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The consistent chiral kinetic theory accurate to the second order in electromagnetic and pseudo-
electromagnetic fields is derived for a relativistic matter with two Weyl fermions. By making use
of such a framework, the properties of longitudinal collective excitations, which include both chiral
magnetic and chiral pseudomagnetic waves, are studied. It is shown that the proper treatment of
dynamical electromagnetism transforms these gapless waves into chiral (pseudo-)magnetic plasmons,
whose Langmuir (plasma) gap receives corrections quadratic in both magnetic and pseudomagnetic
fields.
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I. INTRODUCTION

A kinetic theory is a common framework for studying a wide range of physical properties in condensed matter
materials, nuclear physics, and cosmology1,2. A relativistic version of such a theory is invaluable in studies of numerous
relativistic forms of matter, e.g., realized in the primordial plasma of the early universe3,4, relativistic heavy-ion
collisions5,6, compact stars7, as well as the Dirac and Weyl materials. Following the first theoretical predictions in
Refs.8–10, the realization of the three-dimensional (3D) Dirac semimetal phase in A3Bi (A = Na,K,Rb), Cd3As2, and
ZrTe5 was confirmed experimentally11–18. While the Weyl semimetal phase was first predicted theoretically to be
realized in pyrochlore iridates19, it was discovered later in such compounds as TaAs, TaP, NbAs, NbP, MoxW1−xTe,
and YbMnBi2

20–27. The above mentioned forms of matter are often made of (approximately) massless fermionic
particles that carry a well-defined chirality. Therefore, the chirality could be treated as a natural additional degree
of freedom in a relativistic plasma. It should be noted, however, that the conservation of the chiral charge is violated
in the presence of external electromagnetic fields. This is a consequence of the celebrated chiral (triangle) anomaly28.
Nevertheless, this anomaly can be incorporated exactly in the chiral kinetic theory29,30. The only limitation of the
current formulation of the corresponding theory is that it is valid only to the linear order in electromagnetic fields.
It important to note that the chiral anomaly affects magnetotransport in Weyl and Dirac semimetals in a nontrivial

way. Indeed, as was first shown by Nielsen and Ninomiya31, the longitudinal (with respect to the direction of the
external magnetic field) magnetoresistivity in Weyl semimetals decreases with the growth of the magnetic field.
Physically this phenomenon, which is usually called negative magnetoresistivity, relies on the presence of the lowest
Landau level (LLL) states around each Weyl node31,32. Then, since the LLL density of states grows linearly with a
magnetic field, the conductivity increases too. The phenomenon of negative magnetoresistivity is extensively studied
both theoretically31–36 and experimentally14–17,22,25.
The presence of a chiral chemical potential µ5, which quantifies a chiral asymmetry in a relativistic matter, sig-

nificantly enriches the properties and types of collective excitations. The investigation of the corresponding features
began in Refs.37–39. The authors of Ref.37 showed that the triangle anomaly implies the existence of a novel type of
collective excitation which stems from the coupling between the density waves of the electric and chiral charges and
is known as the chiral magnetic wave (CMW). In this connection, let us also mention that, as was shown in Ref.38,
a nonzero chiral chemical potential lifts the degeneracy of the transverse plasma modes, but leaves the longitudinal
mode intact. Such a conclusion agrees with a refined analysis in the consistent chiral kinetic theory40,41.
Dirac and Weyl materials provide additional opportunities to explore the role of chirality. For example, they allow

for a simple realization of axial electric (or pseudoelectric) E5 and/or axial magnetic (or pseudomagnetic) B5 fields.
These pseudoelectromagnetic fields act on fermions as ordinary electromagnetic fields, but their sign depends on the
fermion chirality. In Weyl and Dirac materials, one can induce a background pseudomagnetic field B5 by various
kinds of static strains42–47. Note that, unlike the ordinary magnetic field B, a pseudomagnetic field does not break
the time reversal symmetry. In essence, this is due to the fact that Weyl nodes in condensed matter materials always
come in pairs of opposite chirality48. A pseudoelectric E5 can be induced by time-dependent strains44.
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Recently, we showed40,41 that the plasmons in a relativistic matter in constant magnetic and pseudomagnetic fields
are, in fact, chiral (pseudo-)magnetic plasmons. Their chiral nature is manifested by oscillations of a chiral charge
density, which are absent for ordinary electromagnetic plasmons. It is also worth noting that, in the presence of
magnetic fields, the quasiparticle plasma in uncompensated metals supports a special type of collective excitations
known as helicons. These transverse low-energy gapless excitations propagate along the background magnetic field.
According to the studies in Ref.49, the dispersion relation of helicons encodes information on the chiral shift parameter
b, which defines the momentum space separation of Weyl nodes. Further, by using the formalism of the consistent
chiral kinetic theory, it was shown in Ref.50 that pseudomagnetic fields allow for a new type of helicons, which we
called pseudomagnetic helicons.
Although the chiral kinetic theory is quite successful in the description of various processes in relativistic plasma,

many physical phenomena require its formulation accurate to the second order in electromagnetic fields. Recently,
using the wave-packet semiclassical approach51 (for a review, see Ref.52), all necessary ingredients for such a formu-
lation were provided in Refs.53,54 for condensed matter systems with a general band structure. In the present paper,
we derive the explicit expressions for the consistent chiral kinetic theory valid to the second order in electromagnetic
as well as pseudoelectromagnetic fields for a simple realization of relativistic matter in a Weyl material with a single
pair of Weyl nodes.
The effects of dynamical electromagnetism for the chiral magnetic and chiral pseudomagnetic waves were studied

in Ref.41 in the consistent chiral kinetic theory valid to the linear order in electromagnetic and pseudoelectromagnetic
fields. It was found that such excitations are chiral (pseudo-)magnetic plasmons with the field-independent Langmuir
(plasma) gap. While the background magnetic field does not affect at all the dispersion relation in the linear order,
the background pseudomagnetic field contributes only to the term linear in momentum. However, according to the
general arguments in Ref.37, the dispersion relation of the CMW with the effects of dynamical electromagnetism
included should have the form ω2 = Ω2

e + (v2χ + c2eff )k
2, where vχ ∝ eB. Since v2χ is proportional to the square of

the magnetic field, this result cannot be reliably reproduced in the conventional first-order chiral kinetic theory29,30,
unless the theory is generalized to the second order in electromagnetic fields. In essence, this is one of the main
motivations for this paper.
The paper is organized as follows. The consistent chiral kinetic theory for a Weyl material with two Weyl fermions

valid to the second order in electromagnetic and pseudoelectromagnetic fields is formulated in Sec. II. The longitudinal
collective excitations propagating along background magnetic and pseudomagnetic fields are considered in Sec. III.
The summary of the main results is given in Sec. IV. Some useful technical results and formulas are presented in
Appendices A and B.

II. SECOND-ORDER CHIRAL KINETIC THEORY

Let us start by discussing the form of the second-order in electromagnetic and pseudoelectromagnetic field correc-
tions to the quasiparticle energy and velocity, as well as the leading order corrections to the Berry curvature. (Indeed,
the first order corrections to the Berry curvature are sufficient because in the chiral kinetic theory it always couples
to electromagnetic fields53,54.) Our starting point is the Hamiltonian for a single Weyl fermion

H = λvF (p · σ), (1)

where λ = ± is chirality, vF is the Fermi velocity, p is a momentum, and σ are the Pauli matrices. In the absence of

external electromagnetic fields, the quasiparticle energy is ǫ
(0)
η = ηvF p, where η labels the quasiparticles in the upper

(η = +1) or lower (η = −1) band. (Note that in relativistic language, the quasiparticles in the upper/lower band
correspond to the particles/antiparticles.) In the absence of background fields, the Berry curvature in the reciprocal
(momentum) space is given by55

Ω
(0)
λ = λη~

p

2p3
. (2)

In this study we will assume that the Weyl fermions are in the following effective electric and magnetic fields:

Eλ = E+ λE5, Bλ = B+ λB5, (3)

where E and B are the usual electric and magnetic fields, while E5 and B5 are pseudoelectromagnetic fields induced
by strains in a Weyl material. Henceforth, we will assume that there are no dynamical strains in the sample and,
therefore, the pseudoelectric field vanishes, E5 = 0. Pseudomagnetic field can be generated, e.g., either by applying
a static torsion44 or by bending47 the sample. The estimated values of the field could be somewhere in range from
B5 ≈ 0.3 T to B5 ≈ 15 T.
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In the presence of background fields (3), the quasiparticle dispersion relation should receive a correction due to the
interaction of the quasiparticle’s magnetic moment with the effective magnetic field. At linear order, the corresponding
contribution to the energy is proportional to the scalar product of the field and the Berry curvature. To the second
order in electromagnetic fields53,54, there are additional corrections to the quasiparticle energy as well as to the Berry
curvature in Eq. (2). The explicit expressions for the corrections to the Berry curvature, the quasiparticle dispersion
relation, and the quasiparticle velocity are derived in Appendix A. In particular, the final results for the Berry
curvature and the quasiparticle energy read as

Ωλ ≡ Ω
(0)
λ +Ω

(1)
λ = λη~

p̂

2p2
+
e~2

4p4

{

2

c
p̂(p̂ ·Bλ)−

1

c
Bλ +

2η

vF
[Eλ × p̂]

}

, (4)

ǫp = ηvF p− λ
e~vF
2cp

(Bλ · p̂) +
e2~2

4cp3

{ηvF
4c

[

2B2
λ − (Bλ · p̂)2

]

− (Bλ · [Eλ × p̂])
}

, (5)

where p̂ = p/|p|. It is also straightforward to derive the explicit expression for the quasiparticle velocity, v = ∂ǫp/∂p,
see Eq. (A17) in Appendix A. Having determined the second-order corrections to the quasiparticle energy and the
leading order correction to the Berry curvature, we can now formulate the consistent chiral kinetic theory valid to
the second order in (pseudo-)electromagnetic fields. Before proceeding to the kinetic equation, however, it may be
instructive to point out that the corrected expression (4) for the Berry curvature Ωλ corresponds to the same unit
topological charge as the original configuration in Eq. (2). This follows from the fact that

∫

d3p

(2π)3

(

∂

∂p
·Ω

(1)
λ

)

= 0. (6)

Thus, although the Berry curvature and equations of motion are corrected, the chiral anomaly relation will retain its
canonical form in the second-order formulation of the chiral kinetic theory.
In the phase space, the one-particle distribution functions fλ(p,x) for the right- (λ = +) and left-handed (λ = −)

fermions satisfy the following kinetic equation:

∂fλ
∂t

+ ṗ ·
∂fλ
∂p

+ ṙ ·
∂fλ
∂r

= Icoll(fλ), (7)

where the term on the right-hand side is the collision integral and, for the sake of brevity, we dropped the arguments
in fλ. In what follows, we will consider the collisionless limit. Therefore, Icoll(fλ) ≡ 0.
The equations of motion for quasiparticles to the second order in electromagnetic fields were derived in Ref.53.

Surprisingly, their general form is the same as in the first-order theory, i.e.,

ṙ = v + (ṗ×Ωλ), (8)

ṗ = eẼλ +
e

c
(ṙ ×Bλ), (9)

where Ẽλ = Eλ − (1/e)∂ǫp/∂x. However, it should be emphasized that the expressions for the Berry curvature Ωλ

and the quasiparticle energy ǫp are more complicated and are given by Eqs. (4) and (5), respectively.
After making use of Eq. (8) and (9), the chiral kinetic equation (7) can be rewritten in the usual form:

∂fλ
∂t

+
1

1 + e
c (Bλ ·Ωλ)

[

(

eẼλ +
e

c
(v ×Bλ) +

e2

c
(Ẽλ ·Bλ)Ωλ

)

·
∂fλ
∂p

+
(

v + e(Ẽλ ×Ωλ) +
e

c
(v ·Ωλ)Bλ

)

·
∂fλ
∂r

]

= 0,

(10)
where the factor 1/[1 + e(Bλ ·Ωλ)/c] accounts for the correct definition of the phase-space volume that satisfies the
Liouville’s theorem56,57. This form of the kinetic equation is identical to that in the first-order chiral kinetic theory.
One should keep in mind, however, that the expressions for the Berry curvature, the quasiparticle energy, and the
quasiparticle velocity include additional corrections discussed above.
The formal definition of the fermion charge and current densities are given by the same expressions as in the

first-order chiral kinetic theory, i.e.,

ρλ(x) =
∑

η=±

η e

∫

d3p

(2π~)3

[

1 +
e

c
(Bλ ·Ωλ)

]

fλ (11)

and

jλ =
∑

η=±

η e

∫

d3p

(2π~)3

[

v + e(Ẽλ ×Ωλ) +
e

c
(v ·Ωλ)Bλ

]

fλ +
∑

η=±

η e

∫

d3p

(2π~)3
(∂r × fλǫpΩλ) + O(B3

λ). (12)
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Note that the last term in Eq. (12) is the magnetization current.
In the consistent chiral kinetic theory40,41, an additional topological contribution58–60 to the four-current density,

δjµ ≡ (cδρ, δj), is required

δjµ =
e3

4π2~2c
ǫµνρλA5

νFρλ, (13)

where A5
ν = bν + Ã5

ν is the axial potential. Unlike the electromagnetic potential Aν , the axial potential is an
observable quantity. Indeed, in Weyl materials, b0 and b describe the separation between the Weyl nodes in energy
and in momentum, respectively. Strain-induced axial (or pseudoelectromagnetic) fields are described by Ã5

ν , which
is directly related to the deformation tensor42–47. It is easy to check that contrary to the covariant electric current
δjµ ≡ (cδρ, δj), the consistent electric current

Jν ≡ (cρ+ cδρ, j+ δj), (14)

is non-anomalous, ∂νJ
ν = 0 or, in other words, the electric charge is locally conserved in the presence of pseudo-

electromagnetic fields (for a detailed discussion, see Refs.40,41). Note that we introduced the following short-hand
notations in Eq. (14):

ρ =
∑

λ=±

ρλ, j =
∑

λ=±

jλ, (15)

and used the component form of the topological contribution in Eq. (13), i.e.,

δρ =
e3

2π2~2c2
(b ·B), (16)

δj =
e3

2π2~2c
b0 B−

e3

2π2~2c
(b×E). (17)

Here we assumed that Ã5 is negligible compared to the chiral shift b and set Ã5
0 = 0 in accordance with our assumption

that a pseudoelectric field is absent.

III. ELECTROMAGNETIC COLLECTIVE MODES

A. General consideration

In this section, using of the formalism of the second-order consistent chiral kinetic theory, we determine the dis-
persion relations of the collective excitations in strained Weyl materials in the presence of a constant background
field B0,λ ≡ B0 + λB0,5. For simplicity, we assume that the ordinary magnetic field B0 and the strain-induced
pseudomagnetic field B0,5 are parallel to each other. In addition to the background fields B0 and B0,5, oscillating
electromagnetic fields E′ and B′ will be induced by collective modes. In principle, one might speculate that E′ and
B′ could in turn drive dynamical deformations of the Weyl material and, thus, generate oscillating pseudomagnetic
fields E′

5 and B′
5. The latter, however, are extremely weak40,41 and will be neglected in our analysis.

Our consideration of electromagnetic collective modes uses the standard approach of physical kinetics1,2, but gener-
alized to account for the Berry curvature, the pseudomagnetic field, and the topological current correction. As usual,
we seek the solutions in the form of plain waves

E′ = Ee−iωt+ik·r, B′ = Be−iωt+ik·r (18)

with frequency ω and wave vector k. The Maxwell’s equations imply that B′ = c(k×E′)/ω and

k (k · E′)− k2E′ = −
ω2

c2
(

n2
0E

′ + 4πP′
)

. (19)

Here P′ denotes the polarization vector and n0 is the background refractive index of the material. For the Dirac
semimetal Cd3As2, e.g., the latter is n0 ≈ 661. In order to simplify the analysis, we will neglect the dependence of
the refractive index on the frequency of light.
By introducing the electric susceptibility tensor χmn (where m,n = 1, 2, 3 denote spatial components), the polar-

ization vector takes the form

P ′m = i
J ′m

ω
= χmnE′n, (20)
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where J ′m is defined by Eq. (14). Then, Eq. (19) implies
(

n2
0ω

2 − c2k2
)

δmnEn = −c2kmknEn − 4πω2χmnEn. (21)

The above equation admits non-trivial solutions only if the corresponding determinant vanishes, i.e.,

det
[(

n2
0ω

2 − c2k2
)

δmn + c2kmkn + 4πω2χmn
]

= 0. (22)

This characteristic equation defines the dispersion relation of electromagnetic collective modes.
In order to determine the susceptibility tensor χmn in the consistent chiral kinetic theory, we choose the usual

ansatz for the distribution function in the form fλ = f
(eq)
λ + δfλ, where f

(eq)
λ is the equilibrium distribution function

for the electrons (holes) in the upper (lower) band given by

f
(eq)
λ =

1

eη(ǫp−µλ)/T + 1
. (23)

Here, T is the temperature and µλ = µ + λµ5 is the chemical potential for the fermions of chirality λ. The latter is
conveniently expressed in terms of the fermion-number chemical potential µ as well as chiral-charge chemical potential
µ5. Note that we set the Boltzmann constant to unity kB = 1. It should be emphasized that the form of the equilibrium
distribution function (23) is valid for quasiparticles in both the lower and upper bands.
Due to the oscillating E′ and B′ fields defined in Eq. (18), the corresponding perturbation to the equilibrium

distribution function is also of the plane wave form, i.e.,

δfλ = f
(1)
λ e−iωt+ik·r. (24)

In the first order in oscillating electromagnetic fields, the chiral kinetic equation (10) gives

−iωδfλ +
1

1 + κλ

[

eẼ′
λ +

e

c
(v0 ×B′) +

e

c
(v′ ×B0,λ) +

e2

c
(Ẽ′

λ ·B0,λ)Ω0,λ

]

· v0
∂f

(eq)
λ

∂ǫp

+
1

1 + κλ

e

c
(v0 ×B0,λ) ·

∂δfλ
∂p

+
i

1 + κλ

[

(v0 · k) +
e

c
(v0 ·Ω0,λ)(B0,λ · k)

]

δfλ = 0, (25)

where

v0 ≡ v

∣

∣

∣

Bλ=B0,λ,Eλ=0
, Ω0,λ ≡ Ωλ

∣

∣

∣

Bλ=B0,λ,Eλ=0
, (26)

Ẽ′
λ = E′ + i

λ~vF
2cp

k(p̂ ·B′) + i
ηevF~

2

8c2p3
k(B0,λ · p̂)(B′ · p̂)− i

ηevF~
2

4c2p3
k(B′ ·B0,λ) + i

e~2

4cp3
k(B0,λ · [E′ × p̂]), (27)

v′ =
λevF~

cp2
p̂(p̂ ·B′)−

λevF ~

2cp2
B′ +

5ηe2vF~
2

8c2p4
p̂(p̂ ·B′)(p̂ ·B0,λ)−

ηe2vF ~
2

8c2p4
[B′(p̂ ·B0,λ) +B0,λ(B

′ · p̂)]

−
3ηe2~2vF
4c2p4

p̂(B′ ·B0,λ) +
e2~2

4cp4
(E′ ×B0,λ)−

e2~2

cp4
p̂(p̂ · [E′ ×B0,λ]), (28)

κλ ≡
e

c
(Ω0,λ ·B0,λ) = λη~

e (p̂ ·B0,λ)

2cp2
+

e2~2

4c2p4
[

2(p̂ ·B0,λ)
2 −B2

0,λ

]

. (29)

By making use of the cylindrical coordinates (with the z-axis pointing along the magnetic field B0 and φ being the
azimuthal angle of momentum p), we rewrite Eq. (25) in the following form:

ζλ
evFB0,λ

cp

∂δfλ
∂φ

+ i
[

(1 + κλ)ω − (k · v0)−
e

c
(v0 ·Ω0,λ)(k ·B0,λ)

]

δfλ

=

[

e(Ẽ′
λ · v0)−

evF
c
ζλ(v

′ · [p̂×B0,λ]) +
e2

c
(Ẽ′

λ ·B0,λ)(v0 ·Ω0,λ)

]

∂f
(eq)
λ

∂ǫp
, (30)

where we used the fact that (v0 ×B0,λ) ∝ (p×B0,λ), and introduced the function

ζλ ≡ η

{

1 +
ληe~(p̂ ·B0,λ)

cp2
+

5e2~2(p̂ ·B0,λ)
2

16c2p4
−

3e2~2B2
0,λ

8c2p4

}

. (31)

In principle, the differential equation (30) for the oscillating part of the distribution function δfλ(φ) can be solved
analytically. The corresponding analysis is rather tedious and will not be presented here. In the next subsection,
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we will analyze a special case of longitudinal modes propagating along the direction of the background magnetic and
pseudomagnetic fields, i.e., k ‖ B0,λ.
When the solution for δfλ is available, one can calculate all contributions to the electric current, see Eqs. (12), (14),

and (17), and then use Eq. (20) to determine the polarization vector. The formal result reads

P′ = P′
T +P′(0) +P

′(0)
M +P′(1) +P

′(1)
M , (32)

where

P′
T = i

e3

2π2~2cω
b0 B

′ − i
e3

2π2~2cω
(b×E′) (33)

is the contribution due to the topological current in Eq. (17),

P
′(0)
M =

∑

η=±

η
ie

ω

∫

d3p

(2π~)3
[

ǫp(∂r ×Ω′
λ) + (∂r × ǫ′pΩ0,λ)

]

f
(eq)
λ , (34)

P
′(1)
M =

∑

η=±

η
ie

ω

∫

d3p

(2π~)3
ǫp(∂r × δfλΩ0,λ) = −

∑

η=±

η
e

ω

∫

d3p

(2π~)3
ǫp(k×Ω0,λ) δfλ (35)

are the contributions from the magnetization current, and

P′(0) =
∑

η=±

η
ie

ω

∫

d3p

(2π~)3

[

v′ +
e

c
B′(Ω0,λ · v0) +

e

c
B0,λ(Ω

′
λ · v0) +

e

c
B0,λ(Ω0,λ · v′) + e

(

Ẽ′
λ ×Ω0,λ

)]

f
(eq)
λ , (36)

P′(1) =
∑

η=±

η
ie

ω

∫

d3p

(2π~)3

[

v0 +
e

c
B0,λ(Ω0,λ · v0)

]

δfλ (37)

are other contributions. Note that we used the following shorthand notations:

Ω′
λ =

e~2

4p4

{

2

c
p̂(p̂ ·B′)−

1

c
B′ +

2η

vF
[E′ × p̂]

}

, (38)

ǫ′p = −
λevF~

2cp
(B′ · p̂) +

e2~2

4cp3

{ηvF
2c

[2(B′ ·B0,λ)− (p̂ ·B′)(p̂ ·B0,λ)]− (B0,λ · [E′ × p̂])
}

. (39)

B. Chiral magnetic and chiral pseudomagnetic waves

In a general case, the solution to Eq. (30) is quite cumbersome. Here, for simplicity, we will study only the collective
modes propagating along the direction of background magnetic and pseudomagnetic fields with k = kẑ. It should be
noted that, in this case, the consistency of Eqs. (21) and (33) requires that the chiral shift b has no perpendicular
component to the fields. In what follows, therefore, we consider only the case b = b‖ẑ. (For a discussion of the effects

of b⊥ on the collective excitations in the first-order theory, see Refs.40,41.)
Then, Eq. (30) can be rendered in the following standard form (see, e.g., Ref.1):

∂δfλ
∂φ

+ ia δfλ = Q(φ), (40)

where

Q(φ) =
cp

evFB0,λζλ

[

e(Ẽ′
λ · v0)−

evF
c
ζλ(v

′ · [p̂×B0,λ]) +
e2

c
(Ẽ′

λ ·B0,λ)(v0 ·Ω0,λ)

]

∂f
(eq)
λ

∂ǫp
, (41)

a =
cp

evFB0,λζλ

[

(1 + κλ)ω − (k · v0)−
e

c
kB0,λ(v0 ·Ω0,λ)

]

. (42)

The general solution to Eq. (40) reads as

δfλ(φ) = C1e
−iaφ +

∫ φ−C0

0

e−iaτQ(φ− τ)dτ. (43)

For δfλ(φ) to be a periodic function of φ, one should set C1 = 0 and C0 → ±∞, where the actual sign of C0 is
determined by η sign (eB0,λ). Note that the latter choice ensures the finiteness of the integral over τ in Eq. (43),
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provided ω → ω + i0 inside the function a in the exponent that mimics a gradual turning on of the perturbation
fields1. It is worth noting that the kinetic equation (40) has no self-consistent solutions for E′ = 0. Indeed, if E′ = 0,
the Maxwell’s equations require that B′ = 0 as well. Then, Eq. (40) reduces to a homogeneous equation, whose
solution is given by the first term in Eq. (43). However, this is not a valid solution since it cannot be periodic in φ.
We conclude, therefore, that the effects of the dynamical electromagnetism are always present in the collective modes
propagating along the external (pseudo-)magnetic field, including the CMW.
In the case of the CMW-type longitudinal modes, i.e., modes where oscillating electric field is parallel to the

external (pseudo-)magnetic field, i.e., E′ ‖ ẑ, function Q does not depend on the azimuthal angle φ. An additional
simplification arises from the absence of an oscillating magnetic field, B′ = c[k × E′]/ω = 0, as follows from the
Maxwell’s equations. Then the solution to Eq. (40) takes the following form:

δfλ(φ) = δfλ = −i
Q

a
. (44)

With this solution at hand, we can now calculate the polarization vector by using the general expressions in Eqs. (32)–
(37). Performing the integrations over the polar and azimuthal angular coordinates, it is easy to see that the only

nontrivial contributions to the polarization vector (32) come from P
′(1)
z . After a straightforward, although tedious

calculations (see Appendix B for details), we obtain the following results:

P ′(1)
z ≡

(

χ33
0 + χ33

1 + χ33
2

)

E′
z, (45)

where the three parts of the susceptibility tensor are given by

χ33
0 =

3n2
0Ω

2
e

4πv2Fk
2

[

1−
ω

2vFk
ln

(

ω + vF k

ω − vF k

)]

, (46)

χ33
1 = −

e3v2F (B0,5 · k)

2π2c~2ω(ω2 − v2Fk
2)
, (47)

χ33
2 = −

∑

λ=±

1

2TΛIR cosh2
(

µλ

2T

)

e4B2
0,λ

192c2π2~v3F k
5(ω2 − v2F k

2)2

[

2vFk
(

4v6Fk
6 − 98ω2v4Fk

4 + 229v2Fk
2ω4 − 123ω6

)

+ 3ω
(

41ω2 − 8v2Fk
2
)

(ω2 − v2Fk
2)2 ln

(

ω + vFk

ω − vFk

)

]

+
∑

λ=±

1

T

∂F
(

µλ

T

)

∂µλ

e4B2
0,λ

192c2π2~v2Fk
5(ω2 − v2Fk

2)2

[

6vFk
(

v6Fk
6 − 35ω2v4Fk

4 + 86ω4v2Fk
2 − 48ω6

)

+ 6ω
(

24ω2 − 3v2Fk
2
)

(ω2 − v2Fk
2)2 ln

(

ω + vFk

ω − vFk

)

]

. (48)

Here ΛIR =
√

~|eB0,λ|/c is an infrared cutoff and the function F (x) as well as its Padé approximant are defined in
Eqs. (B15) and (B17), respectively. It is worth noting that the presence of this infrared singularity signifies that the
expansion in B0,λ is nonperturbative. However, in the regime of small temperature T → 0 these terms are exponentially
suppressed. Furthermore, we introduced the shorthand notations for the coupling constant α = e2/(~vFn

2
0) and the

Langmuir (plasma) frequency, i.e.,

Ωe ≡

√

4α

3π~2

(

µ2 + µ2
5 +

π2T 2

3

)

. (49)

By making use of the susceptibility tensor (45), we rewrite the characteristic equation (22) in the following form:

n2
0 + 4π

(

χ33
0 + χ33

1 + χ33
2

)

= 0. (50)

In the limit of long wavelengths ck ≪ Ωe and small B0 and B0,5 fields, the analytical solution to Eq. (50) reads

ω ≃

√

Ω2
e,B +

2αe(B0,5 · k)v3F
πc~Ωe

+A1(vF k)2 +
αe(B0,5 · k)v3F

5πc~Ωe

(

vFk

Ωe

)2

+A2(vF k)4 · · ·, (51)
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where

(Ωe,B)
2 ≃ Ω2

e +
α2v4F~n

2
0

120πc2T 2

∑

λ=±

B2
0,λ [38TF1(µλ, B0,λ)− 9vFF2(µλ)] +O(B3

0 , B
3
0,5), (52)

A1 ≃
3

5
−

2α3v5Fn
2
0B

2
0,5

π2c2~Ω4
e

+
α2v4F~n

2
0

700πc2Ω2
eT

2

∑

λ=±

B2
0,λ

[

327TF1(µλ, B0,λ)− 201vFF2(µλ)
]

+O(B3
0 , B

3
0,5), (53)

A2 ≃
12

175Ω2
e

−
4α3v5Fn

2
0B

2
0,5

5π2~c2Ω6
e

+
α2v4F~n

2
0

15750πc2Ω4
e

∑

λ=±

B2
0,λ

[

5254TF1(µλ, B0,λ)− 4767vFF2(µλ)
]

+O(B3
0 , B

3
0,5).

(54)

Here, we also used the following functions:

F1

(µλ

T
,B0,λ

)

≡
1

2
√

~|eB0,λ|/c cosh
2
(

µλ

2T

) , (55)

F2

(µλ

T

)

≡ T
∂F

(

µλ

T

)

∂µλ
. (56)

According to Eq. (51), the frequency of the longitudinal mode depends linearly on the pseudomagnetic field B0,5. It
is natural to call the corresponding collective excitation in the presence of a strain-induced pseudomagnetic field the
chiral pseudomagnetic wave (CPMW). As we see from Eq. (52), both the CMW and CPMW are gapped plasmons.
Moreover, the values of their gaps contain corrections quadratic in the background magnetic and pseudomagnetic
fields. There are also quadratic corrections in the terms dependent on the wavevector, see Eqs. (51), (53), and (54).
The dispersion relations of the CMW and CPMW at different values of T , µ, and µ5 are shown in Fig. 1, where we

use the following reference magnetic field:

B∗ =
c~Ω2

e

ev2F
. (57)

As we see from the left panel in Fig. 1, the dispersion relations for the CPMW have minima at nonzero values of
the wavevectors. Their approximate locations are determined by ck/Ωe ≈ −5vFαeB0,5/(3π~Ω

2
e). We checked that

interchanging the electric and chiral chemical potentials does not affect the properties of the CPMW.
Although the results in Fig. 1 show that the dispersion relations of the CMW and CPMW are indeed modified

by the quadratic corrections in B0 and B0,5 fields, the corresponding effect is weak at small temperatures. The

correction to the plasma gap is much larger at T = 3
√

1/(4πα)~Ωe, µ5 = 0, and µ = 0, albeit it is still about 5 orders
of magnitude smaller that the Langmuir frequency.
As we emphasized in Refs.40,41, the CMW and CPMW are chiral (pseudo-)magnetic plasmons. Their chiral nature

is evident from the fact that both electric and chiral current densities are oscillating in these waves. This can be seen
from the explicit expressions for Jz and J5

z , given by Eqs. (B21) and (B22) in Appendix B, respectively. Leaving aside
the technical details, we would like to emphasize only that the chiral current density oscillates in space and time, i.e.,
J5
z ∝ Ez sin (ωt− k · r), which is similar to the electric current density, i.e., Jz ∝ Ez sin (ωt− k · r). Note, however,

that the amplitudes of the currents are different and depend on the chiral chemical potential and the pseudomagnetic
field.

IV. SUMMARY

By making use of the second-order corrections in (pseudo-)electromagnetic fields to the quasiparticle energy as well
as the first-order corrections to the Berry curvature, we derived a consistent chiral kinetic theory valid to the second
order in the electromagnetic and pseudoelectromagnetic fields for the simplest model of relativistic matter with two
Weyl fermions. Such an extended theory allows one to study reliably various effects nonlinear in electromagnetic fields
and is one of the main results of this paper.
While the semiclassical equations of motion preserve their form, the Berry curvature as well as the quasiparticle

dispersion relation receive nontrivial field-dependent corrections. However, we found that, even with the non-trivial
corrections included, the Berry curvature Ωλ still defines a monopole-type vector field in the momentum space which
corresponds to a unit of topological charge. Therefore, the chiral anomaly relation retains its canonical form in the
second-order formulation of the chiral kinetic theory.
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1/(4πα)~Ωe, µ5 = 0, µ = 0
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(d) T = 3
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1/(4πα)~Ωe, µ5 = 0, µ = 0

FIG. 1. Left panel: The dispersion relation for the longitudinal mode propagating along the direction of background magnetic
and pseudomagnetic fields with the wave vector k = kẑ at B0,5 = 0.1B∗ (red solid line) and B0,5 = 0 (blue dashed line). Right
panel: The same dependence at B0 = 0.1B∗ (red solid line) and B0 = 0 (blue dashed line).

In order to illustrate the second-order consistent chiral kinetic theory, we analyzed the spectrum of longitudinal
collective modes propagating along the direction of background magnetic and pseudomagnetic fields. We showed that,
in the presence of a pseudomagnetic field, there is a new type of collective excitations similar to the chiral magnetic
wave, which we call the chiral pseudomagnetic wave. The effects of dynamical electromagnetism play an important
role and transform the chiral magnetic and chiral pseudomagnetic waves into plasmons with special properties. The
latter manifest themselves in the oscillations of the chiral current density, which are absent in the case of ordinary
electromagnetic plasmons.

We found that the plasmon gaps receive corrections quadratic in magnetic and pseudomagnetic fields, which cannot
be reliably obtained within the conventional first-order chiral kinetic theory. Note, however, that these corrections
are estimated to be rather weak compared to the effects of dynamical electromagnetism. In addition, the coefficients
in front of odd powers of the wave vector in the dispersion relation of the chiral pseudomagnetic wave are non-zero
and proportional to the background pseudomagnetic field. The coefficients in front of even powers depend on the
square of both magnetic and pseudomagnetic fields. Nevertheless, the leading contributions to these coefficients are
due to the effects of dynamical electromagnetism. It would be interesting to investigate how these conclusions about
the CMW and CPMW change in the case of strong background magnetic and/or pseudomagnetic fields, and whether
the effects of dynamical electromagnetism could be negligible. The corresponding problem requires a framework that
goes beyond the expansion in powers of B0 and B0,5 and, therefore, will be considered elsewhere.
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Appendix A: Corrections to the Berry curvature, the quasiparticle energy, and the velocity

In this Appendix, we present the derivation details for the corrections to the Berry curvature, the quasiparticle
energy, and the velocity, which are needed in the formulation of the chiral kinetic theory valid to the second order in
(pseudo-)electromagnetic fields.
Let us start from the derivation of the leading-order correction to the Berry curvature. By making use of the

formalism of Refs.53,54, the corresponding correction has the following standard form:

Ω
(1)
λ = (∇p × a′λ), (A1)

where a′λ is a chirality (λ = ±) and band-dependent (η = ±) correction to the Berry connection or positional shift.
This correction is given by

a′λ =
∑

ξ 6=η

Gη,ξAξ,η

ǫ
(0)
η − ǫ

(0)
ξ

+
e

4c
∂pj

([Bλ ×Aη,ξ]jAξ,η) +
e~2

vF

∑

ξ 6=η

Vηξ(Vξη ·Eλ)

(ǫ
(0)
η − ǫ

(0)
ξ )3

+ h.c. (A2)

Here we used the following interband matrix element associated with the magnetic dipole moment:

Gξ,η = −
e

2c

∑

ξ 6=η

(Bλ · [Vξ,ξ ×Aξ,η])−
e

2c
(Bλ · [Vη,η ×Aξ,η]) , (A3)

which is defined in terms of the matrix elements of the velocity operator V = λvFσ and the interband Berry
connection, i.e.,

Vξ,η = ψ†
ξVψη, (A4)

Aξ,η = −i~ψ†
ξ∂pψη, (A5)

respectively. Now, by making use of the normalized wave functions ψη of the Weyl Hamiltonian (1)

ψη =

√

p+ ηλpz
2p

(

1
px+ipy

pz+ηλp

)

, (A6)

we obtain the following explicit expressions for the correction to the Berry connection:

a′λ =
e~2

8p3

{

1

c
[Bλ × p̂] +

2η

vF
(Eλ − p̂(p̂ ·Eλ))

}

, (A7)

where p̂ = p/p. Finally, by making use of Eq. (A1), we obtain the leading-order correction to the Berry curvature,
i.e.,

Ω
(1)
λ =

e~2

4p4

{

2

c
p̂(p̂ ·Bλ)−

1

c
Bλ +

2η

vF
[Eλ × p̂]

}

. (A8)

It remains to determine the quasiparticle dispersion relation to the second order in (pseudo-)electromagnetic fields
for the model at hand. The corresponding general expression reads as follows54:

ǫp = ǫ(0)η −
e

c
(Bλ ·m) +

e2

4c2
(Bλ ·Ω

(0)
λ )(Bλ ·m)−

e

c
(Bλ · [a′λ ×Vη,η]) + (∇ ·PE) +

∑

ξ 6=η

GηξGξ,η

ǫ
(0)
η − ǫ

(0)
ξ

, (A9)

where the orbital magnetic moment equals

m =
1

2
ℑ
{

(∂pψη)
† ×

(

ǫ(0)η − Ĥ
)

(∂pψη)
}

= ǫ(0)η Ω
(0)
λ (A10)

and

PE =
e2~2

4c2
{

([Bλ ×D]ψη)
†(V +Vη,η)([Bλ ×D]ψη) + h.c.

}

(A11)
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is the energy polarization density. Here D = ~∂p − iAη,η is the gauge covariant derivative. After lengthy but
straightforward calculations, we found that PE = 0 for the Weyl Hamiltonian (1). Moreover, one can check that all
off-diagonal interband mixing terms vanish, i.e., G−η,η = 0. The fourth term in Eq. (A9) reads as

−
e

c
(Bλ · [a′λ ×Vη,η]) =

e2~2

4cp4

{

ηvF
2pc

[

B2
λp

2 − (Bλ · p)2
]

− (Bλ · [Eλ × p])

}

. (A12)

Thus, one finds that the quasiparticle dispersion relation (A9) to the second order in (pseudo-)electromagnetic fields
equals

ǫp ≡ ǫ(0)η + ǫ(1)η + ǫ(2)η = ηvF p− λ
e~vF
2cp

(Bλ · p̂) +
e2~2

4cp3

{ηvF
4c

[

2B2
λ − (Bλ · p̂)2

]

− (Bλ · [Eλ × p̂])
}

, (A13)

where

ǫ(0)η = ηvF p, (A14)

ǫ(1)η = −η
evFp

c
(Bλ ·Ω

(0)
λ ) = −λ

e~vF
2cp

(Bλ · p̂), (A15)

ǫ(2)η = η
e2vF p

4c2
(Bλ ·Ω

(0)
λ )2 +

e2~2

4cp4

{

ηvF
2pc

[

B2
λp

2 − (Bλ · p)2
]

− (Bλ · [Eλ × p])

}

=
e2~2

4cp3

{ηvF
4c

[

2B2
λ − (Bλ · p̂)2

]

− (Bλ · [Eλ × p̂])
}

. (A16)

The corresponding quasiparticle velocity is given by

v =
∂ǫp
∂p

= v(0) + v(1) + v(2), (A17)

where

v(0) = ηvF p̂, (A18)

v(1) = λ
evF ~

c
p̂
(p̂ ·Bλ)

p2
− λ

evF~

c

Bλ

2p2
, (A19)

v(2) =
5ηe2vF~

2p̂(Bλ · p̂)2

16c2p4
−
ηe2vF~

2Bλ(Bλ · p̂)

8c2p4
−

3ηe2~2vF
8c2p4

p̂B2
λ +

e2~2

4cp4
(Eλ ×Bλ) +

e2~2

cp4
p̂(Bλ · [Eλ × p̂]).

(A20)

Appendix B: Polarization vector and currents

In this Appendix, we provide the details of the calculation of the polarization vector (32) and present an explicit
form of the electric and chiral currents for the chiral magnetic and pseudomagnetic waves. Using Eqs. (33) through

(35) from the main text and integrating over polar and azimuthal angles, one can show that P′(0) = P
′(0)
M = P

′(1)
M = 0

and P
′(1)
x = P

′(1)
y = 0. Moreover, for b ‖ ẑ, the topological part of the polarization vector (33) is also absent, i.e.,

PT = 0. However, the component of the polarization vector along the direction of (pseudo-)magnetic field ẑ is nonzero
and equals

P ′(1)
z =

(

χ33
0 + χ33

1 + χ33
2

)

E′
z. (B1)
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Components of the susceptibility tensor χ33 equal

χ33
0 = −

∑

η=±

η

∫

dp p2
e2

2π2~3k2

[

1− η
ω

2vFk
ln

(

ηω + vF k

ηω − vF k

)]

f1, (B2)

χ33
1 = −

∑

η=±

η

∫

dp
e3ηλB0,λ

24π2c~2v2F k
4(ω2 − v2F k

2)

{

2ηvFk
[

−v4Fk
4(2f1 − f2) + 2ω2v2F k

2(f1 + f2)− 3ω4(f1 + f2)
]

+ 3ω3(ω2 − v2F k
2)(f1 + f2) ln

(

ηω + vF k

ηω − vF k

)

}

, (B3)

χ33
2 =

∑

η=±

η

∫

dp

p2
ηe4B2

0,λ

192π2c2~v3F k
5(ω2 − v2F k

2)2

{

2ηvFk
[

v6Fk
6(4f1 − f2 − 2f3)− ω2v4Fk

4(98f1 + 7f2 + 2f3)

+ ω4v2F k
2(229f1 + 29f2 + 10f3)− 3ω6(41f1 + 7f2 + 2f3)

]

− 3ω(ω2 − v2F k
2)2

[

2v2Fk
2(4f1 − f2)− ω2(41f1 + 7f2 + 2f3)

]

ln

(

ηω + vFk

ηω − vFk

)

}

, (B4)

where

f1 =
∂f

(0)
λ

∂ǫp
, (B5)

f2 = ηvF p
∂2f

(0)
λ

∂ǫ2p
, (B6)

f3 = (vF p)
2 ∂

3f
(0)
λ

∂ǫ3p
, (B7)

and we used the following integrals:

∫

dp p2
∂f

(0)
λ

∂ǫp
= η

2T 2

v3F
Li2

(

−eηµλ/T
)

, (B8)

∫

dp
∂f

(0)
λ

∂ǫp
= −

η

vF

1

1 + e−ηµλ/T
, (B9)

∫

dp p
∂2f

(0)
λ

∂ǫ2p
=

1

v2F

1

1 + e−ηµλ/T
, (B10)

∫

dp

p2
∂f

(0)
λ

∂ǫp
= ηvF

{

−
1

ηvF p

∂f
(0)
λ

∂ǫp

∣

∣

∣

∞

ΛIR

+

∫ ∞

ΛIR

dp

p

∂2f
(0)
λ

∂ǫ2p

}

= −
η

4TΛIR cosh2
(

µλ

2T

) + ηvF

∫ ∞

ΛIR

dp

p

∂2f
(0)
λ

∂ǫ2p
, (B11)

∫

dp

p

∂2f
(0)
λ

∂ǫ2p
=

∫ ∞

ΛIR

dp

p

∂2f
(0)
λ

∂ǫ2p
, (B12)

∫

dp
∂3f

(0)
λ

∂ǫ3p
=

η

4vFT 2

tanh
(

ηµλ

2T

)

cosh2
(

µλ

2T

) . (B13)

Here, the equilibrium distribution function was expanded as

f
(eq)
λ ≃ f

(0)
λ +

(

ǫ(1)η + ǫ(2)η

) ∂f
(0)
λ

∂ǫp
+

(

ǫ
(1)
η

)2

2

∂2f
(0)
λ

∂ǫ2p
+O(B3

0,λ), (B14)

where f
(0)
λ is given by Eq. (23) with ǫp = ǫ

(0)
η . While the quasiparticle energy without electromagnetic fields ǫ

(0)
η

is given by Eq. (A14), the field-dependent corrections ǫ
(1)
η and ǫ

(2)
η are given by Eqs. (A15) and (A16), respectively.

Next, we introduced an infrared cutoff ΛIR = C
√

~|eB0,λ|/c with a numerical constant C of order unity. Such a
cutoff has a transparent physical meaning: it separates the phase space of large momenta, where the semiclassical
description is valid, from the infrared region p . ΛIR, where such a description fails (for details, see also Ref.30). In
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our numerical calculations, we will use C = 1. After adding the contribution of antiparticles, one can set ΛIR to
zero in the last term of the fourth integral and in the fifth integral because the corresponding integrals are no longer
divergent in the infrared region and can be expressed in terms of the derivative of the function

F (νλ) ≡ −T
∑

η=±

∫

dp

p

∂f
(0)
λ

∂ǫp
(B15)

with respect to νλ ≡ µλ/T , i.e.,

1

T 3

∂F (νλ)

∂νλ
=

∑

η=±

η

∫ ∞

0

dp

p

∂2f
(0)
λ

∂ǫ2p
. (B16)

High- and low-temperature asymptotes of F (νλ) equal F (νλ) ≃ 7ζ(3)νλ/(2π
2) ≈ 0.426νλ for T → ∞ and F (νλ) ≃ ν−1

λ
for T → 0, respectively. The function F (νλ) could be well approximated by the Padé approximant of order [5/6], i.e.,

F (νλ) ≃
7ζ(3)

2π2

νλ + 0.03533ν3λ + 0.0007432ν5λ
1 + 0.2290ν2λ + 0.01567ν4λ + 0.0003098ν6λ

. (B17)

Using Eqs. (B8)-(B13) and taking into account the contributions of antiparticles, we obtain

χ33
0 = −

∑

η=±

∑

λ=±

e2

2π2~3k2

[

1− η
ω

2vFk
ln

(

ηω + vFk

ηω − vFk

)]

T 2

v3F
Li2

(

−eηµλ/T
)

, (B18)

χ33
1 = −

∑

η=±

∑

λ=±

e3λB0,λv
2
Fk

4π2c~2ω(ω2 − v2Fk
2)

1

1 + e−ηµλ
, (B19)

χ33
2 = −

∑

η=±

∑

λ=±

1

4TΛIR cosh2
(

µλ

2T

)

e4B2
0,λ

192c2π2~v3Fk
5(ω2 − v2Fk

2)2

[

2vFk
(

4v6Fk
6 − 98ω2v4F k

4 + 229ω4v2Fk
2 − 123ω6

)

+ 3ηω
(

41ω2 − 8v2Fk
2
)

(ω2 − v2F k
2)2 ln

(

ηω + vFk

ηω − vFk

)

]

+
∑

η=±

∑

λ=±

1

T

∂F
(

µλ

T

)

∂µλ

e4B2
0,λ

192c2π2~v2Fk
5(ω2 − v2F k

2)2

[

6vFk
(

v6F k
6 − 35ω2v4F k

4 + 86ω4v2F k
2 − 48ω6

)

+ 6ηω
(

24ω2 − 3v2Fk
2
)

(ω2 − v2F k
2) ln

(

ηω + vF k

ηω − vF k

)

]

−
∑

η=±

∑

λ=±

1

4vFT 2

tanh
(

ηµλ

2T

)

cosh2
(

µλ

2T

)

e4B2
0,λ

192c2π2~vFk5

[

4vFk(3ω
2 + v2Fk

2)− 6ηω3 ln

(

ηω + vFk

ηω − vFk

)

]

. (B20)

Further, let us present explicit expressions for the nonzero components of the electric Jz and chiral current densities
J5
z , i.e.,

Jz = Ez sin (ωt− k · r)
3ωn2

0Ω
2
e

4πv2F k
2

[

1−
ω

2vFk
ln

(

ω + vF k

ω − vF k

)]

+ Ez sin (ωt− k · r)
αn2

0e(B0,5 · k)v
3
F

2π2c~(ω2 − v2Fk
2)

+ Ez sin (ωt− k · r)
∑

λ=±

1

T
F1

(µλ

T
,B0,λ

) α2
~n4

0B
2
0,λω

192c2π2vFk5(ω2 − v2Fk
2)2

[

2vFk
(

4v6Fk
6 − 98ω2v4F k

4 + 229v2Fk
2ω4 − 123ω6

)

+ 3ω
(

41ω2 − 8v2Fk
2
)

(ω2 − v2Fk
2)2 ln

(

ω + vF k

ω − vF k

)

]

− Ez sin (ωt− k · r)
∑

λ=±

1

T 2
F2

(µλ

T

) α2
~n4

0B
2
0,λω

192c2π2k5(ω2 − v2Fk
2)2

[

6vFk
(

v6Fk
6 − 35ω2v4Fk

4 + 86ω4v2F k
2 − 48ω6

)

+ 6ω
(

24ω2 − 3v2Fk
2
)

(ω2 − v2Fk
2)2 ln

(

ω + vF k

ω − vF k

)

]

(B21)
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and

J5
z = Ez sin (ωt− k · r)

2αn2
0ωµµ5

π2~2v2Fk
2

[

1−
ω

2vFk
ln

(

ω + vFk

ω − vFk

)]

+ Ez sin (ωt− k · r)
αn2

0e(B0 · k)v
3
F

2π2c~(ω2 − v2Fk
2)

+ Ez sin (ωt− k · r)
∑

λ=±

λ

T
F1

(µλ

T
,B0,λ

) α2
~n4

0B
2
0,λω

192c2π2vFk5(ω2 − v2Fk
2)2

[

2vFk
(

4v6Fk
6 − 98ω2v4F k

4 + 229v2Fk
2ω4 − 123ω6

)

+ 3ω
(

41ω2 − 8v2Fk
2
)

(ω2 − v2Fk
2)2 ln

(

ω + vF k

ω − vF k

)

]

− Ez sin (ωt− k · r)
∑

λ=±

λ

T 2
F2

(µλ

T

) α2
~n4

0B
2
0,λω

192c2π2k5(ω2 − v2F k
2)2

[

6vFk
(

v6Fk
6 − 35ω2v4Fk

4 + 86ω4v2F k
2 − 48ω6

)

+ 6ω
(

24ω2 − 3v2Fk
2
)

(ω2 − v2Fk
2)2 ln

(

ω + vF k

ω − vF k

)

]

, (B22)

respectively. As one can see from the above expressions, both electric and chiral current densities are oscillating in
the chiral magnetic and pseudomagnetic waves, albeit with different amplitudes.
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