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BaSnO3 (BSO) is a promising transparent conducting oxide (TCO) with reported room-
temperature (RT) Hall mobility exceeding 320 cm2V−1s−1. Among perovskite oxides, it has the
highest RT mobility, about 30 times higher than that of the prototypical SrTiO3. Using first-
principles calculations based on hybrid density functional theory, we elucidate the physical mecha-
nisms that govern the mobility by studying the details of LO-phonon and ionized impurity scattering.
A careful numerical analysis to obtain converged results within the relaxation-time approximation
of Boltzmann transport theory is presented. The k dependence of the relaxation time is fully taken
into account. We find that the high RT mobility in BSO originates not only from a small effective
mass, but also from a significant reduction in the phonon scattering rate compared to other per-
ovskite oxides; the origins of this reduction are identified. Ionized impurity scattering influences the
total mobility even at RT for dopant densities larger than 5× 1018 cm−3, and becomes comparable
to LO-phonon scattering for 1 × 1020 cm−3 doping, reducing the drift mobility from its intrinsic
LO-phonon-limited value of ∼594 cm2V−1s−1 to less than 310 cm2V−1s−1. We suggest pathways to
avoid impurity scattering via modulation doping or polar discontinuity doping. We also explicitly
calculate the Hall factor and Hall mobility, allowing a direct comparison to experimental reports for
bulk and thin films and providing insights into the nature of the dominant mechanisms that limit
mobility in state-of-the art samples.

I. INTRODUCTION

Recent demonstrations1–3 of electron mobilities as high
as 320 cm2V−1s−1 at room temperature (RT) have
sparked interest in the transparent cubic perovskite oxide
BaSnO3 (BSO) for electronic applications. The ease of
achieving high levels of n-type doping1,4 (5×1020 cm−3)
with conductivities on the order of 106 S m−1 makes it at-
tractive as a transparent conducting oxide (TCO). More-
over, it has the highest RT mobility among TCOs.5 Its
RT mobility is more than an order of magnitude higher
than that of perovskite oxides6 with conduction bands
derived from d orbitals, of which SrTiO3 (STO)7–10 is a
prototypical example.

Efforts to further improve BSO’s mobility through
growth of high-quality bulk as well as thin films have been
undertaken by many groups.3,11–13 However, the charac-
teristics of BSO that impart such a high mobility, and
the fundamental limits on this mobility, are still poorly
understood. The small effective mass has been suggested
as the primary cause for the high mobility.1,14 Here we
will show that the mass is not the only reason, and that
BSO has a significantly lower scattering rate than, for
instance, STO.

In this work, we explore the underlying mechanisms
responsible for the high RT mobility by calculating the
transport properties using Boltzmann transport theory
and first-principles calculations. We use the relaxation
time approximation, but unlike the majority of the elec-
tron transport studies that assume a constant relax-
ation time,15–18 we take the k dependence of the relax-
ation time into account. As recognized in other material
systems,19–21 we will see that there is a significant k de-
pendence in the relaxation time. This has important con-

sequences when analyzing the dependence of mobility on
carrier concentration and temperature, and also allows
us to calculate Hall mobility (µH), which differs from the
drift mobility (µ), for comparing against experimental
reports. We also address technical issues related to nu-
merically computing the scattering rates, as well as the
importance of adequate sampling of the band structure
in order to obtain converged results.

BSO has a 5-atom unit cell that leads to a total of 15
phonon modes, three of which are polar longitudinal opti-
cal (LO) modes.22 In polar crystals, LO phonons tend to
dominate scattering at RT compared to other phonons
due to their strong long-range coulomb interaction. In
addition, we need to assess ionized impurity scattering,
since large concentrations of dopants are intentionally in-
troduced in order to achieve carrier densities as high as
1019 − 1021 cm−3.

The paper is organized as follows: In Sec. II, we discuss
our first-principles results for the atomic and electronic
structure of BSO. Section III presents the methodology
as well as the computational implementation for calculat-
ing transport properties accounting for LO-phonon and
ionized impurity scattering via Boltzmann transport the-
ory. Section IV contains the calculated results and a dis-
cussion of scattering mechanisms. Section V A addresses
calculations of Hall factor and Hall mobility and discusses
the comparison to experimental transport measurements
on bulk and thin films. In Sec. V B, we address why
BSO’s mobility is larger than that of other perovskite ox-
ides, with the goal of guiding the search for other high-
mobility materials. In Section V C, finally, we suggest
avenues for enhancing the RT mobility of BSO.
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II. ATOMIC AND ELECTRONIC STRUCTURE

Our first-principles analysis is based on density func-
tional theory (DFT) calculations. An accurate descrip-
tion of the electronic structure is essential to obtain re-
liable results for transport properties; we therefore use
the HSE06 hybrid functional,23 which has been shown
to yield accurate band structures for solids.24–26 The
calculations were performed using the Vienna Ab initio
Simulation Package (VASP)27 with projector augmented
waves.28,29 Sn d states were treated as part of the core;
we verified this did not affect the calculated structure
and affected the band gap by less than 0.1 eV. We used a
plane-wave basis with 500 eV cutoff, and the default mix-
ing parameter of 25% and screening parameter of 0.2 Å−1

for HSE06. An 8×8×8 k-point grid with the Monkhorst-
Pack mesh was used for Brillouin-zone integrations.

BSO has a cubic structure with the space group Pm3̄m,
and has 5 atoms (one Ba, one Sn and 3 O) in its unit
cell. The calculated lattice parameter is 4.13 Å, in good
agreement with the experimental value3,30 of 4.12 Å. Our
calculated band structure is shown in Fig. 1. The con-
duction band (CB) is derived from Sn 5s orbitals and is
highly dispersive. There is also a significant nonparabol-
icity in the dispersion away from Γ, which will be quanti-
fied in Sec. III D. The valence band (VB) is derived from
O 2p orbitals, and has much lower dispersion than the
CB.

We find an indirect band gap (R → Γ) of 2.40 eV,
in agreement with a previous HSE06 calculation.4 Our
calculated direct band gap of 2.88 eV at Γ is in reason-
able agreement with the reported experimental direct gap
of 3.1 eV from optical absorption measurements by Mi-
zoguchi et al.14 and Kim et al.,3 but disagrees with the
value of 3.5 eV reported by Chambers et al.31 and Li et
al.32 Experimentally determined indirect gaps3,31 vary
between 2.95–3.1 eV and are again larger than our calcu-
lated value. Further work will be needed to resolve the
nature and magnitude of the gaps. We emphasize that
our transport calculations do not rely on the value of the
band gap, as we will see in the next section.

III. METHODOLOGY FOR TRANSPORT
CALCULATIONS

A. Boltzmann transport theory

To calculate the electron mobility, we use Boltz-
mann transport theory within the relaxation time
approximation.33 Due to the cubic symmetry, the con-
ductivity tensor that relates current and the applied field
as jα (ω) = σαβ (ω)Eβ (ω) reduces to a scalar.34 For a
given electron density n, the drift mobility µ is obtained
from the dc limit (ω → 0) of the conductivity σ as

µ = σ/ne = 2
e

n

∑
n

∫
Ω

d3k

(2π)3
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(
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Figure 1. (Color online) Band structure of BSO calculated
from first principles using the HSE06 hybrid functional. The
inset indicates the high symmetry points in the Brillouin zone.
The indirect gap R → Γ is 2.40 eV, and the direct gap at Γ
is 2.88 eV.

where fk determines the electron occupation given by the
Fermi-Dirac distribution for the Fermi level εF, εn,k is the
energy of the electronic state at wavevector k of band in-
dex n, vn,x is the x-component of the band velocity at
wavevector k, τn(k) is the scattering time for different
scattering processes, and the integration is over the Bril-
louin zone (BZ). The factor ∂fk/∂εn,k in the conductivity
integral in Eq. (1) is peaked at the Fermi level and decays
to negligible values beyond a range of ±10 kBT , where T
is the temperature and kB is the Boltzmann constant.
This restricts τn(k) and vn,k entering in the calculation
of mobilities to values around the Fermi level εF±10 kBT .

A few groups have performed first-principles studies
on other materials systems20,21,35–37 that explicitly take
the k dependence of τ into account; however, the most
common assumption in the literature is to take τ as a
constant,15–18 i.e., to approximate τn(k) to be indepen-
dent of k. The value of τ is often approximated by taking
the value at Γ17 or by treating it as a fitting parameter
in the analysis of experimental results. In this work, we
explicitly take the k dependence of τ into account; this
allows us to check the validity of the constant-τ approx-
imation, as well as calculate the Hall mobility.

B. LO-phonon scattering

The k-dependent rate describing an electron-phonon
scattering mechanism is obtained from Fermi’s golden
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rule as19,20,33,38

τ−1
n (k) =

2π

h̄

∑
ν,m

∫
Ω

d3q

(2π)
3 |gqν(k, n,m)|2 (1− v̂nk · v̂mk+q)

× [(nqν + fm,k+q) δ (εm,k+q − εn,k − h̄ωqν)

+ (1 + nqν − fm,k+q) δ (εm,k+q − εn,k + h̄ωqν)] ,

(2)

where gqν(k, n,m) is the electron-phonon coupling ma-
trix element between states in bands n and m, nqν is the
phonon occupation given by the Bose-Einstein (BE) dis-
tribution, and h̄ωqν is the energy of phonon mode ν. The
first energy-conserving δ function (containing the −h̄ω
term) represents the phonon absorption process, while
the second δ function (containing the +h̄ω term) repre-
sents the phonon emission process. The velocity factor,
(1− v̂nk · v̂mk+q) accounts for the directionality of the
current due to the scattered carriers. BSO has a single
nondegenerate CB and therefore only intraband scatter-
ing occurs (m = n = 1).

As explained in the Introduction, we focus on LO
phonons and neglect other phonons in this study. To
compute the electron-phonon (el-ph) coupling matrix
element gqν(k) we use a generalized Fröhlich model.
Contributions to the polarizability due to different op-
tical branches are explicitly included by using the ex-
pression for the coupling matrix elements derived by
Toyozawa39,40 based on the generalized Lyddane-Sachs-
Teller relation (in SI units):

|gqν |2 =
q2(

q2 + q2
∞,scrF ( q

2kF
)
)2

(
e2h̄ωL,ν

2ε∞ε0Vcell

)

×


∏
j

(
1− ω2

T,j

ω2
L,ν

)
∏
j 6=ν

(
1− ω2

L,j

ω2
L,ν

)
 , (3)

where ε0 is the vacuum permittivity, ε∞ is the elec-
tronic part of the dielectric constant, and q is the phonon
wavevector. For a material with a single LO mode Eq. (3)
reduces to the familiar form derived by Fröhlich.41 We ex-
plicitly checked the accuracy and the validity of the gen-
eralized Fröhlich model by comparing it with el-ph cou-
pling matrix elements calculated from first principles us-
ing density functional perturbation theory (DFPT)38 im-
plemented in the Quantum ESPRESSO package.42 The
Perdew-Burke-Ernzerhof (PBE)43 functional and ultra-
soft pseudopotentials44 were used for the DFPT calcu-
lations. We found the generalized Fröhlich model to be
accurate with a worst-case error of 50 meV in |gqν | at the
edge of the BZ. Similar validation of the Fröhlich model
with first-principles results has also yielded good accu-
racy in many other material systems, such as GaAs,45

SnO2,46 and GaN.47 The phonon energies are approxi-
mated to be independent of q as in the Fröhlich model.
We verified this approximation to be accurate to within
10 meV from explicit first-principles calculations. We use

the experimental values determined by Stanislavchuk et
al.22 for the three polar LO (154, 421 and 723 cm−1); or
18, 51 and 88 meV) and the corresponding three doubly-
degenerate TO (135, 245 and 628 cm−1; or 17, 30 and
78 meV) mode frequencies, and for the high-frequency
dielectric constant (ε∞=4.3).

In the Fröhlich model41 as well as in first-principles
methods,38 a divergence occurs near q = 0 due to the
long-range nature of the polarization field in a dielec-
tric. However, the presence of CB electrons causes this
long-range field to be screened, and by including this
screening via the screening wavevector q∞,scr in the ex-
pression for the el-ph matrix element [Eq. (3)], the di-
vergence is avoided.38,48,49 In principle, screening due to
CB electrons is q dependent, and is given by Lindhard
theory. However, in practice, evaluating the full expres-
sion from Lindhard theory becomes computational ex-
pensive, except at 0 K where an analytic expression can
be obtained.38,50 Therefore, to circumvent the large com-
putational cost, we will compute the screening wavevec-
tor q∞,scr using Thomas-Fermi theory,50 which is the
q → 0 limit of Lindhard theory, in a medium described by
the high-frequency (clamped-ion) dielectric constant ε∞;
the expression will be discussed in Sec. III D. The q de-
pendence, which becomes important for phonon wavevec-
tors q comparable to the Fermi wavevector kF, will be
included via the Lindhard function33,38,50 F (q/2kF) in
Eq. (2), which has an analytic form only at 0 K:

F (x) =
1

2
+

1− x2

4x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣ , x =
q

2kF
. (4)

The method to compute kF will also be discussed in
Sec. III D.

In principle, the screening also affects the LO-phonon
frequencies.49,51–53 The effect is to cause a q dependence
near Γ as:

ω2
L,ν(q) =

q2ω2
L,ν + q2

∞,scrω
2
T,ν

q2 + q2
∞,scr

, (5)

which goes to ω2
T,ν at q = 0, and approaches ω2

L,ν for

q2 � q2
∞,scr. We estimated the impact of including this q

dependence on the scattering rate for 1020 cm−3 doping
by calculating the average of the matrix element |gq,ν |2
over q, and found it to make a difference of less than 5%.
Therefore, to avoid complications in evaluating the en-
ergy conservation (discussed in Sec. III D), we neglect the
q dependence of the frequencies, and use the unscreened
q-independent LO frequency values.

C. Ionized impurity scattering

To treat charged impurity scattering, two approaches
are commonly used : Brooks-Herring (BH) or Conwell-
Weisskopf (CW).54 Both approaches are based on the
Born approximation (elastic scattering), and differ only
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in the manner in which screening is treated. The choice
therefore depends on the screening regime, which is de-
termined by the dimensionless parameter η:

η =
16Z2N

2/3
imp

q2
scr

R∗H
εk

, (6)

introduced by Ridley,55 who suggested BH to be valid for
η < 1, and CW for η > 1. R∗H = 13.605m∗k/meε

2 eV is
the effective Rydberg energy, where m∗k is the band mass
at wavevector k [discussed in Sec. III D]. The screening
wavevector q2

scr is computed in a medium described by
the static dielectric constant54 ε, taken to be 20 from
Ref. 22, and is different from q2

∞,scr used in the screen-
ing of electron-phonon interaction by a factor of ε∞/ε.
Based on Ridley’s criterion, for the densities reported
in this work (1017–1021 cm−3), the BH approach should
be applicable (η ranges between 0.05 and 10−8). The
scattering rate for Nimp ionized impurities of charge Ze
within the BH approach is given by

τ−1
imp(k) =

π

2
vkNimp

(
Ze2

4πεε0εk

)2

×

[
ln

(
1 +

8m∗kεk

h̄2q2
scr

)
−
(

1 +
h̄2q2

scr

8m∗kεk

)−1
]
. (7)

BSO is often doped with substitutional La (La+1
Ba) which

has a +1 charge state.3 To simulate this situation we
therefore assume ionized dopants to have +1 electronic
charge, and their concentrations were chosen to be equal
to the electron concentration, Nimp = n (i.e., we assume
full ionization, and no charge compensation).

For Z > 1, we would need fewer impurities to give rise
to a given electron concentration n (since n = ZNimp,
assuming complete ionization), but because the scatter-
ing rate is proportional to NimpZ

2 [Eq. (7)], the rate
effectively increases linearly with Z. Singly charged im-
purities are therefore optimal in terms of mobility. For
instance, doping with a double donor would reduce the
impurity-related part of the mobility by a factor of 2
compared to a single donor.

D. Computational implementation

The computation of mobility via Eq. (1) involves eval-
uating a three-dimensional (3-D) integral over the BZ.
The three quantities required for evaluating this integral
are vn,x, ∂fk/∂εk and τn(k). The first two quantities
converge reasonably well for finer grids, although work-
ing with such finer grids using hybrid functionals results
in a prohibitively large computational cost unless an in-
terpolation technique such as Wannier interpolation56

is used. However, the main bottleneck in computing
the LO-phonon scattering process lies in obtaining τn(k)
[Eq. (2)], which involves a 3-D integral over the phonon
wavevector q with its integrand containing a δ function.

This integral can in principle be numerically evaluated
from the full first-principles band structure. In practice,
however, any numerical technique employed will require
a fine grid and the use of smearing to implement the
energy-conserving δ function present in Eq. (2). This
leads to inaccuracies in the results because of its sensi-
tivity to the choice of the smearing parameter.20,21 In
addition, quantifying the error in the mobility is difficult
without the knowledge of the exact result.

We circumvent these problems here by using an ana-
lytic expression for the CB dispersion. This allows us to
solve for one of the components of q using the condition
for energy conservation exactly, thus reducing the inte-
gral to 2-D by getting rid of the δ function. This has the
added advantage of decreasing the computational com-
plexity as well as producing the exact result that can be
used to validate the choice of the smearing parameter in
the numerical approach.20,21 Of course, this approach is
contingent on the analytic expression being able to ac-
curately reproduce the first-principles band structure, at
least in the vicinity of the Fermi level, i.e., in the regions
of the BZ where the factor ∂fk/∂εk is non negligible.
The resulting integral can then be evaluated using any
numerical integration technique; here we use the trape-
zoidal rule on a uniform grid separated by ∆k = 5×10−3

Å−1 along each dimension.

We plot the CB dispersion in Fig. 2. It is clear that for
energies larger than 0.3 eV nonparabolicity is significant.
Since the Fermi level may lie well above this energy for
commonly used doping levels (also indicated in Fig. 2)
using a parabolic dispersion relation would be inaccurate.
Instead, we use the hyperbolic dispersion relation derived
from k.p theory:34

h̄2k2/2m∗Γ = εk(1 + αεk) . (8)

Fitting our first-principles band structure of the CB to
the hyperbolic dispersion relation yields an effective mass
near Γ, m∗Γ = 0.20me, which we find to be isotropic.
However, the nonparabolicity parameter α was found to
be slightly anisotropic as evident from inspecting the E-
vs.-k relation along the three high-symmetry directions
in the BZ up to k = 0.4 Å−1 (along Γ →X, Γ →M, and
Γ →R; see Table I). Since the deviation in α due to the
anisotropy is small (±0.03 eV−1), to avoid complications
in our transport analysis, we use an isotropic α value
of 0.25 eV−1 determined by performing a weighted aver-
age of α along the high-symmetry directions. Using this
weighted-averaged value for α (weights of 6 along Γ→X,
12 for M direction, and 8 for R direction) yields an ac-
curacy of better than ±0.05 eV for energies up to 1.5 eV
(k ∼ 0.32 Å−1) above the CB minimum (see Fig. 2). For
reference, the Fermi level εF corresponding to an elec-
tron concentration of 1021 cm−3 is at 1.34 eV; our fit will
therefore be entirely adequate for all achievable doping
densities.

For the hyperbolic dispersion, the band velocity is
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Table I. The effective mass near Γ, m∗Γ and the nonparabol-
icity parameter α for the hyperbolic fit [Eq. (8)] along three
high-symmetry directions.

Direction m∗Γ (me) α (eV−1)

Γ→X 0.20 0.208
Γ→M 0.20 0.253
Γ→R 0.20 0.285
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Figure 2. (Color online) Dispersion of the lowest CB around
Γ, showing the slight anisotropy evident from the difference in
dispersion along the high-symmetry directions (Γ-X, Γ-M, and
Γ-R) (shaded in blue). The fitted hyperbolic dispersion (solid
orange line) and parabolic dispersion (dashed black line) are
shown. Fermi levels for different electron densities are also
indicated.

given by

vk =
1

h̄

∂εk
∂k

=
h̄k

m∗Γ
(1 + 2αεk)

−1
(9)

and the band mass accounting for nonparabolicity is
given by

m∗k = m∗Γ(1 + 2αεk)3 . (10)

Our value for m∗Γ is in agreement with other HSE06
calculations4,57 except for one study,58 in which the use
of incorrect units for k led to an overestimation of the
mass (0.46me) by a factor of (2π/a)2, where a = 4.13
is the lattice parameter in Å. The value reported based
on the hybrid functional PBE04,12 is 0.22me, and values
based on LDA and GGA functionals3,59 range between
0.05 and 0.40me. To our knowledge, values for the non-
parabolicity parameter have not been reported.

To date, three studies have reported a wide range of
experimental effective masses for the CB in BSO.3,60,61

Kim et al.3 estimated the mass to be 0.60me based on
the Burstein-Moss shift at n = 2.3 × 1020 cm−3. Seo et
al.60 used the plasma frequency that fitted the observed
Drude conductivity at an electron density of 8.9 × 1019

cm−3 to arrive at 0.35me. Both these reports signifi-
cantly overestimate m∗Γ compared to the calculated value
of 0.20me. However, the effective mass value of ∼0.20me

determined from reflectivity measurements by Allen et
al.61 is in good agreement with our calculation.

As noted in Sec. III B, the screening wavevector is com-
puted using Thomas-Fermi theory for a medium with a
high-frequency dielectric constant ε∞:

q2
∞,scr =

e2

ε∞ε0

∂n

∂εF
=

e2

ε∞ε0

∫ ∞
εCBM

dε

(
−∂f
∂ε

)
D (ε) ,

(11)

where the density of states D (ε) for the hyperbolic dis-
persion relation is given by

D(ε) =
1

π2

(
m∗Γ
h̄2

)3/2

(1 + 2α ε)
√

2ε (1 + α ε). (12)

The screening wavevector used in the calculation of ion-
ized impurity scattering in Sec. III C is obtained as
q2
scr = ε∞q

2
∞,scr/ε. The Fermi wavevector kF used in the

Lindhard function F (q/2kF) in Eq. (2) can be obtained
by solving for k in Eq. (8) at the Fermi energy εF. For
nondegenerate doping densities, where εF lies below the
CBM, we use the average energy of a classical gas 3kBT/2
to solve for kF using Eq. (8).

E. Hall mobility and Hall factor

The Hall mobility µH differs from the drift mobility µ
by the Hall factor rH:33,62

µH = rHµ . (13)

The Hall factor, usually on the order of 1–2, is obtained
from the electrical conductivity σ [Eq. (1)] and the con-
ductivity coefficient σH as21,63

rH =
σH

σ2
ne . (14)

The conductivity coefficient is calculated using the ex-
pression

σH = 2e3

∫
Ω

d3k

(2π)
3 τ

2 (k)

(
−∂fk
∂ε

)
vx
(
vxM

−1
yy − vyM−1

xy

)
,

(15)

where, for the case of a hyperbolic band dispersion,

M−1
ij =

1

h̄

∂vj
∂ki

(16)

= [m∗Γ (1 + 2αεk)]
−1

(δij − 2αm∗Γvivj) . (17)

For parabolic dispersion, α = 0, M−1
yy = (m∗Γ)−1 and

M−1
xy = 0. Due to the dependence of σH on τ2(k), σ on

τ(k) and rH on their ratio, inclusion of the k-dependence
of τ(k) is essential for the calculation of Hall mobility.
Neglecting the k dependence results in rH = 1, i.e., the
Hall and drift mobilities become identical.
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IV. RESULTS

Using the methodology described in the previous sec-
tion, we now proceed to calculate the scattering rates
and mobilities due to LO-phonon and ionized impurity
scattering. We first discuss the results obtained for
the individual scattering processes separately. Then, in
Sec. IV C, we discuss the overall mobility combining the
effect of both processes via Matthiessen’s rule.

A. LO-phonon scattering

The LO-phonon scattering rates are obtained using
Eq. (2) by summing the contributions from the three
polar LO modes. The k dependence of the calculated
scattering rate is plotted in Fig. 3 for two values of the
electron density, 1019 and 1020 cm−3. Our hyperbolic dis-
persion fit is valid over the plotted range (up to 0.4 Å−1),
and since isotropic dispersion is a good approximation,
the rate plotted is representative of all directions in the
BZ. We can explain the overall features in Fig. 3 in terms
of some basic mechanisms. As k increases, the band cur-
vature decreases (see Fig. 2), and the radius of the en-
ergy surface at εk+q increases. Both these characteristics
cause the phonon wavevector q to be larger in order to
satisfy the energy conservation, εk+q = εk ± h̄ωLO due
to the following two reasons: (1) a smaller band curva-
ture leads to a larger k + q for a given εk+q, and (2) a
larger radius of the energy surface εk+q leads to an in-
crease in the magnitude of q for the majority of q vectors
satisfying energy conversation. The k dependence of the
scattering rate can therefore be related to the q depen-
dence in Eq. (3). We thus expect that near k=0, for q
values small compared to q∞,scr, the rate will be propor-
tional to q2/q4

∞,scr, while for larger k values, if q becomes

larger than q∞,scr, the rate should decrease as 1/q2. The
behavior in Fig. 3 is more complicated, however, due to
the following reasons. In Fig. 3(a), for 1019 cm−3, the
decrease at large k can be observed beyond k = 0.15
Å−1, but the initial rise near k=0 is overshadowed by
the presence of a “dip” in the curve near the Fermi level;
the origin of this feature will be explained below. Fig-
ure 3(b), for 1020 cm−3, does show the expected rise in
the scattering rate for small k values, but a decrease at
large k values is not evident. This is due to the large
value of q∞,scr in this case, which requires a much larger
q, and hence a larger k, to observe the 1/q2 behavior.

The dip in the scattering rate around the Fermi level is
a consequence of the energy dependence of the factor in
square brackets in Eq. (2) that determines the probability
of scattering due to emission or absorption of a phonon.
For a given phonon mode ν and Fermi level εF, nqν is a
constant (since phonon energy is independent of q in the
Fröhlich model), and therefore the k dependence of this
factor is due only to the electronic occupation functions
fk+q multiplied by their respective δ function for phonon
absorption and emission. With this information, this fac-
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Figure 3. (Color online) Calculated scattering rates [1014 s−1]
versus electron wavevector k (Å−1) for LO-phonon scatter-
ing (orange dotted lines), ionized impurity scattering (blue
dashed lines) and the total rate obtained via Matthiessen’s
rule (black solid lines) at RT (300 K) for electron densities
(a) 1019 cm−3 and (b) 1020 cm−3. Values are plotted along
Γ→ X but are representative of all directions in the BZ due
to the almost isotropic band structure. Note the different
vertical scales in panels (a) and (b). The Fermi level εF is
indicated by vertical dashed lines.

tor can be expressed solely in terms of the magnitude of
the energy separation between the initial scattering state
and the Fermi level, |εk − εF|. For initial states located
exactly at the Fermi level (εk = εF), this factor reaches
a minimum at which the combined scattering probability
due to emission and absorption is lowest, causing the dip
in the scattering rate centered at the Fermi level. For
initial states located below the Fermi level (εk < εF), the
absorption term, which is proportional to the occupation
of the final state dominates [see first term in Eq. (2)].
The opposite is true for εk > εF: the emission term be-
comes dominant when the final states are unoccupied due
to the (1–fk+q) term, which occurs for initial states oc-
curring above εF. As the doping is varied, the center of
the dip in τ−1(k) moves along with the Fermi level, as is
evident by comparing the k dependence of the rates for
two different densities in Figs. 3(a) and (b).

Finally, we discuss the absolute value of the scatter-
ing rate at Γ. This depends on the electron density be-
cause of (1) screening, with the rate being proportional
to q2/q4

∞,scr for small wavevectors, and (2) the dip that
moves along with the Fermi level, as discussed above. For
n=1019 cm−3 [Fig. 3(a)] the rate at Γ is depressed partly
due to the dip near εF, and partly due to screening. At
electron densities 1020 cm−3 [Fig. 3(b)] and above, the
Fermi level is pushed sufficiently high to ensure that the
dip does not influence the value at k=0, and screening
becomes the main effect near Γ; higher doping leads to
more screening and hence decreases the rate [see Eq. (3)].

The calculated mobility values µLO based on the k-
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dependent LO-phonon scattering rates at RT (300 K)
are listed in Table II for various doping levels. Figure 3
shows that the scattering rate in the vicinity of the Fermi
level (which is what matters for mobility) can be differ-
ent from the scattering rate at Γ. Therefore, using a
scattering rate calculated at Γ in a constant-τ approx-
imation could lead to inaccurate mobilities as well as
incorrect trends with electron density (or εF). For ex-
ample, at RT for n = 1020 cm−3, the mobility calculated
using a k-independent scattering rate with the value eval-
uated at Γ (τ−1

Γ = 0.080 × 1014 s−1) is 943 cm2V−1s−1.
This value overestimates the actual mobility (calculated
taking the k dependence into account), 594 cm2V−1s−1.
Based on the factor ∂fk/∂εk in Eq. (1), which renders
the mobility sensitive only to rates in the vicinity of εF,
one would expect a constant τ evaluated at εF (τkF) to
yield more accurate values. However, we find that us-
ing τ−1

kF
(= 0.095 × 1014 s−1) yields 792 cm2V−1s−1,

which still significantly overestimates the actual mobil-
ity by about 33% (200 cm2V−1s−1). On the other hand,
for n = 1019 cm−3, we find a different trend: using
τ−1
Γ (= 0.186 × 1014 s−1) gives a reasonable mobility

of 455 cm2V−1s−1 compared to the actual mobility of
487 cm2V−1s−1, whereas using τ−1

kF
(= 0.116× 1014 s−1)

yields 733 cm2V−1s−1, which is a severe overestimation
by about 50% (246 cm2V−1s−1).

Table II. Calculated drift mobility values (in cm2V−1s−1)
at RT (300 K) taking into account scattering due to LO
phonons (µLO), ionized dopants (µimp), and their total (µtot)
for different electron densities n (cm−3). The corresponding
Fermi level εF (eV) (referenced to the conduction-band min-
imum, CBM), Fermi wavevector kF (Å−1), and the screening
wavevectors q∞,scr (Å−1) [Eq. (11)] and qscr (Å−1) are also
given.

n εF − εCBM kF q∞,scr qscr µLO µimp µtot

1017 -0.079 0.036 0.013 0.006 321 29850 307
1018 -0.017 0.036 0.038 0.018 389 5195 318
1019 0.074 0.063 0.083 0.039 487 1445 329
1020 0.354 0.142 0.137 0.063 594 666 305
1021 1.343 0.307 0.240 0.111 530 290 183

We note that for nondegenerate doping, where the
Fermi level lies in the band gap, the reasoning based on
∂fk/∂εk leads us to expect that using τΓ should give
reasonably accurate mobility values. Indeed, for n=1017

cm−3, using τ−1
Γ = 0.263×1014s−1 gives a mobility of 334

cm2V−1s−1, in good agreement with the k-dependent τ
calculation value 321 cm2V−1 s−1. However, for n=1018

cm−3, τ−1
Γ = 0.178× 1014 s−1 results in 487 cm2V−1s−1,

a serious overestimate compared to the actual value of
389 cm2V−1s−1 obtained using the full k dependence of
τ . This example demonstrates that using the rate at Γ
is a good approximation only for low doping concentra-
tions, corresponding to Fermi levels well below the CBM,
where only carriers very close to Γ contribute to trans-
port. For higher doping levels there is no justification for

using a constant-τ value determined either at the Γ or
near εF.

Figure 4 shows the temperature dependence of the
mobility based on LO-phonon scattering: the mobility
decreases by more than two orders of magnitude going
from 50 K to 300 K. This strong dependence results
from the phonon occupation factor nqν entering into the
LO-phonon scattering rate [Eq. (2)]. This behavior as
a function of temperature is similar for all electron con-
centrations. Figure 4 also shows the contributions to the
mobility due to the individual LO phonon modes. As
expected, at low temperatures (0–100 K), only the low-
est frequency mode (LO1) is occupied and contributes to
limiting the mobility. Starting at 100 K the LO2 mode
(51 meV) gets populated. The highest energy (88 meV)
LO3 mode starts contributing to scattering at tempera-
tures above 250 K.
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Figure 4. (Color online) Calculated mobility versus temper-
ature for LO-phonon scattering (µLO) (solid red circles) for
n=1020 cm−3. The calculated mobility due to scattering from
the individual phonon modes is shown: µLO1 (purple open
squares), µLO2 (green open circles), and µLO3 (orange trian-
gles) with energies 18, 51 and 88 meV, respectively. The lines
are analytic fits for the mobilities based on the BE distribu-
tion (see text): µLO (black solid line), µLO1 (purple dotted
lines), µLO2 (green dashed line), and µLO3 (orange dash-dot
line).

LO-phonon contributions to mobility are often
fitted8,9,64 to an expression that is inversely proportional
to the BE distribution as derived by Low and Pines65

for a single LO mode. For materials with multiple LO
modes, such as the perovskite oxides, the fits are per-
formed by adding the reciprocal mobilities due to each
mode with some assumption or knowledge about which
modes dominate in the temperature range of interest.8,64

To assess the validity of such a procedure, we fitted our
calculated mobilities due to the individual LO phonon
modes to a BE-distribution-like term, as well as their
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combined mobility by summing their reciprocals:

µ−1
LO = µ−1

LO1
+µ−1

LO2
+µ−1

LO3
=
∑
ν

cν

exp
(
h̄ων
kBT

)
− 1

, (18)

where cν is the fitting coefficient corresponding to the
phonon mode ν with energy h̄ων . The fits for the in-
dividual modes (see Fig. 4) perform very well when
kBT � h̄ωLO, consistent with the fact that the expres-
sion was derived in the low-temperature limit by Low and
Pines.65 At higher temperatures, the fits tend to slightly
underestimate the mobility.

B. Ionized impurity scattering

We now proceed to calculate ionized impurity scatter-
ing, based on Eq. (7). The k dependence of the scatter-
ing rate is shown in Fig. 3. We observe that the behav-
ior is linear in k near Γ, and decreases as k−3 beyond
the peak. The resulting mobility values calculated at
RT are included in Table II for doping densities 1017–
1021 cm−3. Figure 5 shows the temperature dependence
of the drift mobility for various doping densities. For
doping densities below 1019 cm−3, the mobility depends
strongly on temperature, while for higher doping densi-
ties the mobility is temperature independent. Inspection
of Eq. (1) shows that the temperature dependence arises
from ∂fk/∂εk centered around the Fermi level εF with a
temperature-dependent width. The screening wavevector
qscr appearing in Eq. (7) is also dependent on ∂fk/∂εk
[see Eq. (11)]. Therefore, any temperature dependence
in the mobility should come primarily from ∂fk/∂εk and
εF.

102

103

104

105

 0  100  200  300  400  500

μ
im

p 
(c

m
2 V-1

s-1
)

Temperature (K)

1017 cm-3

1018 cm-3

1019 cm-3

1020 cm-3

1021 cm-3

Figure 5. (Color online) Calculated drift mobility versus tem-
perature in the case of ionized impurity scattering (µimp) for
five different electron densities: 1017 (blue squares), 1018 (or-
ange open circles), 1019 (green solid circles), 1020 (red open
triangles), and 1021 (black closed triangles) cm−3.

As the temperature decreases two changes occur: (1)

the width of ∂fk/∂εk narrows and approaches a δ func-
tion at 0 K, and (2) the Fermi level εF itself increases.
Both these dependences affect the mobilities when the
scattering rate varies rapidly with energy (or k) around
the Fermi level. This is indeed the case for the ionized
impurity scattering rate close to Γ, i.e., for εF near or be-
low the CBM. Test calculations for 1018 and 1019 cm−3

in which the width of the Fermi derivative ∂fk/∂εk as
well as εF itself were fixed to their values at 300 K con-
firmed this reasoning; the resulting mobilities showed no
temperature dependence. At doping densities above 1019

cm−3 the variation of the rate around the Fermi level is
slow, resulting in a very weak temperature dependence
of the mobilities.

C. Total drift mobility

We now combine the effect of LO-phonon and ion-
ized impurity scattering via Matthiessen’s rule, τ−1

tot =
τ−1
LO+τ−1

imp. The temperature dependence of the total drift

mobility [see Fig. 6] shows the typical behavior:66 ionized
impurity scattering dominates at low temperatures, and
as the temperature increases LO-phonon scattering re-
duces the mobility. At RT and for doping densities less
than 1018 cm−3, the total mobility (see Table II) is lim-
ited mainly by LO-phonon scattering. At higher doping
levels impurity scattering plays an increasingly important
role. This highlights the importance of efforts to reduce
ionized impurity scattering, as discussed in Sec. V C.
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Figure 6. (Color online) Calculated drift mobility versus tem-
perature due to a combination of LO-phonon and ionized im-
purity scattering (µtot) for five different electron densities:
1017 (blue squares), 1018 (orange open circles), 1019 (green
solid circles), 1020 (red open triangles), and 1021 (black closed
triangles) cm−3.
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D. Mobility vs. electron density

The trends in the RT mobility-vs.-density (µ-vs.-n) as
well as the dominant scattering mechanism at a given
doping level can be visualized more clearly from Fig. 7.
First, we discuss the trends for the two scattering mech-
anisms individually. Ionized impurities are seen to re-
duce the mobility with doping as nm (linear on the log-
log plot), where the exponent m is different for the two
identifiable density regimes: (1) nondegenerate doping:
n < 1018 cm−3, when the Fermi level lies in the band
gap, where the mobility decreases as ∼n−0.75, and (2)
degenerate doping: n > 5 × 1018 cm−3, when the Fermi
level is above the CBM, where the mobility decreases
more slowly as ∼n−0.33. As discussed in Sec. III C, we
have set n = Nimp for an ionized donor of +1 charge. In
the nondegenerate doping regime, screening is weak (qscr

is small) and the factor outside the square brackets in
Eq. (7) dominates and yields a N−1

imp dependence, close

to but not quite equal to the N−0.75
imp behavior extracted

from the full results in Fig. 7. In the degenerate doping
regime, screening is significant(large value of qscr), and
the factor within square brackets in Eq. (7) becomes im-
portant. An expansion of Eq. (7) for large qscr shows that
the mobility should decreases as N−1

impq
4
0,scr ∝ n−1/3, in

agreement with the behavior in Fig. 7(a). Here we have
used qscr ∼ n1/6 from Thomas-Fermi theory for degener-
ate doping.

For LO-phonon scattering, we find that screening plays
a significant role for densities 1018 cm−3 and higher, as
seen by comparing mobilities with and without screen-
ing in Fig. 7(b). To elucidate the role played by the
band structure and the Fermi level, we focus on the
unscreened case. Based on the physics, three distinct
regions can be identified in the µ-vs.-n curve: (1) for
low densities ≤ 1018 cm−3, the mobility is fairly con-
stant, at ∼300 cm2V−1s−1; (2) for densities in the range
1018–1019 cm−3, the mobility decreases slightly to ∼200
cm2V−1s−1; and (3) for doping densities > 1019 cm−3,
the mobility increases with electron density from ∼200 to
∼300 cm2V−1s−1. The effect of screening is to increase
the mobility with increasing density.

In Region 1 the Fermi level lies below εCBM + h̄ωLO1,
where h̄ωLO1 = 18 meV is the lowest LO-phonon energy
among the three LO modes. This makes emission of LO
phonon almost impossible, since most of the carriers are
at the CBM and do not have any states below to relax to
after emission. Phonon absorption remains as the only
LO-phonon scattering process, and determines the mo-
bility. As the Fermi level moves above εCBM + h̄ωLO1

with doping, we enter Region 2, where LO-phonon emis-
sion becomes possible and reduces the mobility. Raising
the Fermi level further (Region 3) results in an increase
in mobility, which can be attributed to a decrease in
band curvature and a larger energy surface as discussed
in Sec. IV A. In the presence of screening, for densities
greater than 1018 cm−3, it is the screening wavevector
q∞,scr that mainly determines the mobility by enhancing
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Figure 7. (Color online) (a) Calculated drift mobility versus
electron density (cm−3) at 300 K (RT) for LO-phonon scat-
tering, µLO (orange dotted line), and ionized impurity scat-
tering, µimp (blue dashed line), as well as the total drift mo-
bility, µtot (black solid line). (b) Comparison of the screened
(orange dotted line) and unscreened (green open circles on
dotted line) values for µLO versus electron density.

it.

Overall, however, the total mobility is seen to de-
crease with increasing electron density [Fig. 7(a)] due
to the strong contribution from ionized impurity scat-
tering. On comparing µLO and µimp, it is clear that ion-
ized dopants affect the RT mobility already at densities
n > 1018 cm−3, and are the dominant source of scatter-
ing for n > 1020 cm−3. For n > 1018 cm−3, dopants in
combination with LO-phonon scattering limit the total
mobility to less than 330 cm2V−1s−1. Below n = 1018

cm−3, the limit is determined by LO-phonon scattering,
but the lack of screening results in a lower mobility of
∼300 cm2V−1s−1. Of course, reducing the doping would
also reduce the conductivity; it is therefore important to
consider doping techniques that can mitigate impurity
scattering without sacrificing the carrier concentration
and conductivity. We will discuss two such techniques in
Sec. V C.
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V. DISCUSSION

A. Comparison with experimental measurements

Our discussions thus far have focused on the drift
mobility. However, all of the transport measurements
on BSO,1,2,12,13,58 with the exception of one report of
transistor-based measurements11 on thin films, have been
based on Hall measurements. To allow for a direct quan-
titative comparison with experiments we need to com-
pute the Hall mobility, which is related to the drift mo-
bility µ via the Hall factor rH as given in Eq. (13).

Due to its dependence on τ (k), the Hall factor rH cal-
culated using Eq. (14) depends on the scattering process,
and shows a strong dependence on carrier concentration
(see Fig. 8) as well as temperature. With increasing
carrier concentration, as the Fermi level approaches the
CBM and moves above into the CB, rH decreases and
saturates to a constant value of ∼ 1.09 for LO-phonon
scattering, and ∼ 1.03 for ionized impurity scattering.

We now explicitly compare the temperature depen-
dence of our calculated Hall mobility µH with experi-
ment. We focus on the highest mobility values reported
to date, from experiments on bulk single crystals2 as well
as thin films.13
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Figure 8. (Color online) Calculated Hall factor rH versus
carrier concentration for ionized impurity (blue dashed line)
and LO-phonon scattering (orange dotted line).

1. Bulk crystals

In Fig. 9(a) we show experimental values for bulk sin-
gle crystals measured by Kim et al.2 Their 300 K value at
8×1019 cm−3 doping, 320 cm2V−1s−1, is the highest RT
mobility reported to date. When comparing with exper-
imental measurements it is important to recognize that
scattering mechanisms in addition to the LO-phonon and
ionized impurity scattering may be present, for instance

due to the presence of point defects such as compensat-
ing centers and neutral impurities, as well as extended
defects such as dislocations or grain boundaries. At
large carrier densities (> 5× 1019 cm−3), we find ionized
impurity scattering to be temperature independent (see
Fig. 5); and neutral impurity scattering is also tempera-
ture independent.67 Therefore, we take these additional
mechanisms into account via a temperature-independent
mobility contribution µadd chosen to reproduce the ex-
perimental low-temperature mobility value.
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Figure 9. (Color online) Solid lines: calculated Hall mobility
versus temperature due to ionized impurity and LO-phonon
scattering, with addition of a temperature-independent scat-
tering contribution: (1/µimp + 1/µLO + 1/µadd)−1, for dif-
ferent experimental doping densities. Symbols indicate the
corresponding experimental Hall measurements (a) on bulk
crystals from Ref. 2 , for 8×1019 cm−3 (solid red circles) and
1.2×1020 cm−3 (solid green triangles) doping, and (b) on thin
films from Ref. 13, for 6×1019 cm−3 (open orange circles) and
7 × 1019 cm−3 (open blue triangles) doping. For bulk crys-
tals (a), µadd is 4500 cm2V−1s−1 for 8× 1019 cm−3, and 1000
cm2V−1s−1 for 1.2 × 1020 cm−3, and for thin films (b), µadd

is 210 cm2V−1s−1 for 6× 1019 cm−3, and 475 cm2V−1s−1 for
7× 1019 cm−3.

Taking these additional contributions into account, the
calculated Hall mobilities for 8×1019 cm−3 and 1.2×1020

cm−3 doped samples agree very well with experiment.
For 8× 1019 cm−3 doping, µadd = 4500 cm2V−1s−1 indi-
cating weak scattering due to other mechanisms. How-
ever, for 1.2 × 1020 cm−3, the µadd required for the fit
was 1000 cm2V−1s−1. This suggests a significant pres-
ence of extended defects, neutral impurities or ionized
defects. Wang et al. have observed Ruddlesden-Popper
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type {001} stacking faults in BSO that could explain
some of the additional scattering.68 However, more likely
mechanisms, at such large dopant concentrations, include
the formation of charge-compensating centers or carrier
traps, or of neutral centers due to a decrease in the frac-
tion of ionized dopants or because the dopant solubility
limit is approached. In Ref. 2, Kim et al. suggested that
ionized impurity scattering was the dominant scattering
mechanism in these samples, and neglected LO-phonon
scattering in their analysis. In contrast, as evident from
our analysis related to Fig. 7(a) as well as Fig. 9(a), LO-
phonon scattering that causes a temperature dependence
plays an equally important role in limiting the RT mo-
bility for ∼ 1020 cm−3 doping.

2. Thin films

BSO thin films1–3,12,13 exhibit a wide range in mea-
sured mobilities, which may reflect variations in growth
technique and quality of the films. The highest mobil-
ity reported is 150 cm2V−1s−1 in thin films grown using
molecular beam epitaxy.13 In Fig. 9(b) we show an anal-
ysis similar to that used for bulk samples in Sec. V A 1
to compare our calculated Hall mobility with the ex-
perimental values of Ref. 13. Our analysis of the tem-
perature dependence in thin films suggests strong ad-
ditional scattering mechanisms to be present compared
to bulk. These additional scatterers could be related
to dislocations or grain boundaries due to lattice mis-
match with the substrate, as noted in the experimen-
tal reports.2,3,13 The temperature-independent contribu-
tions necessary to match the low-temperature mobil-
ity are µadd=210 cm2V−1s−1 for 6 × 1019 cm−3, and
µadd=475 cm2V−1s−1 for 7 × 1019 cm−3. We note
that there seem to be additional temperature-dependent
scattering mechanisms that reduce the mobilities more
strongly with temperature than taken into account in
our analysis.

One complication in thin films is its finite thickness
(30–64 nm) in Ref. 13, which is smaller than or compa-
rable to the average mean free path for electron-phonon
scattering (calculated to be vkF〈τ〉 = 53 nm). This sug-
gests that some of the carriers that have a momentum
component perpendicular to the boundary will be lim-
ited by surface (or substrate-interface) scattering rather
than LO phonon scattering.33 Therefore, in the calcula-
tion of mobility in thin films, inclusion of this effect will
result in a reduction in mobility, and should be taken
into account. In fact, as reported in Ref. 13, increasing
the film thickness from 30 nm to 64 nm increases the RT
mobility from 100 to 124 cm2V−1s−1. Another finite-size
effect is the close proximity to the substrate that could
cause additional scattering from substrate phonons.

B. Comparison to other perovskite oxides

It is striking that the LO-phonon-limited mobility in
BSO is about two orders of magnitude higher than in
STO7,8 and other perovskite oxides with CBs made up
of d states.69 We now show that this result provides some
profound insights in the relative impact of various mate-
rial properties on electron mobility. The higher mobility
of BSO has often been attributed to the lower effective
mass of the CB. This argument is based on the Drude
model, where the mobility is given by µ = eτ/m∗Γ, and
assumes the scattering rate to be the same for both BSO
and STO. Here we point out that the scattering rates are
actually significantly different in the two materials, and
have a larger impact on the mobility than the effective
masses.

Our calculated scattering rate in BSO, ∼1013 s−1, is
an order of magnitude smaller than the scattering rate in
STO, ∼1014 s−1, calculated in Ref. 7. We now examine
the origins of this difference. First, we direct our at-
tention to the strength of electron-phonon coupling. To
quantify this strength, we calculated the value of the q-
independent factor in the electron-phonon coupling ma-
trix element |gqν |2 [Eq. (3)] for the second LO mode
(LO2), which we found to be the dominant scattering
mode near RT (see Sec. IV A and Fig. 4). Using the
LO and TO frequencies from Ref. 70, this coupling fac-
tor in STO is computed to be 2.08×10−20 J2m−2. This
value is quite similar to the value computed for BSO,
1.77×10−20 J2m−2, and hence electron-phonon coupling
strength cannot explain the difference in the scattering
rate of BSO relative to STO.

The only other differences between BSO and STO that
can explain the reduced scattering rate are the CB de-
generacy and density of states (DOS). In STO (and most
other perovskite oxides) the CB is derived from d orbitals
of t2g character and hence is threefold degenerate near Γ
(possibly split by spin-orbit coupling, which is relatively
weak in STO). In contrast, BSO has a singly-degenerate
CB composed of Sn s orbitals. This implies that in STO,
each electronic state can scatter into two more bands via
interband processes compared to BSO. In addition, the
lower CB dispersion in STO leads to an increase in the
DOS. Both these factors lead to an increase in the density
of accessible final states in STO, which significantly raises
the scattering rate. We conclude that the higher mobil-
ity of BSO is not just due to a smaller effective mass,
as previously emphasized,1,14 but more importantly to a
significant reduction in the DOS that reduces the scat-
tering rate.

This insight provides valuable guidance for selecting
perovskite oxides for high-mobility applications. The re-
quirement of a small DOS does not necessarily mean that
materials with CB derived from d orbitals cannot exhibit
high mobilities. Any phenomena, such as spin-orbit cou-
pling or biaxial strain, that remove the CB degeneracy
by separating one or more bands away from the lowest
CB by an amount exceeding the dominant LO phonon
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energy will reduce the scattering rate, and can enhance
the mobility in perovskite oxides.7

C. Enhancing mobility in BaSnO3

From our discussion in Sec. IV D, it is clear that ion-
ized impurity scattering significantly limits the mobility
in BSO, particularly at higher doping densities. If high
conductivity is required in bulk crystals or thick films, the
presence of ionized impurities cannot be avoided since
dopants are required for introducing electrons into the
CB. The problem of ionized impurity scattering has been
recognized as the dominant mechanism limiting mobility
at high doping in other TCOs as well.5 In thin films, how-
ever, techniques are available to avoid or mitigate ionized
impurity scattering.

One approach is to separate the ionized dopants from
carriers in the channel; this has been the basis of several
semiconductor heterostructure designs.66 A commonly
used technique is modulation doping, where the dopants
are introduced not in the channel, but in the barrier
material.66 Carriers from the dopants transfer into the
channel forming a two-dimensional electron gas (2DEG),
and are less prone to dopant scattering due to their spa-
tial separation from the dopants. BSO could benefit from
such a doping technique provided appropriate barrier ma-
terials are identified.71

Perovskite oxides, including BSO, can also be
doped by another technique, namely polar-discontinuity
doping.25,72–74 This approach takes advantage of the
polar discontinuity that exists, for particular interface
orientations, between a nonpolar material (BSO, STO)
and a polar perovskite oxide such as LaAlO3, GdTiO3,
LaInO3, or KTaO3. This polar discontinuity leads to
the formation of an intrinsic 2DEG with a theoretical
maximum density of 1/2 electron per interface atom
(∼ 1014 cm−2) in the nonpolar oxide, provided that the
conduction-band offset is sufficiently high to confine the
carriers. Since the doping is intrinsic to the interface, car-
riers appear in the channel without the need for extrinsic
doping. The host atoms in the interfacial layer effectively
act as donors, but since they are arranged in a periodic
lattice they do not give rise to scattering. This eliminates
ionized impurity scattering, and thus in principle offers
mobilities close to the phonon-scattering-limited value.

STO has been the material of choice to explore polar-
discontinuity doping72,74 as well as other functional
properties75 in perovskite oxides, but it suffers from a low
RT mobility of ∼10 cm2V−1s−1.7,8 BSO, which has an

intrinsic RT mobility in the range of 300–600 cm2V−1s−1

[Table II] thus presents an interesting high-mobility alter-
native to STO. However, the low DOS of BSO makes con-
fining the 2DEG within the channel challenging; a careful
design of the heterostructure barriers with a large enough
CB offset is necessary. Issues related to confinement and
DOS have been quantitatively addressed in Ref. 71, along
with design guidelines for BSO heterostructures based on
modulation doping and polar-discontinuity doping.

VI. CONCLUSION

In summary, we have used first-principles analysis
along with a careful numerical procedure to calculate the
mobility of BSO from Boltzmann transport theory within
the relaxation time approximation, accounting for LO-
phonon scattering as well as ionized impurity scattering.
We find that the surprisingly large mobility of BSO stems
not only from the small effective mass (as had been previ-
ously suggested), but is also due to a significant reduction
in the LO-phonon scattering rate compared to other per-
ovskite oxides. The reduction in the rate is shown to be
due to a decrease in the number of states that the elec-
trons can scatter into because of the low DOS in BSO.
Ionized impurity scattering was found to be a significant
scattering mechanism, even at RT, limiting the mobilities
to less than 330 cm2V−1s−1 for dopant densities above
1019 cm−3. Ionized impurity scattering can be avoided by
using modulation doping or polar-discontinuity doping,
which may enable achieving LO-phonon-limited mobility
values, which are calculated to exceed 500 cm2V−1s−1

for electron concentrations > 1× 1019 cm−3.
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