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We study both noncentrosymmetric and time-reversal breaking Weyl semimetal systems under a
strong magnetic field with the Coulomb interaction. The three-dimensional bulk system is reduced
to many mutually interacting quasi-one-dimensional wires. Each strongly correlated wire can be
approached within the Tomonaga-Luttinger liquid formalism. Including impurity scatterings, we
inspect the localization effect and the temperature dependence of the electrical resistivity. The
effect of a large number of Weyl points in real materials is also discussed.

I. INTRODUCTION

The realization of linear band crossings in three di-
mensions (3D) in the Weyl semimetals are sparking
keen interests1. This lends credence to the concept
of Weyl fermion2 in the context of various condensed
matter systems3,4. In principle, any solid-state realiza-
tion should bear time-reversal symmetry breaking (TRB)
and/or inversion symmetry breaking (IB)5–9 so as to
lift the Kramers degeneracy and to generate nonzero
Berry curvatures. The Weyl point is interesting as a 3D
counterpart of the two-dimensional (2D) Dirac physics10,
which means topologically protected monopoles of the
momentum-space Berry phase11. Among others, the chi-
ral magnetic effect12 as a result of the chiral anomaly13–16

is observed as negative magnetoresistance in Dirac/Weyl
semimetals17,18 once the chiral imbalance of chemical
potential is generated by parallel electric and magnetic
fields.

Some of the intriguing facets of Dirac/Weyl semimet-
als mainly come from the unique Landau level formation
dissimilar to that of quadratic electronic bands. The
lowest Landau level, a linearly dispersed chiral mode
along the direction of the magnetic field, is well sepa-
rated from the higher levels by a cyclotron gap ∝

√
B,

whose 2D variant has been vastly explored in graphene19.
A further stage is when the (ultra) quantum limit is
achieved20, enabling the lowest Landau level to play a
major role in shaping the low-energy physics. In this
limit, the magnetic length lB = 1/

√
eB (setting ~ = 1)

becomes shorter than the Fermi wavelength since the
quantized orbit of electrons shrinks with an increasing
B and the lowest Landau level possesses the majority of
population21. Remarkably, it implies a field-induced di-
mensional reduction22,23 that will strongly enhance cor-
relations hence the advent of the (quasi-) 1D system
without electron quasiparticle excitations. This con-
nects to the long-lasting search or application of the
Tomonaga-Luttinger liquid (TLL) physics24, including
semiconductor quantum wires25,26, single-walled carbon
nanotubes27–29, edge states in fractional quantum Hall
states30,31 and 2D topological insulators32,33, and so on.

Because of the large cyclotron gap, it is expected
and confirmed that the Dirac/Weyl semimetals can be

driven to the quantum limit at lower magnetic fields
than semiconductors20. Due to the instability from elec-
tron correlations, one possibility is the gap-opening or
dynamical mass generation34 in the nominally massless
semimetal as density waves are formed35. Instead, in
this study we will explore a different scenario for Weyl
semimetals at the magnetic quantum limit.

Two minimal models are considered and shown to be
closely related, corresponding to the predicted TRB py-
rochlore iridates4 and the realized nonmagnetic and IB
transition metal monoarsenides/monophosphides1,36–41.
We incorporate long-range Coulomb interactions and
show how the TLL state naturally emerges as a result of
singling out the chiral 1D channels by applying a mag-
netic field. Adopting the coherent state basis of Lan-
dau levels, the 3D system is transformed into a lattice
of parallel quasi-1D wires interacting with each other.
Focusing on the on-wire effective model, we investigate
the localization effect due to impurity scatterings. To
facilitate experimental investigations, we derive the tem-
perature dependence of resistivity and show how the rel-
atively large number of Weyl points in materials affects
the properties.

II. WEYL SEMIMETALS UNDER STRONG
MAGNETIC FIELD

We start from two minimal lattice models of the
form h(~k) =

∑
i diσi with psuedospin σi, realizing the

one-pair TRB and the two-pair IB cases with dx =
sin kx sin kz , dy = sin ky sin kz , dz = (cos kz − cos k0) −
2(2 − cos kx − cos ky) and dx = sin kx sin kz , dy =
sin ky , dz = −(cos kz − cos kL)(cos kz − cos kR) − 2(2 −
cos kx−cos ky), respectively. Based on the Landau quan-
tization solution of a Weyl Hamiltonian under magnetic

field ~B = Bẑ (see Appendix A 1), one can obtain the 1D
linear modes in Fig. 1, wherein any two modes of the
same value of velocity are related by inversion or time-
reversal symmetry in the TRB and IB cases, respectively.
As is mentioned below, the TRB case can be directly
mapped to part of the more complex IB case, we hence-
forth focus on the latter unless otherwise stated and use
the shorthand channel index κ = (j, r).
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FIG. 1. 1D linear dispersions along kz. There are two [four]
Weyl points at ±k0 [±kR,±kL] with topological charges de-
noted by ± for the (a) TRB [(b) IB] case. We label 1D chan-
nels with chirality index r = R/L, written as r = ±1 in
calculation, in both cases and side index j = ±1 only in (b).
|↑ / ↓〉 are pseudospin states. Two modes at each side in (b)
have unequal Fermi velocities vR 6= vL > 0 in general.

As a matter of fact, the Weyl points are not necessary
to reside along a single line for a IB material realization.
Nonetheless, the model is adequate to illustrate the key
features. The situation in Fig. 1 is general for a Weyl
semimetal up to some reversal of chiralities and pseu-
dospins. And our theory does not directly rely on this
because in the Landau level solutions, positions of Weyl
points in kx-ky plane do not enter the 1D dispersions but
the spatial-part wavefunctions, reflecting the large degen-
eracy. For the 1D modes, it is the momentum parallel to
the quantizing field that matters.

III. COULOMB INTERACTION

We then need to find the scattering processes. Ex-
cept from excluding pseudospin-flip scatterings, the merit
of the long-range Coulomb interaction mainly consists
in that the scatterings accompanied by large momen-
tum transfer are negligibly small than those with nearly
zero transfer. Therefore, we can take into account
four types of forward scatterings without momentum
transfer directly connecting distinct 1D modes, viz.,
the Coulombic scatterings 〈κ, κi|Û |κ, κi〉ψ†

κψ
†
κiψκiψκ

for a generic κ = (j, r) with κi running over
(j, r) , (j,−r) , (−j, r) , (−j,−r) for i = 1, 2, 3, 4. This,
however, overlooks the Landau level degeneracy, which
also plays an important role since the interaction depends
on both the energy dispersions and the wavefunctions.

In other words, each Weyl point, under a magnetic
field B, yields not one but many more linear modes
of the number of degeneracy proportional to B, which
are identical to the ones shown in Fig. 1. The degen-
erate subspace hereof can be expanded using the over-
complete set of coherent state basis42,43, which is con-
structed from the spatially localized ground state wave-

function χ~R=0(~r⊥) = 1√
2πlB

e−~r
2
⊥/4lB

2

by displacing its

center of orbit (guiding center) ~R along a 2D square lat-

tice with spacing
√

2πlB where ~r⊥ is the coordinate in
the x-y plane.

As detailed in Appendix A 2, this approach to formu-
lating electron-electron correlations defined in real space
provides us an intuitive and transparent picture. Now
electrons at these coherent states are localized around
the guiding centers in the x-y plane but relatively un-
constrained to move along the magnetic field (z-axis),
giving rise to many mutually parallel quasi-1D wires of
the number of degeneracy threading the 2D lattice of
~R. Each wire inherits four 1D modes in Fig. 1(b). The
salient point is that the scattering processes mentioned
above, which remain intact though, can now have both
inter-wire and intra-wire ones.

One can then express the electron field Ψ(~r) =∑
~Rκ χ~R(~r⊥)ψκ~R(z)βκ where βκ is the pseudospin

wavefunction. The noninteracting Hamiltonian for
all the 1D modes is therefore given by H0 =∑
κkz ~R

εκ(kz)ψ
†
κ~R

(kz)ψκ~R(kz) with εκ(kz) = rvr(kz −
jkr). In the limit of strong magnetic fields
lB → 0, using the asymptotic orthogonality of
the coherent states43, the interaction part takes

the form HI = 1
2

∑
~R~R′κκ′

´
dzdz′ kee

2/εrel√
(z−z′)2+(~R−~R′)2

×

ψ†
κ~R

(z)ψκ~R(z)ψ†
κ′ ~R′

(z′)ψκ′ ~R′(z
′) wherein Coulomb’s con-

stant ke = 1
4πε0

, vacuum (relative) permittivity ε0 (εrel),

and ~R replaces ~r⊥ in the potential because of the trans-
verse confinement at strong fields.

IV. CHARGE-CHIRALITY SEPARATED
BOSONIZATION

Next we bosonize this system of many interacting
quasi-1D wires44,45. As shown in Fig. 1(b), the opposite-
chirality modes do not share the same velocity, which
is a bit unorthodox for conventional bosonized fields
combining two chiralities. The physically transparent
way out is to start from the chiral boson field ϕκ that
bosonizes a single Weyl fermion in (1 + 1)-dimensions,
i.e., any on-wire linear mode in Fig. 1(b) is expressed as

ψκ~R(z) = Υκ
1√
2πα

eijkrzeirϕκ~R(z) in which α is the lattice

cutoff and Υ is the Klein factor (omitted henceforth).
The details are documented in Appendix A 3 and B 1.

Resembling the standard spin-charge separation,
it is convenient to separate the charge and chi-

rality degrees of freedom ~ζ = (θρ, θχ, φρ, φχ)T =

1
2

[
H −H
−H −H

]
(ϕκ1 , . . . , ϕκ4)T where H is the

Hadamard matrix. This block-diagonalizes the

action matrix in S = 1
2πβA⊥V

∑
p
~ζ†
pMp

~ζp such

that Mp = q2

4 diag(Mθ,p,Mφ,p) with Mθ,p =



3[
v+ v− − 2iω

q

v− − 2iω
q v+

]
,Mφ,p =

[
8Vg + v+ v− − 2iω

q

v− − 2iω
q v+

]
wherein v± = vR ± vL, Vg = 2kee

2

εrelA⊥k2 , A⊥ = 2πlB
2

is the area of a unit cell of the guiding center lattice

and x = (z, ~R, τ) = (~r, τ) in real space with the corre-

sponding p = (q, ~Q, ω) = (~k, ω) in energy-momentum
space. We assume the total volume of the system
V = ΩΩ⊥ with the volumes of ẑ direction and x-y plane
being Ω and Ω⊥, respectively. Note that the Coulomb
interaction enters the φρ-quadratic term since φρ is
directly related to the total particle density ρ = − 1

π∇φρ.
Following a similar flow of construction, one observes
that the TRB case with two degrees of freedom, using
the standard (φ, θ) fields with ϕr = −(φ − rθ), has an
action exactly mapped from the previous Mφ,p with
(Vg, v

+, v−, ω)→ (Vg, 4v, 0,−2ω).

We calculate in Appendix A 4 the electron Green’s
function Gκ(z, τ) = −〈Tτψκ(x)ψ†

κ(0)〉 of an on-wire 1D

mode κ for x = (z,~0, τ > 0). At the non-interacting
limit, it reduces to the free Green’s function Gκ(z, τ) =

− eijkrz

2πα

[
α+vrτ−irz

α

]−1
. For the long-distance asymptotic

behavior of the equal-time correlation, Gκ(z, 0) ∼ z−γ

where, as shown in Fig. 2(a), γ increases from unity with

vg = kee
2

2πεrel
characterizing the material-dependent (via

εrel) strength of Coulomb interaction. Therefore, the cor-
relation decays faster than a free one as expected for a
TLL since single-particle excitations are suppressed.

V. LOCALIZATION IN AN EFFECTIVE 1D
WIRE

From now on, in order to take a direct look at the 1D
physics emerged as a result of the strong magnetic field,
we derive an effective model for a particular wire. In
the path-integral formalism, aided by auxiliary Lagrange
multiplier fields46, one can integrate out all the other
fields except the ones on the wire of interest and thus ar-

rives at the 1D effective action S1D = 1
2πβΩ

∑
~q
~ζ†
~qM~q

~ζ~q
where ~q = (q, ω), M~q = diag(Mθ,~q,Mφ,~q) with Mφ,~q

gaining a complicated form shown in Appendix B 1. Be-

cause of integrating out ~Q up to the Brillouin zone bound-
ary such that Q∗2A⊥ = 4π, Vg in a way becomes a renor-

malized vg′ = vg ln
[
1− (iω−qv1)(iω+qv−1)

2q2v+vg

]
, appearing es-

pecially in the estimation of the exponents. Certainly,
these complexities result from the Coulomb interaction
between the wire of interest and all the other.

For a purely 1D system with a long-range interaction,
the dimensionless Luttinger parameter Kρ, which in-
cludes the interaction effects for the charge sector, would
effectively tend to zero due to the long-range divergence,
leading to a slower decay than power law in the correla-
tion functions. However, the presence of many 1D wires
resultant from the large degeneracy screens the Coulomb
interaction and our system will not suffer from a similar

divergence47. Indeed, denser packing of the wires gives
rise to a larger screening effect as seen when we discuss
the multi-pair case.

In 1D, the effects of disorder and interaction are both
enhanced, and the resultant localization of electrons
should be much pronounced and manifest in observable
quantities. Therefore, it would be necessary and helpful
to see how the system is affected by the impurities. We
consider backward scatterings without reversing the
side index since the impurity potential is not to alter
the pseudospin state, i.e., one has the scattering term

Himp =
´

dzṼ(z)
∑
j ψ

†
jR(z)ψjL(z) + ψ†

jL(z)ψjR(z).
After bosonization, this becomes Himp =´

dzV(z) cosφρ(z) cos (θρ(z) + ∆kz) where ∆k =

kR−kL, V(z) = Ṽ(z) 2
πα and a Gaussian disorder with im-

purity density nimp and potential Ṽ(z) =
∑
i V0δ(z − zi)

is considered. The 1D localization effect can be ap-
proached via the perturbative renormalization group
analysis, e.g., for spinless48 and more complicated
spinful49 cases. This is in fact starting from the delocal-
ized phase and cannot go deep into the localized phase
above the scale of the localization length L since it will
flow to strong coupling.

On the other hand, directly inspecting the massive
localized phase, variational method should prevail. In-
deed, based on a charge-density wave picture50, the
phase field pinned to the impurities competes with its
quantum fluctuations due to the ’elastic term’ of that
field in the bosonized Hamiltonian. A compromise is
achieved when the phase field adjusts to the random po-
tential over L, much longer than the average distance
between impurities. Along this thought, we adopt the
self-consistent harmonic approximation method51 that is
similar to the more general variational theorem in path
integral52. Each field variable is decomposed to a clas-
sical part responsible for the compromised pinning and
a quantum fluctuating part. The impurity effects en-
ter via introducing variational mass terms dependent on
L. This approach is good for very repulsive fermion
interactions45, which is just suitable for our situation.

Although due to the influence from other wires, the ef-
fective 1D model becomes involved and lacks a straight-
forward Hamiltonian form, it is still possible to evalu-
ate the system’s energy from the path integral, as shown
in Appendix B 2. Variationally, we find the localization

length L ∝ Dimp
1

η−3 where, as one would expect, only
Dimp = nimpV2

0 , which fully characterizes the Gaussian
disorder, appears. In the localized regime η < 3, L re-
mains finite. If η could go beyond 3, there would be
a delocalization transition. However, this is not possi-
ble for our system with only Coulomb interactions where
η(v±, vg) decreases from 2 upon increasing vg from 0 to
∞ as shown in Fig. 2(b).

As pointed out by previous studies48,49,53, insulator-to-
metal transition happens when there is increasingly at-
tractive interaction where superconducting fluctuations
predominates over disorder effects. In our Coulombic
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system, we therefore can only observe the enhanced local-
ization effect, in agreement with another diagrammatic
study54 discussing a tendency to localization led by inter-
action and disorder. It is worth addressing that although
the TLL is induced by the field, the exponent γ or η does
not depend on B, dissimilar to the quadratic band case
where the Fermi velocity gains a B-dependence in the
first place43. On one hand, in the low-energy regime,
we end up with an effective 1D model with only the B-
independent combination Q∗2A⊥ present. This is not
surprising because the guiding center representation we
introduced is in fact used at its continuum limit (lB → 0).
On the other hand, this means that, up to the leading
order effect at the strong-field limit, the system behaves
in a way independent to the field.

VI. TEMPERATURE DEPENDENCE OF
RESISTIVITY

In order to relate the system to the most common mea-
surement technique, we study the temperature depen-
dence of transport. Instead of calculating the conductiv-
ity that is inversely dependent on the scattering, a benefi-
cial way is the memory function method55,56 and directly
looking at the resistivity, which corresponds to the dia-
gramatic expansion taking into account both the vertex
correction and the self-energy. Within the lowest order
of coupling, a particular merit in practice is that one can
evaluate the correlation function over the Hamiltonian
free of disorder. By calculating an imaginary-time force-
force correlation function G(τ) = −〈TτF (z, τ)F (z, 0)〉
wherein the force operator F = [j,Himp] with the current
operator j, we find out in Appendix C that G(τ) ∝ τ−η,
whose Fourier transform G(ω) ∝ τ1−η. Then when the
typical energy scale is set by the temperature ω ∼ T , the

memory function M(ω) ∝ G(ω)−G(0)
ω ∝ β1−η

T ∝ β2−η and
hence we arrive at a resistivity’s temperature dependence
ρ(T ) ∝ T η−2.

There exists two energy (temperature) scales in this
system49,57, the localization temperature kBTloc = vF /L
and the discretization temperature kBTdis = vFnimp,
where we use vF to denote a typical Fermi velocity. Tdis

is the borderline of the correlation effect between impu-
rities, above which, the single-impurity behavior prevails
as a limiting resistivity ρ(T � Tdis) ∝ nimp. For our
TRB (0 < η < 2) or IB (1 < η < 2) system residing in
the localized regime, as the temperature decreases, the
resistivity will monotonically increase in contrast to the
η > 2 case where non-monotonic ρ(T ) could take place.
Once the temperature traverses below Tdis, the resistiv-
ity follows ρ(T ) ∝ T η−2 for the dense Gaussian disorder
situation, until the quantum interference from the disor-
der becomes more and more important when T < Tloc,
i.e., divergent ρ(T ) ∝ T η−3 dominates at sufficiently low
temperatures57. Note that η < 2 due to the Coulomb
interaction as shown in Fig. 2(b).

FIG. 2. (Color online) Exponents (a) γ and (b) η depend on
vg and the number N of opposite-chirality Weyl-point pairs.
Left: TRB case (v = 1). Right: IB case (vR = 3, vL = 1).
Fermi velocities and the interaction strength measured in vg

are in units of kee
2

h
. γ = 1 and η = 2 for the noninteracting

case.

VII. LARGE-N BEHAVIOR

Because of the point group symmetry in solids, experi-
mentally realized Weyl semimetals usually possess many
Weyl points. To bridge the gap between models and more
realistic scenarios, we consider the situation comprising
copies of our previous model. We use N to count the
pairs of opposite-chirality Weyl points in the first Bril-
louin zone. In the same spirit, we consider a similar
bosonization problem of many quasi-1D wires with both
intra-copy and inter-copy Coulomb interactions included,
followed by deriving the 1D model of a single wire.

For the impurity effects, following the previous for-
malism, we can take all the intra-copy impurity scat-
terings into account. By minimizing the total energy
excess, we accordingly obtain an N -dependent exponent
ηN (v±, vg) that enters the temperature dependence of re-
sistivity (see Appendix D). On the other hand, from the
action expressed using the replica method58, we can make
a Wilsonian analysis to develop the first-order renormal-
ization group equation for the impurity strength Dimp.
Both the intra-copy and inter-copy impurity scatterings

lead to the same form
dDimp(l)

dl = (3 − ηN )Dimp(l). This
means, taking all the impurity scatterings into account,
the exponent will just be given by ηN .

It is important to note that all the previous conclusions
on Green’s function, localization and resistivity also hold
for the TRB case with any N while an even N is for the
IB case. Furthermore, as calculation shows, when v± = v
and N is the same, the two cases share the same γ or η.
As shown in Fig. 2, the multi-pair γN (ηN ) decreases
(increases) with N . γN increases from 1 and diverges

asymptotically proportional to
√
vg/N while ηN ranges

from 2 to 2− 2/N upon increasing vg from 0 to ∞. This
can be understood with the many-wire picture we rely on.
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When there are N pairs, one has the freedom to place the
corresponding guiding center lattices in the x-y plane as
uniform as possible to form sublattices of the original
sparsest one. As aforementioned, the Coulomb interac-
tion will be screened by the wires resultant from any
copy. Therefore, the denser packing of the wires entails
stronger screening and weaker interaction effects. Hence,
the exponent ηN , although cannot exceed its noninteract-
ing value 2, approaches 2 more quickly when N increases.
And when the Coulomb interaction is extremely strong,
i.e., vg → ∞, the deviation, 2 − ηN , is exactly inversely
proportional to N .

VIII. DISCUSSION AND ESTIMATION FOR
EXPERIMENTS

We comment on the difference between the TLL in
Weyl semimetals and in other systems. One is the unique
dispersion structure in Fig. 1 for the noncentrosym-
metric Weyl semimetal associated with particular pseu-
dospins and unequal Fermi velocities for opposite chiral-
ities. It leads to the charge-chirality separated bosoniza-
tion in Sec. IV. The second remarkable feature is that
the Green’s function exponent γ is not directly related
to the exponent η for localization and resistivity, in con-
trast to the simple formula (Kρ+K−1

ρ )/2 in the standard
case. This is because in the effective 1D theory, due to
the Coulomb interactions with other chiral wires, the ac-
tion S1D contains rather complex momentum-frequency
dependence [Eq. (B9) of Appendix B 1]. Furthermore,
the presence of many Weyl points has its unique role in
the exponent functions.

It is argued that the contribution from possibly present
small Fermi pockets can disguise as the characteris-
tic negative magnetoresistance of Weyl semimetals59.
Alongside, one possible concern might arise for the real-
ity of our system when one considers linearizing around
Fermi pockets in normal metals. Firstly, we emphasize
that, compared with normal metals, the dominance of
the lowest Landau level herein provides a natural real-
ization of 1D linear dispersions rather than the lineariz-
ing approximation. Consequently, we mentioned that
Fermi velocities and hence the exponents no longer de-
pend on the magnetic field. Secondly, the unique struc-
ture of the linear modes and presence of multiple copies
of Weyl points are general for noncentrosymmetric Weyl
semimetals. It affects the form of the bosonized Hamil-
tonian and hence the 1D effective model and accompany-
ing exponent functions, which are the focus of our work.
On the other hand, arbitrary normal metals are in gen-
eral hardly expected to imitate the same situation with
linearized small Fermi pockets. In summary, we would
regard the properties reported here as predictions to be
experimentally confirmed in known Weyl semimetal ma-
terials, rather than decisive evidence for identifying Weyl
semimetals.

Finally, let us estimate the exponent of the Weyl

semimetal TaP, which, known to date, might have the
simplest stucture of Weyl points and is beneficial to re-
vealing the interested physics38,41. Among all the 12
pairs of Weyl points therein, 8 pairs well separated in mo-
mentum space off the kz = 0 plane are found to locate
at the chemical potential while others lie rather lower,
possibly leading to only 8 pairs determining the low-
energy physics. We thus set N = 8 and take the typical
values of Fermi velocities and relative permittivity41,60,
vR = 2 × 105m/s, vL = 1 × 105m/s, εrel = 10 and hence
vg = 0.35 × 105m/s, and get ηN = 1.83. Experimen-
tally, to observe this, one should keep the temperature
or frequency lower than the cyclotron gap to assure the
dominance of the 1D channels.
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Appendix A: Weyl semimetal with Coulomb
interaction

1. A model Weyl semimetal under magnetic field

As a preliminary, let us first turn on an external mag-

netic field ~B = Bẑ for a general Weyl Hamiltonian∑
i εi~kiσi, in which εi = ±1 and we assume the ve-

locity equal to unity for simplicity. To solve this, we
resort to the commutation relation between gauge invari-
ant mechanical momenta [px, py] = −i~eB derived from
Peierls substitution ~ki → pi = −i~∂i + eAi , i = x, y.
Resembling to a harmonic oscillator, one can define
b = (px − ipy)/EB and b† = (px + ipy)/EB satisfying

[b, b†] = 1 where EB =
√

2~eB. Then the two-by-two
Hamiltonian can be easily solved, giving rise to eigenen-

ergy En = ±
√
nEB

2 + Ez
2 , n ≥ 1 with Ez = ~kz. In

addition to this, we get one more intriguing zero mode
that is essential to the chiral anomaly, E0 = −χEz,
which doesn’t shift with respect to the external mag-
netic field. The charge of the Weyl point is given by11

χ = sgn[ε1ε2ε3] and the pseudospin part of wavefunc-
tion reads |↓〉 = (0, 1)T or |↑〉 = (1, 0)T for ε1ε2 = ±1,
respectively. Also, the separation between eigenenergies
scales as

√
B instead of linear in B for the quadractically

dispersed electrons. The major consequence is that, in
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the presence of an external magnetic field, a 1D linearly
dispersed mode along ẑ direction is created, whose sepa-
ration from other higher-energy eigenstates is larger than
that of quadratic electrons. This suggests that, by turn-
ing on an adequate magnetic field, one can drive the Weyl
fermion system to the quantum limit and the low-energy
physical properties will depend mainly on the 1D mode
singled out.

Let us exemplify with the noncentrosymmetric
Weyl semimetal model presented in the main text,
which has the mimimum of Weyl points according
to the Nielson-Ninomiya theorem. It is straight-
forward to get the low-energy Weyl Hamiltonians

of the form ∆~k · ~σ around the four Weyl points
(0, 0,−kR) , (0, 0,−kL) , (0, 0, kL) , (0, 0, kR) from left to

right along the kz axis, whose ~d vectors read

(− sin kR∆kx,∆ky, cos kRL sin kR∆kz)

(− sin kL∆kx,∆ky,− cos kRL sin kL∆kz)

(sin kL∆kx,∆ky, cos kRL sin kL∆kz)

(sin kR∆kx,∆ky,− cos kRL sin kR∆kz)

respectively, wherein cos kRL is a shorthand for cos kL −
cos kR and these momenta are the deviations from the
corresponding Weyl points. For any corresponding Weyl

Hamiltonians hκ(~k), the zero-mode eigenenergy and
wavefunction under the magnetic field are

εκ(kz) = rvr(kz − jkr) (A1)

and

ϕ̃kzκ (z) =
1√
Ω

ei(kz−jkr)zβj (A2)

wherein βj=∓1 = |↑ / ↓〉 and Ω is the system length along
ẑ direction.

2. Coulomb interaction between quasi-1D wires

For the 1D linear modes singled out by an exter-
nal magnetic field, we classify the possible scattering
processes due to the Coulomb interaction. Consider

a Coulombic two-body scattering 〈1, 2|Û |4, 3〉 c†1c
†
2c3c4

from electron states labeled as 4, 3 to 1, 2, one can find
all the possible processes, for a fixed state κ1 = (j1, r1) of

electron 1, by listing all the cases of ε
j/r
i = ± , i = 4, 2, 3,

which are defined by j1 = εj4j4 = εj2j2 = εj3j3 and
r1 = εr4r4 = εr2r2 = εr3r3. This will include forward scat-
terings, backward scatterings and Umklapp scatterings at
special fillings. It can also be reorganized to meet the cur-
rent algebra classification used for Hubbard rung chains61

except that we don’t need to include spin-dependent scat-
terings in the current problem. The four types of forward
scatterings in the main text can be denoted by (εj4, ε

j
2, ε

j
3)

and (εr4, ε
r
2, ε

r
3)

1) (+,+,+) (+,+,+)

2) (+,+,+) (+,−,−)

3) (+,−,−) (+,+,+)

4) (+,−,−) (+,−,−).

(A3)

In addition to this, we need to handle the Landau level

degeneracy. By displacing the center of orbit ~R, one can
get other eigenstates of an annihilation operator

χ~R(~r⊥) =
1√

2πlB
e−[(~r⊥−~R)2+2i~r⊥×~R]/4lB

2

(A4)

where ~r⊥ is the coordinate in the x-y plane. These are

just the coherent states localized around ~R. We can use
this basis to expand the electron field operator

Ψ(~r) =
∑
~R

χ~R(~r⊥)ψ~R(z), (A5)

in which the on-wire electron field is expressed using four
possible 1D modes

ψ~R(z) =
∑
κ

ψκ~R(z)βκ. (A6)

Similarly, one can also define Ψ(~r) =
∑
κ Ψκ(~r), in which

the electron field of mode κ is

Ψκ(~r) =
∑
~R

χ~R(~r⊥)ψκ~R(z)βκ. (A7)

Conventionally, the on-wire electron field of a par-
ticular mode κ has its Fourier expansion ψκ~R(z) =

1√
Ω

eikzzψκ~R(kz). For conciseness, here we stick to κ to

distinguish different 1D modes although the pseudospin
wavefunction β only depends on the side index j. An
important aspect of the coherent states is that they are
not orthogonal, albeit over-complete. Instead, one can
attain an asymptotic orthogonality 〈χ~R(~r⊥)|χ~R′(~r⊥)〉 →
2πlB

2δ2(~R− ~R′) when lB → 0 while for a discrete lattice

of ~R it becomes 〈χ~R(~r⊥)|χ~R′(~r⊥)〉 → δ~R,~R′ . We will use

this relation to arrive at the quasi-1D bosonized Hamil-
tonian in the following. This corresponds to the limit of
strong magnetic fields such that the magnetic length lB
is much smaller than the characteristic |~R − ~R′|, which
should be valid for the long-range interaction we consider.
In terms of this, the Coulomb potential admits an ap-

proximation U(|~r − ~r′|) = e2

|~r−~r′| = e2√
(z−z′)2+(~r⊥−~r′⊥)2

≈
e2√

(z−z′)2+(~R−~R′)2
, where ~r⊥ is replaced by the guiding

center ~R since the deviation away from the wire is negligi-
bly small due to the transverse confinement. We will refer

to this as U(z−, R−) wherein z− = z − z′ , ~R− = ~R− ~R′.
From Eq. (A1), the noninteracting Hamiltonian for all
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the 1D modes is given by

H0 =
∑
κ~R

ˆ
dzψ†

κ~R
(z)εκ(−i∂z)ψκ~R(z)

=
∑
κkz ~R

εκ(kz)ψ
†
κ~R

(kz)ψκ~R(kz).
(A8)

With Eq. (A5) and the asymptotic orthogonality, the
Coulomb interaction part of the Hamiltonian takes the
form (up to unimportant chemical potential terms)

HI =
1

2

ˆ
d~rd~r′U(|~r − ~r′|)Ψ†(~r)Ψ(~r)Ψ†(~r′)Ψ(~r′)

=
1

2

∑
~R1
~R2
~R3
~R4

ˆ
dzdz′U(|~r − ~r′|) 〈χ~R1

(~r⊥)|χ~R4
(~r⊥)〉

× 〈χ~R2
(~r′⊥)|χ~R3

(~r′⊥)〉ψ†
~R1

(z)ψ~R4
(z)ψ†

~R2
(z′)ψ~R3

(z′)

=
1

2

∑
~R~R′

ˆ
dzdz′U(z−, R−)ψ†

~R
(z)ψ~R(z)ψ†

~R′
(z′)ψ~R′(z

′).

(A9)

Then, using Eq. (A6), one can further reduce it to

HI =
1

2

∑
~R~R′

ˆ
dzdz′U(z−, R−)

∑
κ1κ2κ3κ4

〈βκ1 |βκ4〉

× 〈βκ2
|βκ3
〉ψ†

κ1
~R
(z)ψκ4

~R(z)ψ†
κ2
~R′

(z′)ψκ3
~R′(z

′)

=
1

2

∑
~R~R′

ˆ
dzdz′U(z−, R−)

×
∑
κκ′

ψ†
κ~R

(z)ψκ~R(z)ψ†
κ′ ~R′

(z′)ψκ′ ~R′(z
′),

(A10)

wherein the inner products between pseudospin states are
evaluated for the four types of scatterings (Eq. (A3)) we
mentioned.

3. Bosonization

Now we are ready to study the system of many inter-
acting quasi-1D wires through the bosonization method.
As noted in the main text, in order to handle the unequal
chiral velocities, we make use of the more original chiral
boson field ϕκ = ϕj,r that bosonizes a Weyl fermion in
(1 + 1)-dimensions. One has the commutation relation
for the same wire

[∇ϕκ(z), ϕκ(z′)] = i2πrδ(z − z′) (A11)

and the electron density

ρκ =
1

2π
∇ϕκ, (A12)

in which the wire index ~R is omitted.

Henceforth, as suggested by the aforementioned
strong-field limit lB → 0, we will rely on the contin-

uum expressions for the guiding center lattice ~R, i.e.,∑
~R = 1

A⊥

´
d~R. Then the bosonized form of Eq. (A8)

becomes

H0 =
1

4π

∑
κ~R

ˆ
dzvr(∇ϕκ~R)2

=
1

4πA⊥

∑
κ

ˆ
d~rvr(∇ϕκ~R)2

=
1

4πA⊥V

∑
κ~k

vrq
2ϕκ~kϕ

κ
−~k

(A13)

where the gradient operator only applies to coordinate
z henceforth. On the other hand, the interaction part
(Eq. (A10)) can be divided to four parts HI =

∑
iHi

with

Hi =
1

2

∑
κ~R~R′

ˆ
dzdz′U(z−, R−)ρκ~R(z)ρκi~R′(~r

′)

=
1

2

1

(2π)2

∑
κ

1

A2
⊥

ˆ
d~rd~r′U(z−, R−)∇ϕκ~R(z)∇ϕκi~R′(z

′)

=
1

2

1

(2π)2

∑
κ

1

A2
⊥π

∑
q, ~Q

4πe2q2

q2 +Q2
∇ϕκ~k∇ϕ

κi
−~k

=
g

4πA⊥V

∑
κ~k

q2

k2
∇ϕκ~k∇ϕ

κi
−~k
,

(A14)

in which g = 2e2

A⊥
and Eq. (A12) and the Fourier trans-

form of the Coulomb potential are used in the second
and the third equalities, respectively. The index i sig-
nifies the ith scattering in Eq. (A3) and accordingly
κi = (j, r) , (j,−r) , (−j, r) , (−j,−r) for i = 1, 2, 3, 4 re-
spectively. Using Eq. (A11), we are ready to write down
the action of this system in Euclidean spacetime

S =
∑
κ

ˆ β

0

dτd~r
−ir

4π
ϕκ(~r, τ)∂τ∇ϕκ(~r, τ) +

ˆ β

0

dτH

=
1

4πβA⊥V

∑
κ,p

{−irqωϕκ−pϕ
κ
p

+ q2[(vr +
g

k2
)ϕκ−pϕ

κ
p +

g

k2

∑
i=2,3,4

ϕκ−pϕ
κi
p ]}

=
1

4πβA⊥V

∑
p

~ϕ†
pWp~ϕp

(A15)

wherein ~ϕ = (ϕκ1 , · · · , ϕκ4)T and the Fourier expansion

is defined as ϕ(~r, τ) = (βV )−
1
2

∑
~k,ω ϕpe

i(~k·~r−ωτ). The
action matrix

Wp = q2


VR − z

q Vg Vg Vg
Vg VL + z

q Vg Vg
Vg Vg VR − z

q Vg
Vg Vg Vg VL + z

q

 (A16)
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with Vg(k) = g
k2 , Vr = vr + Vg and z, which can equal

iω for instance, is a generic complex frequency not to be
confused with the coordinate z in real space. Note that
we have used the fact that ϕ(~r, τ) is real. This can be
block-diagonalized by transforming to new fields

~ξ = (θR, θL, φR, φL)T =
1

2

[
I −I
−I −I

]
~ϕ, (A17)

upon which, the action becomes

S =
1

2πβA⊥V

∑
p

q2

[
[θR, θL]−p

[
vR − z

q 0

0 vL + z
q

] [
θR

θL

]
p

+[φR, φL]−p

[
2Vg + vR − z

q 2Vg
2Vg 2Vg + vL + z

q

] [
φR

φL

]
p

]
.

(A18)

On the other hand, for the TRB case, working in the
standard (φ, θ) fields with ϕr = −(φ− rθ), we have

S =
1

2πβA⊥V

∑
p

q2[φ, θ]−p

[
2Vg + v z/q
z/q v

] [
φ
θ

]
p

.

(A19)

Transformation (A17) is nothing but combining fields of
different side index j

θr =
1

2
(ϕ1,r − ϕ−1,r) , φr = −1

2
(ϕ1,r + ϕ−1,r), (A20)

which is useful in the current problem since 1D modes
with only different side index j share the same velocity in
much the same way as chirality index r does in the stan-
dard case where opposite-chirality fields are combined.
The new commutation relations read

[∇θr(z), θr(z′)] = [∇φr(z), φr(z′)] = iπrδ(z−z′). (A21)

It might as well be worth noting that, compared with
the more standard action of the simplest bosonization
case, the Berry phase term in Eq. (A15) or Eq. (A18)
appears in the diagonal and is half of the value expected
from the corresponding commutation rule Eq. (A11) or
Eq. (A21). This is because a chiral boson field and its
spatial derivative are not independent.

4. Green’s function

In this subsection, let us calculate the Green’s func-
tions of the chiral electrons. Feeding the new bosonic
fields given in Eq. (A20), we have the electron Green’s
function of 1D mode κ

− Gκ(x) = 〈Tτψκ(x)ψ†
κ(0)〉

=
eijkrz

2πα
〈Tτeir(jθr−φr)(x)e−ir(jθr−φr)(0)〉

=
eijkrz

2πα
e−

1
2 〈(θ

r(x)−θr(0))2+(φr(x)−φr(0))2〉e±iπΘ(−τ),

(A22)

where we use the Debye-Waller formula for quadratic ac-
tion and the fact that θ and φ fields are decoupled. The
exponential with a Heaviside step function Θ(−τ) can
be dropped since we will simply focus on the τ > 0 case.
In addition, we only consider the correlation on a par-

ticular wire and set ~R = 0 without loss of generality,
i.e., x = (z,~0, τ). After lengthy calculations presented in
Appendix A 4 a, we obtain the electron Green’s function

− Gκ(z, τ) = 〈Tτψκ(x)ψ†
κ(0)〉 =

eijkrz

2πα

[
α+ vrτ − irz

α

]−1
2

×
∏
λ=±

[
α+ τ

2 (w∗ + λv−)− irz

α

]− 1
2

4V ∗g +v++λrw∗

2w∗

(A23)

where w∗ =
√
v+(8V ∗g + v+) , V ∗g = g

Q∗2
. At the long-

distance (z � α) limit, Gκ(z, 0) ∼ z−γ where γ =
1
2

(
1 +

∑
λ=±

4V ∗g +v++λrw∗

2w∗

)
= 1

2

(
1 +

4V ∗g +v+

w∗

)
> 1.

On the other hand, if one only wants to extract the cor-
rect γ value instead of some concrete form of the gen-
eral Green’s function, one can turn to another approach
sketched in Appendix A 4 b.

a. General form

We can invert the action Eq. (A18) to get the propa-
gators

〈θr−pθrp〉 = πβA⊥V
1

−rq(z− z0r)

〈φr−pφrp〉 = πβA⊥V
q(2Vg + v−r) + zr

−q(z− z+)(z− z−)
,

(A24)

where z0r = rqvr and z± = q
2 (v− ±

√
v+(8Vg + v+))

with v± = vR ± vL > 0. Separating the prefactors,
residues at the three poles are Resrλ = −1

rq and Resrλ =

4Vg+v++λr
√
v+(8Vg+v+)

−2λq
√
v+(8Vg+v+)

for λ = 0 and λ = ±, respectively.

The correlation functions

〈(θr(x)− θr(0))2〉 =
1

(βV )2

∑
~kωn

〈θr−pθrp〉A(r · p) (A25a)

〈(φr(x)− φr(0))2〉 =
1

(βV )2

∑
~kωn

〈φr−pφrp〉A(r · p)

(A25b)

wherein A = A(x·p) = 2−2 cos(qz−ωnτ) = 2−2 cos(qz+
izτ). For Eq. (A25a), we can perform the summation
over bosonic matsubara frequencies as follows.∑

qωn

1

−rq(z− z0r)
eηz = −β

∑
q

Resr0nB(z0r)

= −β
∑
q>0

Resr0(1 + 2nB(z0r)),
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where z is understood as iωn, nB is bosonic distribution
and we take η → 0+, but the result remains the same
for η → 0−. To control the convergence at <z < 0 and
<z > 0 we use bosonic weighting functions, (1 + nB(z))
and nB(z), respectively. Then we have∑
qωn

1

−rq(z− z0r)
eiqz−τz

=− β
∑
q

Resr0(1 + nB(z0r))e
iqz−τz0r

=− β
∑
q>0

Resr0[(1 + nB(z0r))e
iqz−τz0r + nB(z0r)e

−iqz+τz0r ]

∑
qωn

1

−rq(z− z0r)
e−iqz+τz

=− β
∑
q

Resr0nB(z0r)e
−iqz+τz0r

=− β
∑
q>0

Resr0[nB(z0r)e
−iqz+τz0r + (1 + nB(z0r))e

iqz−τz0r ]

And we arrive at∑
qωn

1

−rq(z− z0r)
A(r · p)

=− 2β
∑
q>0

Resr0[nB(z0r)Az0r
+ 1− eiqz−τz0r ]

β→∞
−−−−→− 2β

∑
q>0

Resr0r(1− er(iqz−τz0r)),

(A26)

where Az0r
= 2 − 2 cos(qz + iz0rτ). Similarly, for

Eq. (A25b), we have (summing only over λ = ±)∑
qωn

q(2Vg + v−r) + zr

−q(z− z+)(z− z−)
eηz = −β

∑
q,λ

ResrλnB(zλ)

= −β
∑
q>0,λ

Resrλ(1 + 2nB(zλ)).

∑
qωn

q(2Vg + v−r) + zr

−q(z− z+)(z− z−)
eiqz−τzλ

=− β
∑
qλ

Resrλ(1 + nB(zλ))eiqz−τzλ

=− β
∑
q>0,λ

Resrλ[(1 + nB(zλ))eiqz−τzλ + nB(zλ)e−iqz+τzλ ]

∑
qωn

q(2Vg + v−r) + zr

−q(z− z+)(z− z−)
e−iqz+τzλ

=− β
∑
qλ

ResrλnB(zλ)e−iqz+τzλ

=− β
∑
q>0,λ

Resrλ[nB(zλ)e−iqz+τzλ + (1 + nB(zλ))eiqz−τzλ ]

And we arrive at∑
qωn

q(2Vg + v−r) + zr

−q(z− z+)(z− z−)
A(r · p)

=− 2β
∑
q>0,λ

Resrλ[nB(zλ)Azλ + 1− eiqz−τzλ ]

β→∞
−−−−→− 2β

∑
q>0,λ

Resrλλ(1− eλ(iqz−τzλ)).

(A27)

Combining Eq. (A24), Eq. (A25a) and Eq. (A26), we
obtain the correlation function of the θ field

〈(θr(x)− θr(0))2〉

=
−2π

Ω

∑
q>0

Resr0(nB(z0r)Az0r
+ 1− eiqz−τz0r )

β→∞
−−−−→ −2π

Ω

∑
q>0

Resr0r(1− er(iqz−τz0r)),

(A28)

in which summation
∑

~Q 1 = Ω⊥
A⊥

is used. Combining

Eq. (A24), Eq. (A25b) and Eq. (A27), we obtain the
correlation function of the φ field

〈(φr(x)− φr(0))2〉

=
−2π

V

∑
~Q,q>0,λ

Resrλ[nB(zλ)Azλ + 1− eiqz−τzλ ]

β→∞
−−−−→ −2π

V

∑
~Q,q>0,λ

Resrλλ(1− eλ(iqz−τzλ)).

(A29)

At the zero temperature limit (β →∞), it is possible to
proceed by turning the momentum summation to integral
with a lattice cutoff factor e−αq. Thus,

〈(θr(x)− θr(0))2〉 =

ˆ ∞
0

dqe−αq
1− er(iqz−τz0r)

q

= ln
α+ vrτ − irz

α
,

(A30)

which is valid since α + vrτ > 0. On the other hand,
for the much more complex φ correlation, it is neces-

sary to resort to some approximations. The ~Q-integral
is not within the range of analytic solution. Concerning
the low-energy property of this system, the typical value
of momentum q should be negligibly small than the mo-

mentum ~Q of the guiding center lattice. Hence we replace
Vg = g

k2 by V ∗g = g
Q∗2

for the nonce so as to relieve us of

the ~Q-integral, where Q∗ is some characteristic value of
the momentum. This enables us to perform the q-integral

〈(φr(x)− φr(0))2〉

= −
∑
λ

ˆ ∞
0

dqResrλλ(1− eλ(iqz−τzλ))e−αq

=
∑
λ

4V ∗g + v+ + λrw∗

2w∗
ln
α+ τ

2 (w∗ + λv−)− irz

α
,

(A31)
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which is valid since α + τ
2 (w∗ + λv−) > 0 and we define

w∗ =
√
v+(8V ∗g + v+). Finally, combining Eq. (A22),

Eq. (A30) and Eq. (A31), we arrive at the electron
Green’s function written in the beginning.

b. Asymptotic form

For the asymptotic behavior at long distance of the
on-wire Green’s functions, it is convenient to rely on the
effective 1D model in Appendix B 1. Combining Eq. (B1)
and Eq. (A22), one has

Gκ(z) ∝ exp

[
−1

2

(
1

4
〈[(θρ + rθχ)(z)− (θρ + rθχ)(0))]2〉

+
1

4
〈[(φρ + rφχ)(z)− (φρ + rφχ)(0))]2〉

)]
.

(A32)

As shown above, the θ part gives a trivial exponent 1
2 .

We thus simply apply the method in Appendix C to the
φ part

exp

[
−1

2

1

4
〈[(φρ(z)− φρ(0)) + r(φχ(r)− φχ(0))]2〉

]
= exp

[
−1

2

1

4

(
〈(φρ(z)− φρ(0))2 + (φχ(z)− φχ(0))2〉

+2r 〈(φρ(z)− φρ(0))(φχ(z)− φχ(0))〉)
]
.

(A33)

Previewing the notation in Appendix B 2 a, the result is

γ = 1
2 + 1

4π

´ 2π

0
dµ B−C′

B2 cosµ or γ = 1
2 + 1

4π

´ 2π

0
dµ A−C′

A2 cosµ for

r = ∓1 where C ′ = 2
vg′

v+ cosµ. In fact, γ is independent
to κ and increases with vg from unity. Similarly, for the
TRB case, we have

Gr(z) ∝ 〈e−i(rφ−θ)(z)ei(rφ−θ)(0)〉

= exp

[
−1

2

(
〈(φ(z)− φ(0))2 + (θ(z)− θ(0))2〉

−2r 〈(φ(z)− φ(0))(θ(z)− θ(0))〉)
]
,

(A34)

which also gives a γ > 1 increasing with vg.

Appendix B: Impurity effect on an effective 1D wire

1. Effective 1D Luttinger liquid system

The charge-chirality separated basis can be attained
by combining the opposite-chirality fields in Eq. (A17)
or Eq. (A20)

~ζ = (θρ, θχ, φρ, φχ)T =

[
H 0
0 H

]
~ξ =

1

2

[
H −H
−H −H

]
~ϕ,

(B1)

wherein H =

[
1 1
1 −1

]
is the order-2 Hadamard matrix.

The new commutation relations read

[∇θρ(z), θχ(z′)] = [∇φρ(z), φχ(z′)] = i2πδ(z − z′). (B2)

The total particle density of all modes is given by

ρ = − 1

π
∇φρ, (B3)

which can be easily seen from Eq. (A12). Upon the new

fields ~ζ, the action of the system, Eq. (A15) or Eq. (A18),
is transformed into

S =
1

2πβA⊥V

∑
p

~ζ†
pMp

~ζp

=
1

2πβA⊥V

∑
p

q2

4

[
[θρ, θχ]−p

[
v+ v− − 2z

q

v− − 2z
q v+

] [
θρ
θχ

]
p

+[φρ, φχ]−p

[
8Vg + v+ v− − 2z

q

v− − 2z
q v+

] [
φρ
φχ

]
p

]
(B4)

as shown in the main text.
Now we are ready to derive the effectice 1D model

of the system. This can be done, without loss of gen-
erality, by integrating out the fields except the ones
~ζ0(z, τ) = ~ζ(z, ~R, τ) on a particular wire at ~R. We in-

troduce auxiliary fields ~λ(z, τ) and write the partition
function in the path-integral formalism as

Z =

ˆ
D~ζ0D~λD~ζ e−{S+

´
dzdτ i~λ(z,τ)·[~ζ0(z,τ)−~ζ(z, ~R,τ)]}

=

ˆ
D~ζ0D~λD~ζ e

−
∑
p{~ζ

†
p

Mp
2A⊥πβV

~ζp+i~λ†
~q
·[−e−i~Q·~R

βV
~ζp+

A⊥
βV

~ζ0~q ]}

(B5)

wherein we introduce a shorthand notation ~q = (q, ω) for
the 1D energy-momentum space. We then integrate out
~ζ to obtain (omitting the determinant prefactor)

Z =

ˆ
D~ζ0D~λ e−

∑
~q [−

πA⊥
2βV

~λ†
~q

∑
~QM

−1
p
~λ~q+

i
βΩ
~λ†
~q
·~ζ0~q ]. (B6)

Finally, by integrating out ~λ, we get

Z =

ˆ
D~ζ0 e

−
∑
~q

1
2πβΩ

Ω⊥
A⊥

~ζ†
0~q(

∑
~QM

−1
p )

−1~ζ0~q . (B7)

We thus arrives at the 1D effective action

S1D =
1

2πβΩ

∑
~q

~ζ†
~qM~q

~ζ~q (B8)

whereM~q = Ω⊥
A⊥

(∑
~QM

−1
p

)−1

, Mp is given in Eq. (B4)

and we neglect the subscript 0 of the fields. Fortunately,
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this ~Q-summation can be done analytically in the con-
tinuum limit as an integration. Using polar coordinates,
the radial part of this 2D integral should be cut off at
a certain Q∗ of the size of the 2D first Brillouin zone.
In fact, it can be fixed by requiring that the effective
model returns to the original model at the noninterac-
tiong limit since the many 1D wires become completely
decoupled, which simply gives Q∗2 = 4π

A⊥
. The result is a

block-diagonal M = diag(Mθ,Mφ) with (omitting the
subscript ~q)

Mθ =
q2

4

[
v+ v− − 2z

q

v− − 2z
q v+

]

Mφ =
q2

4

[
v+(qv1−z)(qv−1+z)−2(qv−−2z)2vg′

(qv1−z)(qv−1+z)−2q2v+vg′
v− − 2z

q

v− − 2z
q v+

]
(B9)

wherein

vg′ = vg ln

[
1− (z− qv1)(qv−1 + z)

2q2v+vg

]
. (B10)

Henceforth, we denote vg = g
Q∗2

= 2e2

Q∗2A⊥
= e2

2π and

thereby the new vg′ = g′

Q∗2
is understood as that the

original g gets renormalized to g′ by the logarithmic fac-
tor.

2. Localization length

Now we have obtained an effective TLL model
Eq. (B8), upon which we would consider the impurity
effect. To begin with, we expand the fields in the im-
purity Hamiltonian around their slowly varying classical
parts θρ → θcl

ρ + θρ , φρ → φcl
ρ + φρ. Because of the un-

bounded fluctuation of the fields, we have to use the nor-
mal ordering formula cosϕ =:cosϕ : 〈cosϕ〉 for a generic
field ϕ. For a quadratic theory, the cosine product in the
impurity Hamiltonian is approximated as

γ[1− 1

2
(φ2
ρ − 〈φ2

ρ〉+ θ2
ρ − 〈θ2

ρ〉)] cosφcl
ρ cos (θcl

ρ + ∆kz),

(B11)

where γ is defined as

γ = e−
1
2 (〈φ2

ρ〉+〈θ
2
ρ〉). (B12)

Because of the homogeneity of the 1D spacetime, γ is a
constant as we will see below. Obviously, it introduces
two mass terms to the action matrices in Eq. (B9) in a
self-consistent manner. For the compromised pinning, as
implied from the impurity Hamiltonian, while φcl

ρ should

always maximize | cosφcl
ρ |, θcl

ρ directly affected by impu-
rities will give rise to a coefficient of the energy gain,

−
√

nimp

L , where nimp is the impurity density. This is to

say that the impurity Hamiltonian, using Eq. (B11), will
be replaced by

Himp = −
√
nimp

L
V0γ

ˆ
dz[1− 1

2
(φ2
ρ − 〈φ2

ρ〉+ θ2
ρ − 〈θ2

ρ〉)].

(B13)
As a whole, these considerations lead to an impurity ac-
tion (the two mass terms) added to Eq. (B8) or Eq. (B9)

S ′1D = S1D +
1

2πβΩ
λ
∑
~q

(φρ,−~qφρ,~q + θρ,−~qθρ,~q) (B14)

wherein λ =
√

nimp

L V0γπ. In Appendix B 2 a, the self-

consistency condition Eq. (B12) is solved to give

γ = (4v+Λ2)
η
η−4 (4πV0

√
nimp

L
)
−η
η−4 (B15)

in which Λ = α−1 is the momentum cutoff, η = ηθ + ηφ
with ηθ = 1, ηφ = 1

π F̃ (v±, vg). These are the most im-
portant exponents discussed in the main text, for which
a mathematical discussion is given in Appendix B 2 c.

Now it is the stage to look at the energy of this massive
system due to the presence of many impurities. First of
all, the penalty in elastic energy from the distortion of

θcl
ρ is estimated as50 Eela =

´
dzAθρ(∇θcl

ρ )2 = Aθρ
π2

3L2 Ω

where Aθρ = 1
2π

v+

4 . Secondly, from Eq. (B14), we need
to estimate the difference in ground state energy, ∆E,
between the impurity system and the original one. This
usually turns out to be straightforward if one maps the
bosonic action to many harmonic oscillators. However,
this becomes intractable for our complex effective model
Eq. (B9) where canonical commutation relations get dis-
torted. Instead, in Appendix B 2 b, we directly calculate
the free energy from the path integral of Eq. (B14), which
equals the ground state energy at zero temperature.
Combining ∆E with other constant parts in Eq. (B13),

we arrive at an energy gain ∆E = −
√

nimp

L V0γΩ(1− η
4 ).

Lastly, the total energy excess density due to the im-
purities reads ε = (Eela + ∆E)/Ω, whose variation with
respect to the localization length, ∂ε

∂L = 0, gives

L ∝ Dimp
1

η−3 (B16)

a. Solving the self-consistency equation

Two positive constants qθ, qφ are defined through λ =√
nimp

L V0γπ = 1
4v

+q2
θ = 1

4v
+q2

φ. For clearness, we use

different subscripts although qθ = qφ. From this new
action, on can easily obtain the needed correlation func-
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tions

〈θρ,−~qθρ,~q〉 = πβΩ
−v+

(z− qv1)(qv−1 + z)− 1
4v

+2q2
θ

〈φρ,−~qφρ,~q〉 = πβΩ
4

v+(q2
φ + 4k2 A2B2

AB−C )

(B17)

where for the more complex φ-field case, we change

to the polar coordinates defined as ~k = (q, ωv+ ) =
(k cosµ, k sinµ) with z = iω and the dimensionless func-
tions A = v1

v+ cosµ − i sinµ, B = v−1

v+ cosµ + i sinµ

and C = 2
vg′

v+ cos2 µ. For vg′ , which is originally ex-

pressed as vg′ = vg ln[1 + AB

cos2 µ(
2vg

v+ + k2

Q∗2
AB)

], in the

low-energy regime where k2

Q∗2 � 1, we can take vg′ =

vg ln[1+ AB
2vg

v+ cos2 µ
]. Hence, vg′ = vg′(µ) no longer depends

on the variable k. In addition, it is convenient to define

f(µ) = A2B2

AB−C . The space-time correlation functions ap-

peared in Eq. (B11) and Eq. (B12) can then calculated
as follows.

〈θρ(z, τ)2〉 =
1

(βΩ)2

∑
~q

〈θρ,−~qθρ,~q〉

=
π

Ω

∑
q

ˆ ∞
−∞

dω

2π

−v+

(z− qv1)(qv−1 + z)− 1
4v

+2q2
θ

=
π

Ω

∑
q

v+√
(qv1 + qv−1)2 + q2

θv
+2

=
1

2

ˆ Λ

−Λ

1√
q2 + q2

θ

= ln
Λ +

√
q2
θ + Λ2

Λ
(B18)

in which we use the zero-temperature limit to perform the
frequency summation. The momentum cutoff Λ = α−1,
in general, is much larger than qθ, qφ in the introduced
masses. Therefore, if necessary, Eq. (B18) can be ap-
proximated as

〈θρ(z, τ)2〉 = ln
2Λ

qθ
. (B19)

And for the φ-field, we similarly have

〈φρ(z, τ)2〉 =
1

(βΩ)2

∑
~q

〈φρ,−~qφρ,~q〉

=
1

2

ˆ
dq

dω

2π

4

v+(q2
φ + 4k2 A2B2

AB−C )

=
v+

8π

ˆ 2π

0

dµ

ˆ Λ

0

dk2 4

v+(q2
φ + 4k2 A2B2

AB−C )

=
1

2π

ˆ 2π

0

dµ
ln(1 + Λ2

q2
φ

4f(µ))

4f(µ)

=
1

2π
F (

Λ

qφ
, v±, vg).

(B20)

Again, for a very large momentum cutoff Λ � qφ, it is
approximated as

〈φρ(z, τ)2〉 =
1

π
F̃ (v±, vg) ln

2Λ

qφ
(B21)

where F̃ (v±, vg) =
´ 2π

0
dµ 1

4f(µ) is inspected with care in

Appendix B 2 c. Feeding Eq. (B19) and Eq. (B21) to the
self-consistency equation Eq. (B12), we have

γ−2 =

(
2Λ

qθ

)ηθ (2Λ

qφ

)ηφ
(B22)

where ηθ = 1, ηφ = 1
π F̃ and we also define η = ηθ + ηφ.

Recalling the definition of qθ, qφ, this is further solved to
give Eq. (B15).

b. Energy gain of the system

Applying the path-integral formula to a generic action
matrix M

e−βF = Z =

ˆ
D~ζe−

1
2πβΩ

∑
~q
~ζ†
~q
M~q

~ζ~q , (B23)

at zero temperature, energy of the system is given by

E = − 1

β
ln

∏
~q

(
1

(πβΩ)4
DetM~q

)− 1
2

Jq


=

1

2

∑
q

ˆ
dω

2π
ln[

1

(πβΩ)4
DetM~q J

−2
q ]

(B24)

where Jq = q2 is a Jacobian since the current field vari-

ables ~ζ do not directly lead to energy, dissimilar to what
momentum and position do for a harmonic oscillator ac-
tion. And in fact, all the factors except the determinant
inside the logarithmic function will cancel out when cal-
culating energy difference.
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From the full action Eq. (B14), now expressed as

S ′1D =
1

2πβΩ

∑
~q

~ζ†
~q

[
M′θ 0

0 M′φ

]
~q

~ζ~q, (B25)

we can calculate the determinants

DetM′θ,~q =
q2

16
[4(qv1 − z)(qv−1 + z) + v+2

q2
θ ]

DetM′φ,~q =
v+2

k2 cos2 µ

16
(
4k2A2B2

AB − C
+ q2

φ).

(B26)

Similarly, for the original pure system Eq. (B8), we have
DetMθ,~q ,DetMφ,~q by setting qθ = qρ = 0 in Eq. (B26).
Then, using Eq. (B24), we have the difference in energy

∆Eθ =
1

2

∑
q

ˆ
dω

2π
(ln[DetM′θ,~q]− ln[DetMθ,~q])

=
1

2

∑
q

ˆ
dω

2π
ln

4(qv1 − z)(qv−1 + z) + v+2
q2
θ

4(qv1 − z)(qv−1 + z)

=
1

2

Ω

2π

ˆ Λ

−Λ

dq
v+

2
(
√
q2 + q2

θ − |q|)

=
Ω

8π
v+[q2

θ ln
Λ +

√
q2 + Λ2

qθ
+ Λ(

√
q2
θ + Λ2 − Λ)].

(B27)

And for the more complex φ part, we have

∆Eφ =
1

2

Ω

2π

ˆ
dq

ˆ
dω

2π
(ln[DetM′ρ,~q]− ln[DetMρ,~q])

=
Ω

(4π)2
v+

ˆ 2π

0

dµ

ˆ Λ

0

dk2 ln
4k2f(µ) + q2

φ

4k2f(µ)

=
Ω

(4π)2
v+

ˆ 2π

0

dµ(q2
φF (

Λ

qφ
, v±, vg) + Y )

(B28)

in which Y =
´ 2π

0
dµΛ2 ln[1 + (Λ2

q2
φ

4f(µ))−1]. Similar to

Eq. (B19) and Eq. (B21), for a large momentum cutoff

Λ, we easily have Y = q2
φF̃ . Now, combining ∆E =

∆Eθ + ∆Eφ with other constant parts in Eq. (B13), i.e.,
using Eq. (B19) and Eq. (B21), we can write down the
system’s energy gain

∆E = −
√
nimp

L
V0γΩ[1 +

1

2
(〈φ2

ρ〉+ 〈θ2
ρ〉)] + ∆E

= −
√
nimp

L
V0γΩ +

Ωv+

8π
Λ(
√
q2
θ + Λ2 − Λ) +

Ωv+

(4π)2
Y

= −
√
nimp

L
V0γΩ +

Ωv+

8π

q2
θ

2
+

Ωv+

(4π)2
q2
φF̃

= −
√
nimp

L
V0γΩ(1− η

4
)

(B29)

where the approximation of large Λ is only used in the
third line.

c. F̃ function

Let us briefly summarize the properties of the function

F̃ (v±, vg) =
´ 2π

0
dµ 1

4f(µ) introduced in Eq. (B21). Re-

calling the definitions after Eq. (B17) in Appendix B 2 a,

f(µ) = A2B2

AB−C and A = v1

v+ cosµ− i sinµ, B = v−1

v+ cosµ+

i sinµ, C = 2
vg′

v+ sin2 µ and vg′ = −vg ln[1+ AB
2vg

v+ cos2 µ
], we

see it’s a complex integral. Nonetheless, noticing =AB ∝
sin 2µ, it is ready to prove f(mπ2 − µ) = f∗(mπ2 + µ)
wherein m ∈ Z, which immediately shows the reality
of F̃ as one would expect for the physical exponent
ηφ = 1

π F̃ . Furthermore, F̃ as a bounded function of
vg (v±) is monotonically decreasing (increasing). Specif-

ically, F̃ (
vg
v+ → 0) = π and F̃ (

vg
v+ →∞) = 0.

For the multi-pair situation, the definition of vg′ is
altered to Eq. (D1). All the above considerations still
apply except that the lower bound gets augmented to
F̃N (

vg
v+ → ∞) = N−2

N π. Certainly, for any particular

values of the arguments, F̃N (v±, vg) is larger than the

single-copy one, F̃ (v±, vg).

Appendix C: Temperature dependence of resistivity

First of all, we need to derive the force operator used
in the memory function method. Feeding the particle
density Eq. (B3) to the continuity equation ∇ · j + ∂ρ

∂t ,

we can express the current as j = 1
π∂tφρ. Start-

ing from the φ-part of the noninteracting Hamiltonian

Hφ
0 =

´
dz
8π

[
v+((∇φρ)2 + (∇φχ)2) + 2v−(∇φρ)(∇φχ)

]
obtained from Eq. (B4) or Eq. (B8) by setting vg = 0,

one can apply Heisenberg equation to get j = i
π [Hφ

0 , φρ].
Recalling the commutation relation Eq. (B2), we get the
current operator j = − 1

2π [v+∇φχ+v−∇φρ]. Thus, using
the impurity Hamiltonian, the force operator is given by

F = [j,Himp] = iv+V(z) sinφρ(z) cos(θρ(z) + ∆kz).
(C1)

To calculate the memory function M, we need the
imaginary-time force-force correlation function

G(τ) = −〈TτF (z, τ)F (z, 0)〉

= v+2 〈VV〉 〈Tτ sinφρ sinφρ〉
× 〈Tτ cos (θρ + ∆kz) cos (θρ + ∆kz)〉

(C2)

wherein we suppress the arguments for simplicity.
Firstly, the Gaussian disorder correlator 〈V(z)V(z)〉 =
1
2 ( 2
πα )3Dimp. For the other parts, applying the Debye-

Waller formula, we have

〈sinφρ(z, τ) sinφρ(z, 0)〉

=
1

2
e−

1
2 〈(φρ(z,τ)−φρ(z,0))2〉 =

1

2
(v+Λτ)−ηφ

〈cos (θρ(z, τ) + ∆kz) cos (θρ(z, 0) + ∆kz)〉

=
1

2
e−

1
2 〈(θρ(z,τ)−θρ(z,0))2〉 =

1

2
(v+Λτ)−ηθ

(C3)
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wherein we suppress the time-ordering operator for sim-
plicity. The complete force-force correlation function and
the concomitant analytic continuation are formidable to
obtain, especially for the complicated φρ part. Neverthe-
less, as shown below, if one restricts the goal to only ex-
tracting the power law dependence on temperature, one
can calculate the correlation functions on the exponents
approximately to directly find the τ dependence as shown
in Eq. (C3).

By setting qθ = qφ = 0 in Eq. (B17), it is straightfor-
ward to obtain the needed correlation functions in mo-
mentum space for the action Eq. (B8). Then we can
calculate in the following way

〈(θρ(z, τ)− θρ(z, 0))2〉

=
1

(βV )2

∑
~q

〈θρ,−~qθρ,~q〉 (2− 2 cosωτ)

=
π

(2π)2

ˆ
dqdω

v+

v+2k2AB
(2− cosωτ)

=
v+

4π

ˆ
d2~k

1

v+k2AB
(2− 2 cos (kv+τ sinµ))

=
1

2π

ˆ 2π

0

dµ

ˆ Λ

0

dk
1− cos (kv+τ sinµ)

kAB

=
1

2π

ˆ 2π

0

dµ
1

AB
Cin(Λv+τ sinµ)

=
1

2π

ˆ 2π

0

dµ
1

AB
ln(Λv+τ sinµ)

=
2

π
F̃ (v±, vg = 0) ln(Λv+τ)

(C4)

and

〈(φρ(z, τ)− φρ(z, 0))2〉

=
1

(βV )2

∑
~q

〈φρ,−~qφρ,~q〉 (2− 2 cosωτ)

=
v+

4π

ˆ
d2~k

1

v+k2f(µ)
(2− 2 cos (kv+τ sinµ))

=
1

2π

ˆ 2π

0

dµ

ˆ Λ

0

dk
1− cos (kv+τ sinµ)

kf(µ)

=
1

2π

ˆ 2π

0

dµ
1

f(µ)
Cin(Λv+τ sinµ)

=
1

2π

ˆ 2π

0

dµ
1

f(µ)
ln(Λv+τ sinµ)

=
2

π
F̃ (v±, vg) ln(Λv+τ).

(C5)

For both of the above cases, we perform the ~q-summation
as a 2D integral in a similar manner to Eq. (B20).
We introduce the special cosine integral62 Cin(x) =´ x

0
1−cos t

t dt whose asymptotic form is lnx. In the last
line but one we use this asymptotic form for the large
cutoff Λ. We also drop the sinµ inside the logarithm to
get the last line since it doesn’t contribute to the expo-
nent of τ that relates to the temperature.

Appendix D: Calculation for the multi-pair case

For each copy, we will have a corresponding set of ~ζ
fields as defined by Eq. (B1). For the whole N

2 -copy IB

system (N is even), we can think about the 4N2 × 4N2
action matrix equally divided as N

2 ×
N
2 blocks indexed

by two copy indices. It comprises N
2 parts of single-copy

action Eq. (B4) along the block-diagonal. In addition,
due to the inter-copy Coulomb interaction, we get off-
diagonal coupling 2q2vg between each pairs of φρ,ν , φρ,ν′
where ν , ν′ are copy indices. Then, by integrating out the
wires in the same manner as in Appendix B 1, we arrive
at the effective 1D model. Take all the intra-copy impu-
rity scatterings into account amounts to self-consistently
introducing mass terms to each diagonal block.

To relieve the burden of notation, we will, when neces-

sary, denote ε = (qv1 − z) (qv−1 + z) = k2v+2
A(µ)B(µ),

a = A(µ)B(µ) and b = cos2 µ
vg′

v+ in this section. First
of all, upon obtaining the effective 1D model, the off-
diagonal interaction between different copies will renor-
malize the quantity vg in a different manner compared
with Eq. (B10)

vg′ = vg ln

[
1 +

ε

2N2 q
2v+vg

]
(D1)

where N appears in the denominator inside the loga-
rithm. Accordingly, the F̃ function will be altered to
F̃N as stated in the main text or Appendix B 2 c. Note
that it is not the same as the substitution vg → Nvg with

F̃ (v±, vg) becoming F̃ (v±, Nvg). Then we need to solve
the self-consistency equation as previously done in Ap-
pendix B 2 a. Because the various copies are on the same
footing, the mass terms introduced can be taken to be
the same in the first place. Therefore, it is unnecessary
to keep track of the copy index unless otherwise stated.
The 〈θρθρ〉 correlation functions take the same form as
Eq. (B17) and Eq. (B18) while the 〈φρφρ〉 correlation
functions turn out to be rather different from Eq. (B17)
and Eq. (B20)

〈φρ,−~qφρ,~q〉

=πβΩ
4v+[ε(4ε+ v+2

q2
φ)− q2v+vg′(8ε+Nv+2

q2
φ)]

(4ε+ v+2q2
φ)[ε(4ε+ v+2q2

φ)−Nq2v+3q2
φvg′ ]

=πβΩ
4
(

1− 8k2b
q2
φ(a−Nb)+4k2a

)
v+(4k2a+ q2

φ)
.

(D2)
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Then we can calculate

〈φρ(z, τ)2〉

=
1

(βΩ)2

∑
~q

〈φρ,−~qφρ,~q〉

=
v+

8π

ˆ 2π

0

dµ

ˆ Λ

0

dk2
4
(

1− 8k2b
q2
φ(a−Nb)+4k2a

)
v+(4k2a+ q2

φ)

=
1

2π

ˆ 2π

0

dµ
1

4a2

(
(a+

2b

a−Nb− 1
) log[1 +

4aΛ2

q2
φ

]

−2b(a−Nb)
a−Nb− 1

log[1 +
4aΛ2

q2
φ(a−Nb)

]

)
.

(D3)

For a very large momentum cutoff Λ� qφ, it is approx-
imated just as

〈φρ(z, τ)2〉 =
1

2π

ˆ 2π

0

dµ
a− 2b

4a2
log[

4Λ2

q2
φ

]

=
1

π
F̃N (v±, vg) ln

2Λ

qφ
.

(D4)

Now we turn to estimate the total energy excess of
the system. Similar to what have been done in Ap-
pendix B 2 b, we need the determinants of the action ma-
trices of the whole system, M′~q and M~q for the massive
one and the original one, respectively.

DetM′~q =
(q

4

)N
(4ε+ v+2

q2
θ)

N
2

×
(q

4

)N (
4ε+ v+2

q2
φ

)N
2 −1

(
4ε2

ε−Nq2v+vg′
+ v+2

q2
φ

)
DetM~q =

(
q
2

)2N
εN+1

ε−Nq2v+vg′
.

(D5)

The difference in ground state energy is

∆E =
∑
~q

ln
DetM′~q
DetM~q

=
v+Ω

(4π)2

[
N

2
(q2
θF

0 + Y 0)

+(
N

2
− 1)(q2

φF
0 + Y 0) + (q2

φF (Nvg) + Y (Nvg))

]
.

(D6)

And the other part from the constant terms reads

E′ = −N
2

√
nimp

L
V0γΩ[1 +

1

2
(〈φ2

ρ〉+ 〈θ2
ρ〉)]

= −N
2

(√
nimp

L
V0γΩ +

v+Ω

(4π)2

(
q2
θF

0 + q2
φFN (vg)

))
.

(D7)

Here, F and Y follow the definitions in Eq. (B20) and
Eq. (B28) and we omit the first slot of arguments v±. F 0

or Y 0 simply means setting the second argument vg to
zero. And the subscript of FN means it uses the multi-
pair vg′ in Eq. (D1) as the same as F̃N introduced in
Appendix B 2 c. Similar to the spirit of Appendix B 2,
if we approximate these functions at a very large cutoff
Λ, after some lengthy manipulations, we arrive at the
concise expression

∆E = ∆E + E′ = −N
2

√
nimp

L
V0γΩ(1− ηN

4
) (D8)

which shares the same form as Eq. (B29) and hence guar-
antees the same conclusion as Eq. (B16) with a new ex-

ponent ηN = 1 + 1
π F̃N (v±, vg).
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