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Abstract 

The thermal properties of three transition metal and rare earth nitride compounds, ScN, YN and 

LuN, have been studied using a first principles approach, in which a DFT+U treatment is guided 

by accurate hybrid functional calculations of electronic structure.  The phonon dispersions for the 

three compounds show large LO-TO splitting and soft TO modes.  The resulting strong 

anharmonic scattering between acoustic and TO phonons reduces the lattice thermal 

conductivities, Lκ , of these compounds. The room temperature Lκ  values of YN and LuN are 

more than an order of magnitude smaller than that found for the weakly polar III-V compound 

boron bismuth (350 Wm-1K-1), in spite of the latter having much larger average atomic mass and 

smaller acoustic phonon velocities.  This work demonstrates the utility of first principles 

calculations in understanding the thermal properties of materials, and it highlights the importance 

of optic phonons in reducing Lκ .  

PACS:  66.70.-f, 63.20.kg, 71.15.Mb, 31.15.E-  
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I.  Introduction 

     There has been considerable interest recently in the properties of transition metal (TM) and 

rare earth (RE) mononitrides [1–3], such as high melting points, mechanical strength and 

hardness.  Yet, to date little attention has been devoted to understanding thermal transport in 

these compounds.  Most TM and RE based binary compounds are metallic.  Here we examine 

thermal transport in three semiconducting binary nitride compounds containing TM and RE 

atoms:  ScN, YN and LuN.  Under ambient conditions all three compounds crystallize in the 

rock-salt structure.  There has been disagreement in the literature regarding whether these 

compounds are metallic or semiconducting.  For example, electronic structure calculations based 

on density functional theory (DFT) have found ScN and YN to be metallic [4, 5].  However, the 

authors of Ref. [6] argued that they should be semiconducting based on the fact that the three s 

and d electrons from the metal atom combine with the five valence electrons from the nitrogen 

atom to give a closed shell.  The semiconducting behavior for all three compounds has been 

confirmed through accurate screened exchange, hybrid functional DFT, and GW calculations 

[2,5,6, 8–10], with experimental confirmation for ScN [5, 11]. 

     For intrinsic semiconductors, thermal transport is dominated by phonons.  Here, we present 

first principles calculations of the intrinsic lattice thermal conductivity Lκ , for ScN, YN and LuN, 

which is limited only by three-phonon scattering that arises from the anharmonicity of the 

interatomic potential [12]. This gives an upper bound to the thermal conductivities of real 

crystals, in which phonons can also scatter from extrinsic defects such as point impurities, and 

from boundaries. The phonon spectra show stiff bonding reflected in the high phonon frequency 

scales and large acoustic phonon velocities comparable to those seen in group IV and III-V 

semiconductors, such as SiC and GaN.  However, unlike the group IV and III-V compounds, the 
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three TM and RE nitride compounds show a strong polar nature seen in large frequency 

splittings between the longitudinal optic (LO) and transverse optic (TO) phonon branches. All 

compounds also show soft TO phonon modes around the Γ point.  These features promote strong 

phonon-phonon scattering that suppresses the lattice thermal conductivities in these compounds. 

     In section II, the first principles theory used to calculate phonon thermal transport and lattice 

thermal conductivity is presented.  Section III gives a description of the computational details, 

section IV discusses the results, and section V presents a summary and conclusions. 

II.  Theory 

    We have confirmed the previous finding that ScN, YN and LuN are semiconductors by 

performing electronic structure calculations using the screened hybrid functional of Heyd, 

Scuseria and Ernzerhof (HSE06) [13] within density functional theory.  The band structure along 

some high symmetry directions is presented in Figs. 1 (a)–(c) for ScN, YN and LuN, 

respectively.  Energy gaps and lattice parameters obtained from HSE06 calculations are given in 

Table I, along with measured ones and those calculated using the LDA and GGA.  Calculated 

energy gaps from the HSE06 functional range from 0.9 eV to 1.1 eV, consistent with previous 

findings [2,5,6, 8–10].  Further computational details are provided in Section III.  

     To study the thermal properties, harmonic and anharmonic interatomic force constants (IFCs) 

were computed from first principles.  Harmonic IFCs were used to calculate phonon frequencies, 

λω , and group velocities, vλ , for mode ( , )jλ = q  where j is the phonon branch and q its wave 

vector.  Both sets of IFCs were used to calculate phonon-phonon scattering rates.  The linearized 

Peierls-Boltzmann equation (PBE) was then solved using an iterative approach to obtain the non-

equilibrium distribution function, 0 0( / )n n n T Tλ λ λ λ= + −∂ ∂ ⋅∇F , resulting from a small temperature 
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gradient, T∇ .  Here, 0nλ  is the Bose distribution, and 0( / )n T Tλ λ−∂ ∂ ⋅∇F  gives the deviation 

from equilibrium, where the vector, λF , is determined iteratively from the recast PBE. Details of 

the iterative PBE solution have been provided in numerous previous references such as [20–24].  

Using λF , Lκ  was calculated as: 

 L
1 ,C v F
V

αβ α β
λ λ λ

λ
κ = ∑   (1) 

where α and β are Cartesian components, V is the volume of the system  and the mode specific 

heat is:  0 0 2( 1) ( / )B BC k n n k Tλ λ λ λω= + h .  We note that for the cubic (rock-salt) structures 

considered here, Lκ  is a scalar. 

     A traditional measure of anharmonicity is provided by the mode averaged Grüneisen 

parameter, γ  [25–27].  Below, we calculate γ  to assess its utility in describing the 

anharmonicity in the three nitride compounds.  It is given by: 

 .C Cλ λ λ
λ λ

γ γ=∑ ∑  (2)  

In Eq. 2, λγ  is the Grüneisen parameter for mode λ , given by the logarithmic derivative of the 

phonon frequencies with respect to volume, and it can be expressed in terms of the anharmonic 

IFCs as [28, 29]: 
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Here, ( )0 , ' ', '' ''l lαβγ κ κ κΦ  are the third-order anharmonic IFCs, eλ
ακ  is the αth component of the 

phonon eigenvector for atom κ in mode λ, lR  is a lattice vector locating the lth unit cell, κ 

specifies an atom in this cell whose mass is Mκ , and α , β  and γ are Cartesian components. 

Finally, lrκγ  is the γth component of the vector locating the κth lattice atom in the lth unit cell.   

III Computation Method 

     DFT calculations were carried out in the plane wave basis as implemented in the Vienna Ab 

initio simulation package (VASP) [30–33] with the projector augmented wave (PAW) method 

[34].  The HSE06 band structures were obtained on an 8×8×8 k  grid with the optimized lattice 

constants obtained from GGA calculations, discussed below.  However, calculation of IFCs 

using the HSE06 functional would be prohibitively expensive.  To circumvent this problem, we 

instead use the DFT+U formalism:  The on-site interaction of the d electrons is treated within the 

rotationally invariant approach introduced by Dudarev et al. [35].  The rationale for choosing U 

is discussed below.  For each U value, the lattice constant is optimized with a 12×12×12 k grid.   

     The harmonic IFCs were calculated with the help of Phonopy [36].  The harmonic IFCs can 

either be obtained by displacing the atoms from their equilibrium positions and calculating the 

forces, the finite displacement (FD) method, or by directly computing the Hessian matrix using 

density functional perturbation theory (DFPT) in VASP.  In all calculations, we set the plane 

wave cutoff to 520 eV and the convergence in total energy to 10-8 eV. The harmonic IFCs were 

calculated on a 5×5×5 supercell made from the primitive cell, and containing 250 atoms. We 

have tested that the 2×2×2 k grid gives accurate phonon dispersions. For example, the phonon 

dispersions of ScN calculated from the 3×3×3 k grid are nearly identical to those obtained from 

the 2×2×2 k grid.  We note that using Γ point sampling gave anomalous sensitivity of the phonon 
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dispersions on U , which was not found in the 2×2×2 and 3×3×3 cases.  We have also 

compared the DFPT method and FD method and found that they gave practically the same 

phonon dispersions. In the following, we present phonon dispersions and thermal conductivity 

data with the harmonic IFCs from the DFPT method.  The anharmonic IFCs were calculated with 

the FD method as detailed by Li et al. [24].  The forces were also computed on a 5×5×5 supercell 

but with the Γ point sampling. We consider IFCs up to the seventh nearest neighbors. This is 

equivalent to a distance cutoff of 1.42 a0, where a0 is the lattice constant. The PBE is then self-

consistently solved for λF  on a 48×48×48 q grid and the lattice thermal conductivity calculated 

according to Eq. (1). An adaptive Gaussian broadening scheme was used to account for the 

conservation of energy in the three-phonon scattering processes, where the broadening factor 

was set to unity [37, 38].  We have tested that the calculated thermal conductivities of the three 

nitride compounds are converged with respect to the supercell size in the harmonic IFC 

calculation and number of nearest neighbors in the anharmonic IFC calculation. We have also 

checked that the thermal conductivity is converged with regard to the q grid density and the 

broadening factor in the Gaussian scheme.  

 

IV  Results and Discussion 

     From Table I, it is seen that GGA and the hybrid functional HSE06 give lattice constants that 

are very close to the experiment values, while LDA underestimates the measured values by 

between 1 and 2%.  However, standard DFT fails to correctly describe the electronic structure in 

these compounds.  In the standard DFT calculations (GGA and LDA) ScN shows semi-metallic 

behavior, as has been found previously [7, 39]. For YN, GGA calculations give a semiconductor 

with an energy gap of about 0.2 eV, while calculations within LDA give a semimetal.  For LuN, 
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only GGA and GGA+U calculations are performed since there are no LDA PAW potentials for 

Lu in VASP.  Here, we find GGA predicts LuN to be a semiconductor with energy gap around 

0.2 eV.  Thus, for all compounds, the energy gaps obtained within DFT are too small.  As noted 

above, other theoretical studies using more accurate treatment of exchange and correlation have 

shown that all of these compounds are semiconductors with sizable band gaps, consistent with 

the HSE06 calculations performed here.   

     The inputs to the transport calculation are the phonon modes and anharmonic phonon-phonon 

scattering rates, whose calculation requires the harmonic and anharmonic IFCs for each material. 

We have performed IFC calculations using DFT with on-site interactions for the d electrons 

accounted for using a Hubbard U.  The challenge for this group of compounds is:  what U to 

choose?  One possibility is to choose the U  value for each compound so as to match the 

measured lattice constants. We refer to this as Case 1.  For this case, we find the calculated 

energy gaps to be smaller than those from the HSE06 hybrid functional calculations.  This has 

been noted previously [2].  Alternatively, U could be chosen so that the energy gap matches that 

obtained from the HSE06 calculations.  We call this Case 2.  With increasing U, the d states 

become more localized, which reduces the bonding, causing the lattice constants to increase.  For 

Case 2 they are too large compared to measured ones.  Specifically, within LDA+U, choosing U 

values to match the energy gaps determined from the HSE06 calculations gives lattice constants 

that are 2% larger than the measured values for ScN and YN, respectively.  GGA+U calculations 

give worse results:  the lattice constants are 3% larger than the measured values for ScN, YN and 

LuN.  For Case 1, lattice constants can be well-matched using LDA+U since LDA overbinds 

while increasing U increases the lattice constant.  For the GGA calculations, the lattice constants 

are accurately reproduced with 0U = .  However, as mentioned above, ScN is found to be 
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metallic.  We note that DFT calculations for many semiconductors have accurately reproduced 

their phonon dispersions and thermal properties in spite of the fact that the calculated energy 

gaps were too small.  Therefore, we focus below on Case 1, for which we perform LDA+U 

calculations for ScN, and YN, reserving GGA+U calculations only for LuN.  Subsequently, we 

also examine Case 2, which allows us to compare the variation of the phonon dispersions and of 

Lκ  values with U.  A comparison of lattice constants, energy gaps and other quantities for the two 

cases is provided in Table II.  A comparison of the band structures for the three compounds using 

DFT+U and HSE06 functional is given in Figs. S1 and S2 of the supplementary section [40].  

     Figure 2 shows the phonon dispersions calculated for different values of U:  0U =  (thin dotted 

black curves), Case 1 (thick solid red curves), and Case 2 (thin dashed blue curves).  Note that all 

compounds show a large LO-TO splitting and softening of the TO mode at Γ.  This is due in part 

to the large polarity of these compounds, reflected in their large Born effective charges (see 

Table II).  Aside from decreasing the lattice constants and energy gaps, it is noted that decreasing 

the Hubbard U  has almost no effect on the acoustic phonon branches, but increases LO-TO 

splitting through further softening of the TO branch.  

         The lattice thermal conductivity for the three compounds is plotted as a function of 

temperature for Case 1 in Fig. 3 (solid curves).  ScN shows by far the highest Lκ  of the three 

compounds, due to the relatively light Sc atom.  The acoustic velocities are large, comparable to 

those in covalently bonded silicon:  along the [100] direction they are 5730 m/s, 10008 m/s for 

TA and LA branches, respectively.  By comparison, Si, which has about the same average 

atomic mass (28.08 for Si compared to 29.48 for ScN), has about the same TA velocity and 15% 

smaller LA velocity along [100].  However, the Lκ  of ScN is almost three times smaller than that 
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of Si, which has Lκ  about 140 Wm-1K-1 at 300 K  [41–43].  This is primarily due to the larger 

phonon-phonon scattering rates, shown in Fig. 4. 

     It is interesting that LuN has almost the same Lκ  as YN, despite the fact that the average 

atomic mass in YN is half that of LuN and the calculated acoustic velocities in YN are 

considerably larger:  Along [100], TAv  = 4320 m/s, LAv  = 7735 m/s for YN, while TAv  = 3244 m/s, 

LAv  = 5625 m/s for LuN.  Also, the LO-TO splittings for the two compounds are similar, as are 

the magnitudes of the anharmonic IFCs and mode averaged Grüneisen parameters (given below).  

The lower acoustic phonon velocities in LuN act to reduce Lκ .  This is countered by a reduction 

in the phase space for phonon-phonon scattering, which gives larger phonon lifetimes and so acts 

to increase Lκ .  To understand this latter behavior, we note that acoustic phonons carry almost all 

the heat in both YN and LuN.  In a three-phonon scattering process, an acoustic phonon can 

scatter with (i) two other acoustic phonons (aaa process), (ii) one acoustic phonon and one optic 

phonon (aao process), or (iii) two optic phonons (aoo process).  The contributions to the three-

phonon scattering rates from these processes are plotted in Fig. 4 for the lowest acoustic (TA) 

phonon branch in ScN, YN, LuN and Si. Note that while the strength of aaa and aoo processes 

are similar in the three nitride compound, the aao processes in LuN remain much weaker than 

aaa and aoo processes over almost the full acoustic phonon frequency range.  This is a direct 

consequence of the large frequency gap between acoustic and optic phonons, which exists in 

LuN except in a small region near the center of the Brillouin zone (see Fig. 2c, red curves).  As a 

result, aao processes are severely restricted by momentum and energy conservation constraints.  

In contrast, in YN aao processes are as strong as aaa and aoo processes over about half of the 
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frequency range.  The other two acoustic branches show qualitatively similar behavior.  The 

result is smaller phonon lifetimes in YN compared to LuN. 

    The large LO-TO splittings in all three nitride compounds point to their having large static 

dielectric constants, 0ε .  Values of 0ε  are calculated for all three materials using the Lyddane-

Sachs-Teller relation:  2 2
0 LO TO/ /ε ε ω ω∞ =  where TOω  and LOω  are the LO and TO phonon 

frequencies at Γ.  Table II shows that all three nitride compounds have large 0ε .  For Case 1, the 

values range from 37 for ScN to 84 for LuN. ε0 for Case 2 is smaller than for Case 1 because of 

the smaller LO-TO splitting.  We note that high values of 0ε  should contribute to efficient 

screening of ionized impurities in carrier transport. 

     To assess the sensitivity of the thermal conductivity to changes in U , we compare the 

temperature dependence of the Lκ  values obtained for Case 1 (solid curves in Fig. 3) with those 

obtained for Case 2 (dashed curves in Fig. 3).  Values at 300K are given in the last line in table II.  

The larger U values for Case 2 stiffen the TO branch frequencies around Γ, which reduces the 

phase space of energy and momentum conserving three-phonon scattering processes between 

heat carrying acoustic phonons and optic phonons.  As a result, Lκ  for Case 2 is larger than it is 

for Case 1.  For ScN, the optic phonon branches hardly change going from Case 1 to Case 2 in 

spite of the large change in U from 2.6 eV to 7 eV.  As a result, Lκ  shows only modest increases 

(about 25% at 300K).  For YN and LuN, the Lκ  values increase a bit more than for ScN (33% and 

35% respectively at 300K), reflecting somewhat larger shifts in the TO branches.  The 

dependence of the Lκ  as a function of U for YN is given in Fig. S3 and shows a roughly linear 

trend [40].  
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     While it is computationally too expensive to perform phonon calculations using the HSE06 

functional, we can nevertheless compare it to the DFT+U approach by examining the change in 

the energy per atom, EΔ , resulting from rigid shifts of the metal atom and N sublattices.  Such 

shifts describe the TO phonon mode at Γ.  A plot of EΔ  as a function of the sublattice 

displacement, δ, is shown in Fig. 5 for ScN calculated using DFT+U with U for case 1 (gold 

curve) compared to that using the HSE06 functional (blue curve).  For small δ, the two curves 

are almost identical.  The TO frequencies extracted from these curves (using 2 2 / 2TOE μω δΔ =  

where μ is the reduced atomic mass) are 10 THz for HSE06 and 11.3 THz for DFT+U (the TO 

frequency calculated from the first principles IFCs is 10.6 THz).  The two values are in 

reasonable agreement suggesting that the DFT+U approach gives a good representation of the 

more accurate calculations.  We note however that for materials near a structural transition, one 

should use caution since a dynamically stable structure obtained using DFT+U may be found to 

be unstable using HSE06 functional. 

     A conventional measure of Lκ  is given from the theory of Liebfried and Schlömann (LS) [25], 

for which [26,27]:  3 1/3 2
L / ( )DAM n Tκ δω γ= , where A is a constant, M  is the average atomic 

mass, 3δ  is the volume per atom, Dω  is the acoustic Debye frequency (taken to be the highest 

acoustic phonon frequency), n is the number of atoms per unit cell, and γ is the mode averaged 

Grüneisen parameter.  The expression has given reasonable predictions for many materials with 

zinc blende and rock-salt structures [26,27].  We have used this expression to compare the trends 

it predicts to the actual behavior determined from the ab initio calculations.  We have calculated 

γ using Eqs. 2 and 3 for Case 1.  While γ  depends on temperature, T, it saturates at high T.  By 

T = 300 K it is close to saturation for all materials, at which the calculated values are 1.66, 1.67 
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and 1.86 for ScN, YN and LuN, respectively.  Then, using the lattice parameters from Table II 

and the Dω  values taken from the calculated phonon dispersions, we find that LS theory correctly 

predicts that ScN should have the highest Lκ .  However, it predicts that the Lκ  for LuN is much 

smaller than that of YN.  In contrast, the first principles calculations predict that the Lκ  for LuN 

and YN are similar (see Table II).  The LS theory fails to capture behavior dictated by the 

interaction between acoustic and optic phonons, such as the smaller phase space for aao 

scattering responsible for the larger LuN Lκ . If the nitride compounds were weakly polar and did 

not have the soft TO modes such that the phonon dispersions had a large acoustic-optic 

frequency gaps, they would have much higher Lκ  values. 

     To highlight this latter point, we first note that the masses of the TM and RE atoms in the 

three compounds studied here are all much larger than that of nitrogen, with mass ratios ranging 

from about 3 to over 12.  It is then interesting to compare the Lκ  values of these nitride 

compounds to those predicted for large mass ratio group IV and group III-V semiconductors, 

such as GaN, GeC, BSb, and BAs.  It has been predicted from ab initio calculations that these 

four compounds should have room temperature Lκ  values of 230Wm-1K-1, 480Wm-1K-1, 280 

Wm-1K-1, and 2000Wm-1K-1.  Upon isotopic enrichment of their heavy atoms, the calculated Lκ  

for GaN, BSb and GeC increase significantly to 400 Wm-1K-1, 1200 Wm-1K-1 and 1500 Wm-1K-1 

[44–46], demonstrating the strong suppression of Lκ  in large mass ratio compounds due to 

phonon-isotope scattering.  We note that the TM and RE nitride compounds are either 

isotopically pure (ScN and YN), or have only small isotope concentrations on the heavy atom 

(La: 0.09% 138La, 99.91% 139La;  Lu:  97.41% 175Lu, 2.59% 176Lu).  Therefore, phonon scattering 

by isotopes is negligible compared to phonon-phonon scattering in these materials.  The much 
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larger Lκ  and enhancement with isotope enrichment in the group IV and III-V compounds arises 

primarily from large frequency gaps between acoustic and optic phonons (a-o gaps).  Then, 

energy conservation in three-phonon processes sharply restricts scattering of heat-carrying 

acoustic phonons by optic phonons.  Specifically, if the a-o gap is at least as large as the largest 

acoustic phonon frequency, then it is not possible to conserve energy in an aao scattering process, 

so such processes do not occur.  Furthermore, energy conserving aoo processes can only occur 

for acoustic phonons whose frequency is smaller than the optic phonon bandwidth [47, 48].  For 

nonpolar or weakly polar crystals, such as the group IV and group III-V semiconductors, the 

bandwidth of the optic phonons is small, restricting aoo scattering to low frequencies only.  The 

resulting weak phonon-phonon scattering makes Lκ  quite sensitive to phonon scattering by 

isotopes.  As is clear from the phonon dispersions, Fig. 2, the restrictions on both aao and aoo 

processes are not present in ScN, YN and LuN, soft TO phonon branch closes the a-o gap giving 

strong aao scattering, while the large optic phonon bandwidths promote strong aoo scattering. 

    Connected to the above, an interesting contrast to the TM and RE nitrides is boron bismuth 

(BBi).  BBi crystallizes in the zinc blende structure [49], and electronic structure calculations 

using the YS-PBE0 hybrid functional have found this III-V compound to be semiconducting 

with an energy gap of 0.95 eV [50].  BBi has an extremely large heavy (Bi) to light (B) atom 

mass ratio of 19.3, much larger than that of LuN (12.5).  We have calculated the phonon 

dispersions (see Fig. S4 [40]), the mode averaged Grüneisen parameter and the Lκ  of BBi.  It has 

smaller acoustic phonon group velocities than those in LuN, and the calculated γ  at 300K is 

about 0.9, about half that of LuN.  The BBi Lκ  at 300K predicted from LS theory is slightly 

smaller than that of LuN.  However, BBi is only weakly polar and the phonon dispersions show a 

large a-o gap of over 10 THz [49,50], which eliminates aao scattering and sharply restricts aoo 
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scattering.  The temperature dependent Lκ  of BBi calculated using the first principles approach is 

shown in Fig. 6; it is much larger than those of the three nitride compounds.  The calculated 

room temperature Lκ  is remarkably large, 347 Wm-1K-1, about 14 times that of LuN and far larger 

than predicted by the LS theory.  We note that Bi is the heaviest isotopically pure element.  The 

blue curve gives the Lκ  for naturally occurring isotope mix on the B atom (19.9% 10B, 80.1% 

11B).  Isotopic purification of the B atoms (100% 11B) gives only small increase in Lκ  (red curve), 

a consequence of the light B mass and large Bi to B mass ratio. 

Summary and Conclusions 

     The thermal properties of semiconducting ScN, YN and LuN, have been calculated from first 

principles.  All three semiconductor compounds are highly polar.  The soft TO modes contribute 

to suppressing the thermal conductivities, Lκ , because of strong scattering between acoustic (a) 

and optic (o) phonons.  In contrast to the nitride compounds, the III-V semiconductor boron 

bismuth (BBi) has much larger Lκ  (347 Wm-1K-1 at 300K) in spite of its larger Bi to B mass ratio 

and smaller acoustic velocities.  The main difference responsible for the much larger Lκ  in BBi is 

its weak polarity and has no soft TO modes, which creates a large a-o frequency gap that 

removes thermal resistance resulting from scattering between acoustic and optic phonons.   

     Synthesis of transition metal nitride compounds has been hampered by high N vacancy 

concentrations [1,51] resulting in part from low nitrogen vacancy formation energy.  The 

resulting phonon-vacancy scattering may account for the measured Lκ  in ScN [41] being much 

smaller than our calculated value.  A similar reduction may occur in YN and LuN.  This work 

demonstrates the utility of first principles calculations in describing thermal properties of 

materials. Furthermore, it highlights the importance of determining a physically reasonable value 
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of the Hubbard U  parameter for calculations of thermal properties.  Finally, it shows the 

importance of scattering between acoustic and optic phonons in reducing Lκ . 
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Table Captions 

Table I Calculated and measured lattice constants and calculated energy gaps for ScN, YN and 

LuN. 

 

Table II Lattice constants a, energy gaps gE , Born effective charges *Z , background and static 

dielectric constants ε∞  and 0ε , and lattice thermal conductivities κL, for the on-site U 

values that give lattice constants matching the measured ones (left columns) and those 

that match the energy gaps from HSE06 calculations (right columns). 
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Table I 

  ScN YN LuN 
 
 
Lattice Constant (Å) 

Experiment 4.501a 
4.44b 

4.881c 
4.877d 

4.76e 
4.756f 

GGA 
LDA 
HSE06 

4.518 
4.437 
4.498 

4.904 
4.821 
4.878 

4.752 
NA 

4.723 
 
Energy Gap (eV) 

GGA 
LDA 
HSE06 

0 
0 

0.92 

0.20 
0 

1.10 

0.24 
NA 
1.14 

aFrom Ref. 14,  
bFrom Ref. 15,   
cFrom Ref.16, 
dFrom Ref. 17,   
eFrom Ref. 18  
fFrom Ref. 19 
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 ScN YN LuN 
U (eV) 2.6 7.0 2.0 5.6 0 4.2 

a (Å) 4.500 4.594 4.883 4.988 4.752 4.893 

Eg (eV) 0.2 0.93 0.40 1.10 0.24 1.12 

Z* 4.05 3.51 4.30 3.59 4.52 3.64 

ε∞  11.05 7.83 11.46 7.47 12.48 7.52 

0ε  37.7 22.5 53.5 24.5 84.4 28.1 

κL(W/mK) 51.5 64.5 24.8 33.1 27.3 36.8 

 

Table II 
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Figure Captions 

Figure 1 Electronic structure along high symmetry directions for  (a) ScN, (b) YN, and (c) LuN, 

calculated using the HSE06 hybrid functional.  Note that all three compounds have 

indirect energy gaps with valence band maxima at Γ and conduction band minima at X. 

Figure 2 Phonon dispersions for (a) ScN, (b) YN, and (c), LuN for different values of the 

Hubbard U parameters:  Black dotted curves are U = 0; red curves are Case 1, thin blue 

dashed curves are Case 2, as described in the text. Calculations for ScN and YN used 

LDA+U, while those for LuN used GGA+U. 

Figure 3 Lattice thermal conductivity, κL, as a function of temperature for ScN, YN and LuN.  

The solid lines give κL for the U  value that matches the measured lattice constant.  

Dashed curves give κL for the U  value that matches the energy gap obtained from 

HSE06 hybrid functional calculations. 

Figure 4 Contributions to three-phonon scattering rates of ScN, YN, LuN and Si in the lowest 

TA phonon branch from processes involving (a) three acoustic phonons (aaa), (b) two 

acoustic and one optic phonon (aao) and (c) one acoustic and two optic phonons (aoo), 

scaled by the maximum acoustic phonon frequency.  

Figure 5 The change in energy per atom upon Sc and N sublattice displacements.  The 

displacements are along the [100] direction with magnitudes prescribed by the 

corresponding phonon eigenvectors for the TO modes at Γ. 

Figure 6 Lattice thermal conductivity of boron Bismuth (BBi) as a function of temperature.  B 

has a mix of isotopes:  19.9% 10B and 80.1% 11B.   The blue curve is calculated for this 
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isotope mix including phonon-isotope scattering, while the red curve assumes an 

isotopically purified case with 100% 11B.  
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Figure 2 
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Figure 3 
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Figure 4a 
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Figure 4b  
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Figure 4c 
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