 ¹³⁴ band gap, resulting in a gap of only 0.1 eV. Compared to the GGA value with the lattice 135 parameters fixed to those obtained using HSE with $\alpha = 0.31$, we find that HSE corrects the ¹³⁶ gap by pushing down the valence band by 0.60 eV and pushing up the conduction band by $_{137}$ 0.90 eV. As shown in the electronic band structure of $ZnSnN_2$ [Fig. 2(a)], the relatively flat ¹³⁸ Zn 3d bands show up at \sim 7 eV below the VBM. The CBM, on the other hand, is derived 139 mostly from Zn s orbitals.

140 B. Band alignments

The calculated band alignment between ZnSnN_2 and GaN and between ZnSnN_2 and ZnO_{142} are shown in Fig. 2(b). For these calculations, we used lattice parameters obtained in HSE using $\alpha = 0.31$ for ZnSnN_2 and GaN, and $\alpha = 0.38$ for ZnO. The VBM with respect to the using α =0.25 and 0.31 for 2nSn α =0.31 for 2nSn α =0.31 for 2nSn α =0.38 for ZnO.

FIG. 2. (Color online)(a) Calculated electronic band structure of $ZnSnN_2$ using HSE with mixing parameter $\alpha = 0.31$. The zero in the energy axis correspond to the valence-band maximum. (b) Band alignment between $ZnSnN_2$ and GaN, and between $ZnSnN_2$ and ZnO. These correspond to natural band offsets, i.e. the relative position of the band edges in each material, in their equilibrium lattice parameters. The experimental value for the band alignment between GaN and InN, from Ref. 38, is also included. The dashed lines correspond to results using mixing parameter $\alpha = 0.25$ in HSE. (c) Band alignment at the GaN/ZnSnN₂ for unstrained and strained (pseudomorphic) ZnSnN₂ cases. All values are in eV.

¹⁴⁵ ZnSnN₂ and GaN, and $\alpha = 0.25$ and 0.38 for ZnO. Again, we note that the difference in the ¹⁴⁶ averaged electrostatic potentials in the interface calculations does not depend on the mixing ¹⁴⁷ parameter, as long as the volume of the superlattice is kept fixed.

We find that the VBM of $ZnSnN_2$ is higher than that of GaN by 0.39 eV. This can be 148 attributed largely to the stronger repulsion between the Zn 3d states and the N 2p states in 149 $ZnSnN_2$ than that between the Ga 3d and N 2p in GaN. Note that this result is independent 150 of the mixing parameter α . We also find that the VBM of ZnSnN₂ is 1.70 eV higher than 151 that of ZnO, and this is attributed largely to the difference in the energetic position of the N 152 2p and O 2p orbitals. These results are in contrast to those in Ref. 11 where a valence-band 153 offset of 1.9 eV is reported for ZnSnN_2 and GaN. Based on the common anion rule, one 154 would expect the valence band offset between $ZnSnN_2$ and GaN to be much smaller, as our 155 results indicate. Moreover, based on the transitivity rule, we obtain a valence band offset 156 between GaN and ZnO of 1.31 eV, in good agreement with the value of 1.37 eV deduced from measurements of x-ray photoemission spectroscopy for ZnO/AlN and established values for GaN/AlN.³⁹ We note, however, that our results are in disagreement with the experimental 159 results of Liu et al.⁴⁰ which reported values between 0.7 and 0.9 eV for the valence band offset at the GaN/ZnO interface, and these are close to those predicted by Punya $et \ al.^{11}$ 161 and Huda et al.,⁴¹ the latter using DFT+U. In the case of the conduction-band offset, we 162 find that the CBM of $ZnSnN_2$ is 1.44 eV lower than that of GaN. In $ZnSnN_2$, the lowest 163 conduction band is derived from Zn 4s states which is much lower in energy than that in 164 GaN, derived from Ga 4s states. Based on a similar argument, we find that the CBM of 165 $_{166}$ ZnSnN₂ is only 0.01 eV lower than that in ZnO, since in both materials the lowest energy $_{167}$ conduction band is derived mostly from the Zn 4s states. In all, further experiments are called for solving the discrepancies in the calculated band alignments. 168

For the band offset between GaN and the pseudomorphic ZnSnN₂ layer, where the in-¹⁷⁰ plane lattice parameters are those of GaN and the out-of-plane lattice parameter of the ¹⁷¹ heterostructure is allowed to relax, we find a valence-band offset of 0.33 eV and a conduction-¹⁷² band offset of 1.28 eV. The volume of the strained ZnSnN₂ is 5.64% smaller than the equi-¹⁷³ librium volume. From the calculations of the band alignments between GaN and unstrained ¹⁷⁴ ZnSnN₂ and between GaN and strained (pseudomorphic) ZnSnN₂ shown in Fig. 2(c), we de-¹⁷⁵ termined the absolute deformation potential for the valence band a_v and for the conduction ¹⁷⁶ band a_c . We find $a_v=1.06$ eV and $a_c=-2.84$ eV; for the band gap deformation potential we ¹⁷⁷ find $a_g = -3.90$ eV. These results are within the range of values reported for GaN and ZnO,³³ ¹⁷⁸ since the valence-band maximum of ZnSnN₂ is derived from N 2*p* and the conduction-band ¹⁷⁹ minimum is derived from Zn 4*s* states.

Based on the calculated position of the band edges of $ZnSnN_2$ with respect to those of 180 GaN and ZnO we can infer on the possibility of n-type and p-type doping. For instance, 181 ¹⁸² ZnO can be made *n*-type quite easily, largely due to the low position of its CBM in an absolute energy scale.⁴² Most donor impurities, including H,⁴³ result in shallow donor levels. 183 We therefore expect the same conclusions to hold in the case of $ZnSnN_2$. On the other hand, 184 ZnO cannot be made *p*-type by substituting Li or Na on the Zn site, since these impurities 185 are deep acceptors. This can be attributed to the VBM in ZnO being too low with respect 186 to the vacuum level.⁴⁴ All the acceptor impurities tested so far seem to lead to deep acceptor 187 levels.⁴² On the other hand, GaN can be made *p*-type by incorporating Mg on the Ga site. 188 Since the VBM of $ZnSnN_2$ is higher than that of GaN by 0.39 eV, one would expect that 189 $ZnSnN_2$ could be made *p*-type as GaN. Similar arguments can be used in comparison with 190 ¹⁹¹ InN, which has been shown to be *p*-type dopable. However, its low lying conduction band ¹⁹² poses difficulties in reducing unintentional n-type conductivity.⁴⁵

¹⁹³ C. Acceptor impurities in $ZnSnN_2$

For achieving p-type doping in $ZnSnN_2$, one would need an impurity with one less valence 194 ¹⁹⁵ electron than one of the host atoms. For example, C substituting on the N site. However, C is a deep acceptor in GaN with the acceptor level at 0.9 eV above the VBM, 46 and it is 196 $_{197}$ likely to behave as deep acceptor in $ZnSnN_2$ as well. Besides, C could prefer to replace Sn and be electrically inactive. Choosing a column-III element to substitute on the Sn site can 198 be problematic as well, since these impurities could also replace Zn and act as donors. Here, 199 as candidates for shallow acceptors in ZnSnN₂, we considered Li, Na, and K substituting on 200 the Zn site. Although Li, Na, and K could also incorporate at interstitial sites and behave 201 as donors, we expect these interstitial species to be highly mobile and, therefore, be easily 202 removed in post-growth annealing. Analogous strategy has been recently demonstrated by 203 ²⁰⁴ recent experiments on Zn-rich annealed ZnSnN₂ with added hydrogen.⁴⁷ The results reveal $_{205}$ that post-growth annealing removes hydrogen and reduces carrier density down to 4×10^{16} $_{206}$ cm⁻³, suggesting that H were passivating acceptors.

FIG. 3. (Color online) (a) Formation energy of Li, Na, and K impurities in two charge states 0 and -1 as function of the Fermi level. (b) and (c) Calculated spin density of charge neutral Na_{Zn} and K_{Zn} in $ZnSnN_2$. The isosurface is 10% of the maximum density.

The formation energy of Li_{Zn} , Na_{Zn} , and K_{Zn} in ZnSnN_2 are shown in Fig. 3(a). We find that Li displays shallow acceptor behavior, with the hole being delocalized over the whole supercell. Therefore, we only plot the formation energy of Li_{Zn} in the negative charge state. On the other hand, we find Na_{Zn} and K_{Zn} to behave as a deep acceptors, with (0/-) acceptor levels at 0.30 eV and 0.68 eV above the VBM. Since the formation enthalpy of ZnSnN_2 is rather small (-0.23 eV), we only plotted the formation energies for Zn-rich condition.

The formation energies calculated with respect to the elemental phases of Li, Na, and K ²¹³ The formation energies calculated with respect to the elemental phases of Li, Na, and K ²¹⁴ show an interesting trend. It monotonically increases from Li, Na, to K. We attribute this ²¹⁵ behavior to the size mismatch between the impurity and the host Zn atom. While Li_{Zn} only ²¹⁶ slightly affects the lattice by causing small displacements of the nearest neighbor N atoms, ²¹⁷ by 0.5% of the equilibrium bond length, Na_{Zn} and K_{Zn} cause rather large displacements, of ²¹⁸ 8.5% (Na_{Zn}) and 16.2% (K_{Zn}) of the nearest neighbor N atoms. The displacements caused ²¹⁹ by K_{Zn} are so large that makes the neighboring N assume almost planar configurations. The local lattice relaxations and the charge density distribution of the hole associated with neutral Na_{Zn} and K_{Zn} in ZnSnN₂ are shown in Fig. 3(b) and (c). The hole from charge neutral Na_{Zn} or K_{Zn} becomes localized on one of the neighboring N, and in the case of K_{Zn} the N-K distance is 2.40 Å, compared to 2.07 Å for the equilibrium Zn-N bond length. Therefore, we conclude that, only Li_{Zn} effectively acts as shallow acceptor in ZnSnN₂, in part due to the small perturbation of the local lattice structure. However, we note that as in InN, it may be difficult to reduce the unintentional *n*-type conductivity in ZnSnN₂ due to the low lying conducting band.

228 IV. SUMMARY

In conclusion, we performed hybrid functional calculations for $ZnSnN_2$ to determine its 229 ²³⁰ band gap and band alignment to GaN and ZnO, and to explore the possibility of p-type ²³¹ doping. We find that ZnSnN₂ has a band gap of 1.75 eV, in agreement with previous calculations and experiments. The VBM of $ZnSnN_2$ is predicted to be 0.39 eV higher than 232 that of GaN and 1.70 eV higher than that of ZnO. The CBM of ZnSnN_2 , on the other hand, 233 is only 0.01 eV lower than that of ZnO. These results indicate that $ZnSnN_2$ can be made 234 $_{235}$ p-type as GaN, and that controlling the unintentional n-type conductivity can be difficult as in ZnO. For achieving p-type conductivity, we find that Li substituting on the Zn site 236 ²³⁷ displays shallow acceptor behavior, whereas Na and K leads to deep levels. The deep level $_{238}$ behavior of Na_{Zn} and K_{Zn} are attributed to very large lattice relaxations that make the ²³⁹ neighboring N atoms assume almost planar positions with the hole localized on one of them.

240 V. ACKNOWLEDGMENTS

TW and CN gratefully acknowledge financial support from the II-VI Foundation, and AJ thanks for the financial support from National Science Foundation under Grant No. 1652994. This research was supported through the use of the Extreme Science and Engineering Distraction covery Environment (XSEDE) supercomputer facility, National Science Foundation grant number ACI-1053575, and the Information Technologies (IT) resources at the University of ²⁴⁶ Delaware, specifically the high-performance computing resources.

- ²⁴⁷ ¹ A. Zakutayev, J. Mater. Chem. A **4**, 6742 (2016).
- ²⁴⁸ ² P. Narang, S. Chen, N. C. Coronel, S. Gul, J. Yano, L. W. Wang, N. S. Lewis, and H. A.
- ²⁴⁹ Atwater, Adv. Mater. **26**, 1235 (2014).
- ²⁵⁰ ³ P. C. Quayle, K. He, J. Shan, and K. Kash, MRS Commun. **3**, 135 (2013).
- ²⁵¹ ⁴ A. Punya, W. R. L. Lambrecht, and M. Van Schilfgaarde, Phys. Rev. B **84**, 165204 (2011).
- ⁵ T. D. Veal, N. Feldberg, N. F. Quackenbush, W. M. Linhart, D. O. Scanlon, L. F. J. Piper,
 and S. M. Durbin, Adv. Energy Mater. 5, 1501462 (2015).
- ⁶ Z. Liliental-Weber, D. N. Zakharov, K. M. Yu, J. W. Ager III, W. Walukiewicz, E. E. Haller,
- ²⁵⁵ H. Lu, and W. J. Schaff, J. Electron Microsc. **54**, 243 (2005).
- $^{7}\,$ M. K. Horton, S. Rhode, S. L. Sahonta, M. J. Kappers, S. J. Haigh, T. J. Pennycook, C. J.
- ²⁵⁷ Humphreys, R. O. Dusane, and M. A. Moram, Nano Lett. **15**, 923 (2015).
- ⁸ Z. Deng, Y. Jiang, W. Wang, L. Cheng, W. Li, W. Lu, H. Jia, W. Liu, J. Zhou, and H. Chen,
 Sci. Rep. 4, 6734 (2014).
- ⁹ L. Lahourcade, N. C. Coronel, K. T. Delaney, S. K. Shukla, N. A. Spaldin, and H. A. Atwater,
 Adv. Mater. 25, 2562 (2013).
- ²⁶² ¹⁰ N. Feldberg, J. D. Aldous, P. A. Stampe, R. J. Kennedy, T. D. Veal, and S. M. Durbin, J.
 ²⁶³ Electron. Mater. 43, 884 (2014).
- ²⁶⁴ ¹¹ A. Punya and W. R. L. Lambrecht, Phys. Rev. B 88, 075302 (2013).
- ²⁶⁵ ¹² N. Feldberg, B. Keen, J. D. Aldous, D. O. Scanlon, P. A. Stampe, R. J. Kennedy, R. J. Reeves,
 ²⁶⁶ T. D. Veal, and S. M. Durbin, in *2012 38th IEEE Photovoltaic Specialists Conference* (2012)
 ²⁶⁷ pp. 2524–2527.
- ²⁶⁸ ¹³ S. Chen, P. Narang, H. A. Atwater, and L.-W. Wang, Adv. Mater. **26**, 311 (2014).
- ²⁶⁹ ¹⁴ N. Feldberg, J. D. Aldous, W. M. Linhart, L. J. Phillips, K. Durose, P. a. Stampe, R. J.
 ²⁷⁰ Kennedy, D. O. Scanlon, G. Vardar, R. L. Field, T. Y. Jen, R. S. Goldman, T. D. Veal, and
- 271 S. M. Durbin, Appl. Phys. Lett. 103, 042109 (2013).
- P. C. Quayle, E. W. Blanton, A. Punya, G. T. Junno, K. He, L. Han, H. Zhao, J. Shan, W. R. L.
 Lambrecht, and K. Kash, Phys. Rev. B **91**, 205207 (2015).
- ²⁷⁴ ¹⁶ F. Deng, H. Cao, L. Liang, J. Li, J. Gao, and H. Zhang, Opt. Lett. **40**, 1282 (2015).

- ²⁷⁵ A. N. Fioretti, A. Zakutayev, H. Moutinho, C. Melamed, J. D. Perkins, A. G. Norman, M. Al-
- ²⁷⁶ Jassim, E. S. Toberer, and A. C. Tamboli, J. Mater. Chem. C **3**, 11017 (2015).
- ²⁷⁷ ¹⁸ N. Senabulya, N. Feldberg, R. A. Makin, Y. Yang, G. Shi, C. M. Jones, E. Kioupakis, J. Mathis,
- 278 R. Clarke, and S. M. Durbin, AIP Adv. 6, 075019 (2016).
- ²⁷⁹ ¹⁹ J. O. McCaldin, T. C. McGill, and C. A. Mead, Phys. Rev. Lett. **36**, 56 (1976).
- ²⁸⁰ ²⁰ P. Hohenberg and W. Kohn, Phys. Rev. **136**, B864 (1964).
- ²⁸¹ ²¹ W. Kohn and L. J. Sham, Phys. Rev. **140**, A1133 (1965).
- ²⁸² ²² J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys **118**, 8207 (2003).
- ²⁸³ ²³ G. Kresse and J. Hafner, Phys. Rev. B **47**, 558 (1993).
- ²⁸⁴ ²⁴ G. Kresse and J. Hafner, Phys. Rev. B **49**, 14251 (1994).
- ²⁸⁵ ²⁵ J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996).
- ²⁸⁶ J. Heyd and G. E. Scuseria, J. Chem. Phys. **121**, 1187 (2004).
- ²⁸⁷ J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Angyán, J. Chem. Phys.
 ²⁸⁸ 124, 154709 (2006).
- ²⁸⁹ ²⁸ R. W. Godby, M. Schlüter, and L. J. Sham, Phys. Rev. B **37**, 10159 (1988).
- ²⁹⁰ F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Phys. Rev. B **77**, 245202 (2008).
- ²⁹¹ ³⁰ J. L. Lyons, A. Janotti, and C. G. Van de Walle, Phys. Rev. B **89**, 035204 (2014).
- ²⁹² ³¹ C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van
- ²⁹³ de Walle, Rev. Mod. Phys. **86**, 253 (2014).
- ²⁹⁴ ³² P. E. Blöchl, Phys. Rev. B **50**, 17953 (1994).
- ²⁹⁵ ³³ A. Janotti and C. G. Van de Walle, Phys. Rev. B **75**, 121201 (2007).
- ²⁹⁶ ³⁴ C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Status Solidi **248**, 1067 (2011).
- ²⁹⁷ ³⁵ M. Debbichi, T. Sakhraoui, L. Debbichi, and M. Said, J. Alloys Compd. **578**, 602 (2013).
- ²⁹⁸ ³⁶ O. Lagerstedt and B. Monemar, Phys. Rev. B **19**, 3064 (1979).
- ²⁹⁹ ³⁷ R. R. Reeber, J. Appl. Phys. **41**, 5063 (1970).
- ³⁰⁰ ³⁸ P. King, T. Veal, C. Kendrick, L. R. Bailey, S. Durbin, and C. F. McConville, Phys. Rev. B
 ³⁰¹ **78**, 033308 (2008).
- ³⁰² ³⁹ T. D. Veal, P. D. C. King, S. A. Hatfield, L. R. Bailey, C. F. McConville, B. Martel, J. C.
- Moreno, E. Frayssinet, F. Semond, and J. Zúñiga-Pérez, Appl. Phys. Lett. 93, 202108 (2008).
- ³⁰⁴ ⁴⁰ J. W. Liu, A. Kobayashi, S. Toyoda, H. Kamada, A. Kikuchi, J. Ohta, H. Fujioka, H. Kumi-
- 305 gashira, and M. Oshima, Phys. Status Solidi 248, 956 (2011).

- ³⁰⁶ ⁴¹ M. N. Huda, Y. Yan, S.-H. Wei, and M. M. Al-Jassim, Phys. Rev. B **78**, 195204 (2008).
- ³⁰⁷ ⁴² A. Janotti and C. G. Van de Walle, Reports Prog. Phys. **72**, 126501 (2009).
- ³⁰⁸ ⁴³ A. Janotti and C. G. Van de Walle, Nat. Mater. **6**, 44 (2007).
- ³⁰⁹ ⁴⁴ J. L. Lyons, A. Janotti, and C. G. Van de Walle, J. Appl. Phys. **115**, 012014 (2014).
- ³¹⁰ ⁴⁵ J. W. Ager, R. E. Jones, D. M. Yamaguchi, K. M. Yu, W. Walukiewicz, S. X. Li, E. E. Haller,
- 311 H. Lu, and W. J. Schaff, Phys. Status Solidi 244, 1820 (2007).
- ³¹² ⁴⁶ J. L. Lyons, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. **97**, 152108 (2010).
- 313 ⁴⁷ A. N. Fioretti, A. Stokes, M. R. Young, B. Gorman, E. S. Toberer, A. C. Tamboli, and
- 314 A. Zakutayev, Adv. Electron. Mater. 3, 1600544 (2017).