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We propose the definitions of many-body topological invariants to detect symmetry-protected
topological phases protected by point group symmetry, using partial point group transformations
on a given short-range entangled quantum ground state. Here, partial point group transformations
gD are defined by point group transformations restricted to a spatial subregion D, which is closed
under the point group transformations and sufficiently larger than the bulk correlation length ξ.
By analytical and numerical calculations, we find that the ground state expectation value of the

partial point group transformations behaves generically as 〈GS|gD|GS〉 ∼ exp
[
iθ+ γ−αArea(∂D)

ξd−1

]
.

Here, Area(∂D) is the area of the boundary of the subregion D, and α is a dimensionless constant.
The complex phase of the expectation value θ is quantized and serves as the topological invariant,
and γ is a scale-independent topological contribution to the amplitude. The examples we consider
include the Z8 and Z16 invariants of topological superconductors protected by inversion symmetry
in (1 + 1) and (3 + 1) dimensions, respectively, and the lens space topological invariants in (2 + 1)-
dimensional fermionic topological phases. Connections to topological quantum field theories and
cobordism classification of symmetry-protected topological phases are discussed.
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I. INTRODUCTION

A. Topological phases in the presence of symmetries and topological quantum field theories

Topological phases of matter are gapped quantum phases which cannot be adiabatically connected to a trivial
state, i.e., tensor product state. Topological phases can be discussed in the presence of various symmetries, such
as time-reversal, charge conjugation, and/or space group symmetry. More specifically, it may occur that a gapped
quantum phase, which can be adiabatically connected to a trivial state in the absence of symmetries, cannot be
turned into a trivial phase once a certain set of symmetries are enforced. Such gapped quantum phases are called
symmetry-protected topological (SPT) phases. Topological insulators and superconductors are celebrated examples
of SPT phases of fermions.1–16 Other examples of bosonic SPT phases have been also widely discussed.15,17–25 On
the other hand, topologically ordered phases26–36 are phases of matter which are topologically distinct from a trivial
state even in the absence of symmetries. Topologically ordered phases can be enriched by the presence of symmetries;
They can exhibit a particular pattern of symmetry fractionalization, which can be used to distinguish and characterize
different topologically ordered phases with symmetries. Topologically ordered phases of this kind are called symmetry-
enriched.37–45 Our main focus below will be SPT phases, although some of our discussion should be readily applicable
to symmetry-enriched topological phases as well.

For gapped phases of matter, it is reasonable to expect that their low-energy and long-wavelength physics is captured
by topological quantum field theories (TQFTs) of some sort. More specifically, let us consider topological phases

protected/enriched by a set of global symmetries, which form a symmetry group G̃. It is convenient to decompose

the symmetry group G̃ into the part which consists of unitary on-site (or “internal”) symmetries (= G), and the
part which consists of symmetry transformations which reverse the orientation of spacetime manifolds, such as time-
reversal and parity. (Other spatial symmetries, such as point group symmetries, will be discussed momentarily, but
for now, we focus on orientation-reversing symmetries, such as parity, or reflection in one direction.) If the underlying
system includes fermions, it is convenient to include the fermion number parity to the latter part.

For the purpose of detecting (topological) properties of the gapped quantum phases, it is well-advised to couple
them to a background G gauge field. One can then integrate over all matter degrees of freedom (matter fields = {φi})
of the topological phases. This procedure leads to the partition function

Z(X, η,A) =

∫ ∏
i

Dφie
−SX({φi},η,A). (1.1)

Here, X is a closed (d + 1)-dimensional spacetime manifold, {φi} includes all matter fields, A is the background G
gauge field which couples to the matter fields. On the other hand, η is a “structure” endowed to the manifold such as
an orientation, a Spin or Spinc structure for real or complex fermions, respectively.46 In short, the symmetry group

G̃ of a given gapped (topological) phase enters into the corresponding partition function as the input data (X, η,A).
For gapped phases of matter, when the correlation length of the system is much shorter than the system size, the

resulting partition functions are expected not to depend very sensitively on the details of the spacetime manifold X,
and the background gauge field A. In particular, for topologically non-trivial gapped phases, the partition function
Z(X, η,A), or equivalently the effective action Seff (X, η,A) = − lnZ(X, η,A), may have a topological term – a U(1)
phase of the partition function (the imaginary part of the Euclidean effective action), which is insensitive to the metric
on X (i.e., it is invariant under diffeomorphisms) as well as small variations of the background gauge field. In the
limit of zero-correlation length, the partition function consists solely of a topological term.

Put differently, the partition function Z(X, η,A) is expected to define a TQFT, or more precisely, the so-called G-
equivariant TQFT (or G-equivariant Spin TQFT if we are interested in fermionic condensed matter systems).45,47–54

For a given closed manifold X with background structures specified by (η,A), the TQFT yields a topological invariant.
When the gapped phase in question has no topological order as in an SPT phase, i.e., it has a unique ground state,55

it was further proposed that the corresponding partition function depends only on the certain equivalence classes of
the background manifolds (with structure η and the background gauge field), the cobordism class of (X, η,A).25

Here, two (d + 1)-dimensional spacetime manifolds X1,2 (with structure η1,2 and background fields A1,2) are called
cobordant when one can find a (d+ 2)-dimensional manifold Y with an appropriate background gauge field that can
interpolate (X1, η1, A1) and (X2, η2, A2), i.e., ∂Y = X1tX2. This relation can be used to define equivalence classes of
(d+ 1)-dimensional manifolds (with a given structure and background gauge field configurations). It should be noted
that the claim that the partition function is cobordism invariant is more stringent than topological (diffeomorphism)
invariance.

One can further introduce an Abelian group structure to the equivalence classes of (X, η,A) by taking the disjoint
union as an operation. The resulting group is called the cobordism group and denoted by Ωstr

d+1(BG), which is Abelian
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(e.g., Zn, Zn ⊕ Zm). Here, BG is the classifying space of G.56,57 When there is no symmetry, we simply put a single
point as BG, BG = pt.

In topological theories in which the partition function is given by a pure phase, Z(X, η,A) can be thought of as a
homomorphism

Z : Ωstr
d+1(BG)→ U(1), (X, η,A) 7→ Z(X, η,A). (1.2)

Thus, a useful way to classify possible topological U(1) phases of Z(X, η,A) is by using the cobordism group classifica-
tion of manifolds with structures.11,15,25 It was proposed that the torsion part of the cobordism group Tor Ωstr

d+1(BG)
provides a possible classification of topological phases of matter.

B. SPT invariants in terms of ground state wave functions

The purpose of the paper is to construct topological invariants, i.e., quantities which take the same value for all
points (Hamiltonians) in a given gapped quantum phase and can be used as “order parameters” of topological phases.
In particular, in the condensed matter context, we wish to define and compute the topological invariants for a given
Hamiltonian or a ground state, i.e., within the operator formalism. (We will mainly focus on ground states of fermionic
SPT phases, which are unique. The topological invariants in this context are often called SPT invariants.) The above
consideration suggests that the topological U(1) phase of the path integral evaluated on a suitable manifold with
structures [X, η,A] can be thought of as a meaningful topological invariant (SPT invariant). Our task is then to find
a way to “simulate” the path integral (1.1) defined for the data [X, η,A]. (It should be stressed that we are here
to construct many-body topological invariants, as opposed to single-particle topological invariants, which have been
commonly discussed in the literature.)

Of particular importance for our purposes is the generator [X, η,A] of the cobordism group Ωstr
d+1(BG), which we

simply call the generating manifold in the following. It is on this manifold that evaluating the path integral (the
partition function) gives rise to a “least possible” or “most fundamental” topological U(1) phase; The topological
U(1) phases for other possible manifolds [X, η,A] are given as an integer multiple of the topological U(1) phase for
the generating manifold.

Our proposal to define/construct the topological invariants can be summarized by the following set up and operations
(i)-(v):

(i) closed d-dimensional space manifolds M on which the Hamiltonian is defined,

(ii) orientation or spin structures ηM on M ,

(iii) twisted boundary conditions (background flat gauge fields AM ) on M by on-site unitary symmetry G,

(iv) symmetry operations ĝ on the many-body Hilbert space,

(v) the partial (point group) operation ĝD on a subregion D of the space manifold M .

Let |GS(M,AM , ηM )〉 be the ground state of the Hamiltonian H(ηM , AM ) with the spin structure ηM and the
twisted boundary condition AM . From (i− iv), we can extract a set of U(1) phases {eiΦ(M,ηM ,AM ,g)} by

ĝ |GS(M,ηM , AM )〉 = eiΦ(M,ηM ,AM ,g)
∣∣GS(M, g(ηM ), g(AM )

)〉
, (1.3)

where g(ηM ) and g(AM ) are the spin structure and twisted boundary condition mapped by symmetry transformation
g. In particular, when |GS(M,ηM , AM )〉 and

∣∣GS(M, g(ηM ), g(AM )
)〉

are in the same Hilbert space, we can extract
the U(1) phases by 〈

GS
(
M, g(ηM ), g(AM )

)∣∣ ĝ |GS(M,ηM , AM )〉 = eiΦ(M,ηM ,AM ,g). (1.4)

The wave function overlap (1.4), and hence the U(1) phase, can be readily interpreted as a spacetime path integral
on the spacetime which takes the form of a mapping torus,

X = M ×f S1 := M × [0, 1]/
(
(x, 0) ∼ (f(x), 1)

)
, (1.5)

where f : M → M is a diffeomorphism on X induced by the action of ĝ. For instance, it can be simply the identity
f = id or the space inversion f : x → −x. Another example in (2 + 1)d is the case when M is the 2-torus T 2 and f
is chosen as modular transformations acting on T 2. In Refs. 58–64, the action of the modular transformations on the
ground state(s) is discussed, as a method to extract data of topological phases, i.e., representations of the mapping
class group of the space manifold.
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C. Partial point group operation and spacetime path-integral

In some symmetry classes, the subset of the above ingredients (i)-(iv) is sufficient to define the topological invariant
for the generating manifold (see, for example, Refs. 59, 62, 65–70). For example, the generating manifold of Spin

cobordism group ΩSpin
2 (pt) = Z2, which is relevant for the topological classification of class D superconductors in

(1 + 1) dimensions, is the 2-torus T 2 with periodic boundary conditions in both time and space directions.47,71 On
the other hand, there are other symmetry classes for which the generating manifold cannot be realized as a mapping

torus. For example, the generating manifold of Pin− cobordism group ΩPin−

2 (pt) = Z8, which is relevant for the
topological classification of class D superconductors with reflection symmetry with R2 = (−1)F in (1 + 1) dimensions,
is the real projective plane RP 2.11,71 (Here (−1)F is the fermion number parity.) Since RP 2 is not a mapping torus,
the topological invariant cannot be constructed by using (i)-(iv).

In these cases, the last ingredient (v), partial symmetry operations which act on a given subregion D of the total
space manifold M , is necessary to construct topological invariants. For previous studies using partial symmetry
operations to detect properties of topological phases, see for example, Refs. 51, 66, 67, 72, and 73. In particular, our
approach, which applies to fermionic SPT phases in arbitrary dimensions, is partly motivated by Ref. 67. In Ref. 67,
Pollmann and Turner showed that the Z2 invariant for the inversion-symmetric Haldane chain (a bosonic SPT phase)
can be detected by the partial inversion74 on the ground state. In the path-integral picture, the Pollmann-Turner
invariant is interpreted as the spacetime path-integral on the projective plane, RP 2.51 Tu et al.72 also showed that
the partial lattice translation contains useful information on (2+1)-dimensional topologically ordered phases such as
the central charge and topological spins.

Let us now give a more detailed definition of partial symmetry operations. Specifically, we consider a Hamiltonian

which is invariant under G̃, ĝHĝ−1 = H, g ∈ G̃. The symmetry operation ĝ acts on the underlying fermionic operators
as

ĝψ†i (x)ĝ−1 = ψ†j (g · x)Uji, ĝ |0〉ψ = |0〉ψ , g ∈ G̃, (1.6)

where ψ†i (x) is a fermion creation operator at x ∈ M , and i, j represents internal degrees of freedom, and |0〉ψ is

the Fock vacuum of the ψi(x) fermion. (We focus on fermionic systems here. A similar definition applies to bosonic

topological phases). We now choose a subregion D of M which is closed under the action of the group G̃, i.e.,

x ∈ D ⇔ g · x ∈ D for any g ∈ G̃. We define the partial transformation by restricting the transformation ĝ to the
subregion D as

ĝDψ
†
i (x)ĝ−1

D =

{
ψ†j (g · x)Uji (x ∈ D)

ψ†j (x) (x /∈ D)
, ĝD |0〉ψ = |0〉ψ , (1.7)

for g ∈ G̃. We take the subregion D such that the length scale of D is sufficiently larger than the correlation length

ξ. For a given ground state |GS〉 on M , the topological invariant associated with the symmetry G̃ is given by the
expectation value 〈GS|ĝD|GS〉 of the partial symmetry transformation.

Of particular importance is the case when ĝ or ĝD is a point group operation. In this case, 〈GS|ĝD|GS〉 can be
interpreted, in the path-integral picture, as a path-integral on the spacetime manifold which may not be obtained as
a mapping torus. For example, let us consider partial reflection R̂I acting on a segment I of the total (1 + 1)d system.

The action of partial reflection R̂I on a ground state (represented here by using a (fermionic) matrix product state) is

shown schematically in Fig. 1 [a]. In the path-integral representation (Fig. 1 [b]), 〈GS|R̂I |GS〉 can be interpreted as
a path-integral on a manifold, which is obtained from the original spacetime by first introducing a slit [−ε, ε]× [0, L]
at time t = 0 and then applying reflection on the slit. This procedure is topologically equivalent to introducing a
cross-cap in the spacetime torus as shown in Fig. 1 [c]. For example, as we will show in Sec. III (see also Ref. 73),

for (1 + 1)d topological superconductors protected by reflection symmetry, the ground state expectation value of R̂I
is given by

〈GS|R̂I |GS〉 −→
e±

πi
4√
2

(L,N − L� ξ), I = [0, L], (1.8)

where I = [0, L] is an interval on the circle with N sites, and ξ is the correlation length. The U(1) phase e±
πi
4

correctly reproduces the known the Z8 topological classification of (1 + 1)d topological superconductors protected by
reflection symmetry. Furthermore, we will confirm that the U(1) phase agrees with the result from the TQFT; the
corresponding (spin) TQFT path-integral on RP 2 is given by (or computes) the Z8 Brown invariant of manifolds with
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Partial reflection

Cross cap

(a) (b) (c)

FIG. 1. [a] Fermionic matrix product representation of the partial reflection. [b] Path integral representation of the partial
reflection. [c] One cross-cap on the torus.

Pin− structure,11,71

Z(RP 2, η±) = e±
πi
4 , (1.9)

where η± represent two different Pin− structures associated with the non-contractible loop on RP 2. (In the operator
formalism, the different Pin− structures correspond to the presence or absence of the fermion parity operator (−1)F

in the partial reflection – see Sec. III for details.)
Technically, the spacetime manifold created by the partial reflection (1.8) [Fig. 1 (c)] agrees with the real projective

plane RP 2 only up to a genus. This is however not a problem if phases of our interest are SPT phases, i.e., if the
underlying TQFT is invertible. More precisely, instead of Z(RP 2, η±), the expectation value of the partial reflection
is related to the partition function of a Pin− TQFT on the connected sum of RP 2 and the 2-torus,

〈GSa|R̂I |GSa〉 ∼ Z
(
(RP 2, η±)#(S1

a × S1
ns)
)
, a = ns, r, (1.10)

where the subscript a = r, ns specifies the boundary condition of the circle S1; r/ns represents the periodic/anti-
periodic boundary condition, respectively; X#Y means the connected sum of X and Y . Note that, by the invertiblity
assumption, only a single ground state |GSa〉 appears on the LHS of (1.10). Since one can recast the RHS as

Z
(
(RP 2, η±)#(S1

a×S1
ns)
)

= Z(RP 2, η±)Z(S1
a×S1

ns)/Z(S2) = Z(RP 2, η±), we conclude 〈GSa|R̂I |GSa〉 ∼ Z(RP 2, η±),
i.e., the equivalence between (1.8) and (1.9). (In this discussion, as noted earlier, the equivalence between the
expectation value of the partial reflection and the TQFT partition function holds only up to the amplitude (modulus)
– see (1.8); As for the partition function Z(S1

a × S1
ns) = 1, see (2.12) for details.) The above argument also shows

that the boundary condition imposed on the total space is not important. The same argument can be applied to the
partial point group transformation in any space dimensions as far as we consider SPT phases (invertible TQFT).

For generic partial symmetry transformations, from numerical and analytical calculations, we find the following
behavior

〈GS|ĝD|GS〉 = exp

[
iθ + γ − αArea(∂D)

ξd−1
+ · · ·

]
(1.11)

as a leading contribution to the expectation value for Area(∂D)/ξd−1 � 1.75 Here, Area(∂D) is the area of the
boundary of the subregion D, and α is a dimensionless constant. The complex phase θ is well quantized for a
sufficiently large region D and represents a topological invariant. In addition, γ is a scale-independent part of the
amplitude, and can be thought of as yet another topological contribution to the ground state expectation value of
the partial symmetry operation. It is natural to expect that the topological U(1) phase eiθ is the same as the TQFT
partition function Z(X, η,A).

In the following sections, we will show that this equivalence between the ground state expectation value of partial
point group transformations and TQFT partition functions holds quite generically, in any dimensions and for various
point group symmetries. For examples, in (2 + 1)-dimensional topological phases, the ground state expectation of the
partial rotation gives rise to the partition functions on the lens space. In (3 + 1) dimensions, the partial inversion
effectively induces a cross-cap and gives rise to the TQFT partition function on the 4-dimensional real projective
space RP 4.

It should be noted that the cobordism classification of SPT phases using TQFTs, at least in its original form, does not
discuss point group operations other than those that reverse the orientation of the spacetime. For orientation-reversing
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symmetries, the corresponding partial transformations give rise to generating manifolds, and hence the desired SPT
invariants (at least for the examples studied in this paper). On the other hand, for partial transformations for other
point group symmetries, their connection to the cobordism classification of SPT phases using TQFTs is less obvious.
Even so, since the low-energy TQFTs descriptions of the form (1.1) are often Lorentz invariant, we expect that
the orientation-preserving point group operations, at least within the low-energy TQFTs, can be implemented as
on-site unitary operations. For example, n-fold discrete rotations (Cn rotations) can be implemented as Zn discrete
unitary on-site symmetries. If so, the effects of point group symmetries can be incorporated by introducing a proper
background gauge field, e.g., by including the Zn symmetries by taking G = Zn. (For similar claims, see Ref. 76 and
77.) We will verify this claim for selected examples, non-chiral topological insulators in (2 + 1)d protected by Cn
symmetry. Following the above discussion, the relevant cobordism group is ΩSpinc

3 (BZn). The generating manifold
is the lens space L(n, 1). We will show that, by using partial Cn rotations, we can simulate the path-integral on
the generating manifold L(n, 1). Our calculations for explicit models strongly suggest that the partial point group
operations give rise to SPT invariants for SPT protected by the point group symmetries.

D. Bulk-boundary correspondence and the reduced density matrix

We confirm numerically the area law for the expectation value of the partial symmetry operation, Eq. (1.11), in
various examples. Intuitively, the area law also follows naturally from the bulk-boundary correspondence, which we
will make use of to develop our analytical calculations. Let us consider the reduced density matrix ρD for the subregion
D,

ρD = TrM\D
[
|GS〉 〈GS|

]
=

e−HE

TrD
[
e−HE

] , (1.12)

where HE is the entanglement Hamiltonian. By the bulk-boundary correspondence of a SPT phase, we then expect
that the entanglement Hamiltonian HE is given by, in the low energy subspace of the Hilbert space on the subregion
D, the physical Hamiltonian H∂D describing low-energy gapless boundary degrees of freedom 66,78,79:

HE ∼
ξ

v
H∂D. (1.13)

Here, the effective temperature in the reduced density matrix is given in terms of the bulk correlation length ξ, and
v is the velocity of the gapless excitation. The partial point group transformation ĝD induces a symmetry action
ĝ∂D on the Hilbert space of the boundary theory; The point group transformation on the gapless theory H∂D can be
specified by explicitly expressing the boundary low-energy excitations of D in terms of the bulk degrees of freedom
ψi(x). Then, the ground state expectation (1.11) can be written in terms of H∂D as

〈GS|ĝD|GS〉 = TrD
[
ĝDρD

]
∼ Tr∂D

[
ĝ∂De

− ξvH∂D
]

Tr∂D
[
e−

ξ
vH∂D

] . (1.14)

As an example, we will use this bulk-boundary correspondence to compute the expectation values of partial symmetry
operations in (2+1)-dimensional SPT phase by using the corresponding (1+1)-dimensional CFTs. We will also
present similar calculations for higher dimensions using free theories as the boundary theories. With these analytical
calculations, together with numerics, we will confirm the formula (1.11).

E. Outline

In this paper, we construct and evaluate many-body topological (SPT) invariants for various fermionic SPT phases.
In particular, for the cases with point group symmetries and unitary symmetries. Table I is the list of many-body
topological invariants for fermionic SPT phases studied in the present paper.

Partly overlapping results were already reported in our previous paper, Ref. 73. In Ref. 73, we reported the
construction of topological invariants, taking as examples, (1+1) and (3+1)-dimensional topological superconductors
protected by an orientation-reversing symmetry (an inversion or time-reversal). (We shall recapitulate some essential
points of Ref. 73 with regard to the partial reflection in (1 + 1)d SPT phases.) The result for the case of time-reversal
symmetry is one of the main differences, between Ref. 73 and the present work, i.e., here we focus on point group
symmetries and unitary symmetries. Because of the anti-unitary nature of time-reversal, the construction of many-
body topological invariants is somewhat more complicated, and involves the so-called partial transpose (or its proper
extension to fermionic systems).
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TABLE I. List of many-body topological invariants for fermionic SPT phases in the present paper. The first column specifies
symmetry classes. “A” and “D” represent Altland-Zirnbauer symmetry classes.80 R, C, (−1)F , Cn, and I are reflection, charge
conjugation, fermion parity, n-fold rotation, and inversion symmetries, respectively.

Symmetry class
Space
dim.

Topological
classification

Spacetime manifold Topological invariant Comment Sec.

D 1 ΩSpin
2 (pt) = Z2 T 2

〈
GSr

∣∣ (−1)F
∣∣GSr〉 |GSr〉 is the ground state

with PBC.
II A

D +R,
R2 = 1

1 ΩPin+

2 (pt) = Z2 Klein bottle 〈GSr |R |GSr〉 Full reflection on the
ground state with PBC

II B

A + C,
C2 = 1

1 ΩSpinc̃+

2 (pt) 3 Z2 T 2 〈GS(π) |C |GS(π)〉
〈GS(0) |C |GS(0)〉

|GS(θ)〉 is the ground
state with the twisted

boundary condition by θ.
II C

D +R,
R2 = (−1)F

1 ΩPin−
2 (pt) = Z8 RP 2 〈GS |RI |GS〉 Partial reflection III A

A + R 1 ΩPinc

2 (pt) = Z4 RP 2 〈GS |RI |GS〉

Bond center partial
reflection. A U(1) phase

associated with R is
chosen so that
R2 = (−1)F .

III B

D +R,
R2 = 1

2 ΩPin+

3 (pt) = Z2 Klein bottle ×S1
∏
η 〈GS(η) |R |GS(η)〉 η runs over {(r, r), (r, ns),

(ns, r), (ns, ns)} sectors.
II D

chiral
D + Cn,

(Cn)n = (−1)F
2

Spin TQFT with
background

framing
Lens space L(n, 1) 〈GS |Cn,D |GS〉 Partial n-fold rotation IV B

nonchiral
D + C2,

(C2)2 = (−1)F
2 ΩSpin

3 (BZ2) = Z8 RP 3 〈GS |C2,D |GS〉 Partial 2-fold rotation IV C

nonchiral
A+ Cn

2 ΩSpinc

3 (BZn) Lens space L(n, 1) 〈GS |Cn,D |GS〉 Partial n-fold rotation IV D 2

D + I,
I2 = (−1)F

3 ΩPin+

4 (pt) = Z16 RP 4 〈GS | ID |GS〉 Partial inversion V A

A + I 3 ΩPinc

4 (pt) = Z8⊕Z2 RP 4 for subgroup Z8 〈GS | ID |GS〉

Partial inversion. A U(1)
phase associated with I is

chosen so that
I2 = (−1)F .

V B
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Another difference between Ref. 73 and this work is that in Ref. 73 the path-integral representation of many-body
topological invariant was developed, which can be applied to a given Hamiltonian without the knowledge of the
ground state wave function. There, the spacetime manifold is discretized by using the Suzuki-Trotter decomposition
of the thermal density matrix. We showed how to introduce a cross-cap in the spacetime path integral by using
orientation-reversing symmetries. In the present paper, however, we focus on the operator formalism, in which the
input data for the many-body topological invariants is a ground state wave function of SPT phases.

The rest of the paper is organized as follows:

• We start, in Sec. II, by first introducing examples of topological invariants generated by mapping tori for
fermionic topological phases. For these cases, partial transformations are not necessary to discuss their topo-
logical invariants.

• In Sec. III, partial reflection in (1 + 1) dimensions is discussed. There, we illustrate that for some symmetry
classes it is not sufficient to use full symmetry transformations to topological phases. We show that the ground
state expectation value of partial reflection faithfully captures the Z8 topological invariant for class D topological
superconductors with reflection symmetry.

• In Sec. IV, we discuss partial Cn rotations in (2 + 1)-dimensional topological phases. By using the modular
properties of CFTs, the ground state expectation values of partial rotations will be interpreted as partition
functions of the (2 + 1)-dimensional TQFTs on the lens space. The relation between partial rotations and the
Spinc cobordism classification for on-site Zn symmetry will be discussed.

• In Sec. V, we show that partial inversion can be used to construct the topological invariant of (3+1)-dimensional
topological phases protected by inversion symmetry. We also discuss the general formula for the ground state
expectation of partial inversion on topological superconductor and insulator in any even spacetime dimension,
by using their boundary Dirac fermion theory on a sphere.

• Finally, we conclude in Sec. VI with some discussion and outlooks. We also explain technical details in four
appendices.

II. SYMMETRY TRANSFORMATION ON TWISTED GROUND STATES

In this section, we discuss fermionic SPT phases that can be detected by “full” (as opposed to partial) symmetry
transformation on the twisted ground states, such as (1 + 1)d class D topological superconductors. It is sufficient for
detecting the topological invariants not to use the partial symmetry transformations, for example, (1 + 1)d bosonic
SPT phases with on-site unitary symmetry47,51,67 and (1+1)d class D superconductor47. In bosonic SPT phases with
on-site symmetry, Hung-Wen59 generalized this approach to those in higher spacetime dimensions, where they also
discussed modular transformations on the space manifold. However, for fermionic topological phases, there are few
literatures for this approach to detect topological invariants, thus, it might be useful to explain details.

A. (1 + 1)d topological superconductors (ΩSpin
2 (pt) = Z2)

We start with the definition of the many-body Z2 topological invariant for (1+1)d superconductors. The topological
classification is given by the spin cobordism group

ΩSpin
2 (pt) = Z2. (2.1)

The generating manifold is the 2-torus T 2 with periodic boundary conditions for time and space directions.71 In the
operator formalism, the path integral on the generating manifold corresponds to the expectation value of the fermion
parity with respect to the ground state on a closed space circle with the periodic boundary condition.47,81,82

1. The Kitaev Majorana chain and the many-body Z2 invariant

Our construction of the SPT invariant can be best explained by taking an example – the Kitaev Majorana chain.83

Let us consider a closed chain with N sites. Let fj be complex fermions defined on the j-site. Then, the Hamiltonian
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of the Kitaev chain is given by

Hr/ns =
1

2

N−1∑
j=1

[
− f†j fj+1 − fjfj+1 + h.c.

]
± 1

2

[
− f†Nf1 − fNf1 + h.c.

]
. (2.2)

This Hamiltonian is fine-tuned such that it is at a renormalization group fixed point with zero correlation length. The
subscript r and ns represent the periodic boundary condition (the “Ramond” sector) fN+1 = f1, and the anti-periodic
boundary condition (the “Neveu-Schwarz” sector) fN+1 = −f1, respectively. The fermion parity operator (−1)F is
defined by

(−1)F := (−1)
∑N
j=1 f

†
j fj . (2.3)

The anti-periodic boundary condition can be thought of as a symmetry twist by the fermion parity (−1)F . (This
symmetry twist can be interpreted as an introduction of a topological defect, i.e. the location of the defect can move
along the closed chain by a local unitary transformation. )

Introducing real fermion operators cLj , c
R
j at the j-th site by

cLj = i(fj − f†j ), cRj = fj + f†j , (2.4)

the Hamiltonian and the fermion number parity can be rewritten as

Hr/ns =
i

2

N−1∑
j=1

cRj c
L
j+1 ±

i

2
cRNc

L
1 , (−1)F = (−icL1 cR1 )(−icL2 cR2 ) · · · (−icLNcRN ). (2.5)

It is also convenient to introduce complex fermions gj living on the bond (j, j + 1) as

gj :=
cRj + icLj+1

2
, g†j :=

cRj − icLj+1

2
. (2.6)

In terms of gj , g
†
j , the Hamiltonian is written as

Hr/ns =

N−1∑
j=1

[
g†jgj −

1

2

]
±
[
g†NgN −

1

2

]
. (2.7)

The ground states |GSr/ns〉 of Hr/ns are given by

|GSr〉 = |0g〉 , |GSns〉 = g†N |0g〉 , (2.8)

where |0g〉 is the Fock vacuum of gj fermions. Explicitly, the ground states |GSr/ns〉 can be written in terms of the
fj fermions and their Fock vacuum |0f 〉 as

|GSr/ns〉 ∼

∏
j

(1 + f†j )∓
∏
j

(1− f†j )

 |0f 〉
∼

∑
n:odd/even

∑
1≤p1<p2<···<pn≤N

f†p1
f†p2
· · · f†pn |0f 〉 (2.9)

up to a normalization. Here, we used the abbreviation
∏
j(1± f

†
j ) := (1± f†1 ) · · · (1± f†N ).

As advocated above, we consider the the fermion number parity of the ground state of Hr/ns. Noticing the following
relation between the fermion parities defined for fj and gj fermions

(−1)F = −(−1)G,

(−1)G := (−1)
∑N
j=1 g

†
jgj = (−icR1 cL2 )(−icR2 cL3 ) · · · (−icRNcL1 ), (2.10)

the fermion number parity of the ground states is computed as

(−1)F |GSr〉 = − |GSr〉 , (−1)F |GSns〉 = |GSns〉 . (2.11)
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The odd fermion parity of the ground state for the periodic boundary condition is the hallmark of (1+1)d topological
superconductors. While the above result (2.11) (and hence (2.12) below) is derived for the specific model (2.2), the
Kitaev chain in the limit of zero correlation length, the same result holds for any gapped Z2 nontrivial superconductors
with a unique ground state on a closed chain, since the fermion number parity (−1)F has a definite Z2 value on ground
states |GSr/ns〉. We show, as an example, the explicit form of the ground state with a exactly solvable model with a

many-body interaction and finite correlation length84 in Sec. II A 3.
To compare these results with the (1+1)d spin TQFT, we recast our result in the form of partition functions. Since

our theory is gapped, the partition functions in the zero temperature limit consist only of the ground states,

Z(T 2, (r, r)) = Trr[(−1)F ] = 〈GSr|(−1)F |GSr〉 = −1,

Z(T 2, (ns, r)) = Trr[1] = 〈GSr|GSr〉 = 1,

Z(T 2, (r, ns)) = Trns[(−1)F ] = 〈GSns|(−1)F |GSns〉 = 1.

Z(T 2, (ns, ns)) = Trns[1] = 〈GSns|GSns〉 = 1. (2.12)

Here, the notation Z(T 2, (a, b)) means the partition function on T 2 with a-(b-)boundary condition for the time (space)
direction. Recall that the periodic boundary condition for the time direction in the path integral picture corresponds
to, in the operator picture, the insertion of the fermion number parity (−1)F operator in the trace. Moreover, notice
that these results are modular invariant: the modular transformations on T 2 permutes (r, ns), (ns, r) and (ns, ns)
sectors while the (r, r) sector is unchanged.

To further support the claim that the fermion number parity of the ground states with twisted boundary conditions
is an SPT invariant, we now compare the above partition functions (2.12) of the Kitaev model with the Arf invariant
of Spin structures,11 which is a Z2-valued function

Arf : Spin(M)→ Z2 = {0, 1} (2.13)

on Spin structures of a given oriented manifoldM . See Appendix A for a review of the Arf invariant, where we illustrate
how to compute the Arf invariants on a given oriented 2-manifold. The Arf invariants on T 2 are summarized in (A.11),
which coincide with the torus partition functions (2.12) of the Kitaev chain with twisted boundary conditions, says,

Z(T 2, η) = (−1)Arf(η), η ∈ Spin(T 2). (2.14)

2. The trivial phase

Let us consider the Hamiltonian

Htriv
r/ns =

N∑
j=1

[
f†j fj −

1

2

]
=
i

2

N∑
j=1

cLj c
R
j , (2.15)

which realizes a trivial superconductor. There is no difference between r and ns sectors since there is no hopping
term. The ground state is just the Fock vacuum of f fermions,

|GStriv
r/ns〉 = |0f 〉 . (2.16)

The partition functions (SPT invariants) can be computed as

Ztriv(T 2, (r, r)) = Trr[(−1)F ] = 〈GStriv
r |(−1)F |GStriv

r 〉 = 1,

Ztriv(T 2, (ns, r)) = Trr[1] = 〈GStriv
r |GStriv

r 〉 = 1,

Ztriv(T 2, (r, ns)) = Trns[(−1)F ] = 〈GStriv
ns |(−1)F |GStriv

ns 〉 = 1.

Ztriv(T 2, (ns, ns)) = Trns[1] = 〈GStriv
ns |GStriv

ns 〉 = 1. (2.17)

There is no spin structure dependence, which is consistent with the triviality of this phase.

3. An example of interacting Majorana chains

To demonstrate that the definition of the Z2 SPT invariant (2.12) is applicable to interacting Majorana chains, we
consider an example of the many-body ground states of an interacting Majorana chain discussed in Ref. 84. Let us
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consider the following Hamiltonian including an extended Hubbard interaction

Hr/ns =

N−1∑
j=1

[
− tf†j fj+1 + ∆fjfj+1 + h.c.

]
±
[
− tf†Nf1 + ∆fNf1 + h.c.

]
− µ

2

N∑
j=1

(f†j fj + f†j+1fj+1 − 1) + U

N∑
j=1

(
f†j fj −

1

2

)(
f†j+1fj+1 −

1

2

)
(2.18)

with µ = 4
√
U2 + tU + t2−∆2

4 . The ground state is given by

|GSr/ns(α)〉 ∼

∏
j

(1 + αf†j )∓
∏
j

(1− αf†j )

 |0f 〉 , (2.19)

where α is defined by α =
√

cot θ2 , θ = tan−1
(
2∆/µ

)
. Clearly, the R sector consists only of odd numbers of fermions

and shows the nontrivial Z2 invariant
〈
GSr(α)

∣∣ (−1)F
∣∣GSr(α)

〉
= −1.

B. (1 + 1)d superconductors protected by reflection (ΩPin+

2 (pt) = Z2)

Next, we consider (1 + 1)d topological superconductors protected by reflection R with R2 = 1. These topolog-
ical superconductors can be thought of as a CPT dual of class DIII topological superconductors. The topological
classification is given by the Pin+ cobordism group11,71

ΩPin+

2 (pt) = Z2, (2.20)

and the generating manifold is the Klein bottle KB. Since the Klein bottle is realized in the mapping torus

S1 ×R S1 = S1 × [0, 1]/
(
(x, 0) ∼ (−x, 1)

)
, (2.21)

we expect that the many-body Z2 invariant can be computable by using full symmetry operations on the twisted
ground states.

1. A nontrivial model and the many-body Z2 invariant

We consider the reflection symmetric pair of Kitaev chains, Eq. (2.2),

Hr/ns =
1

2

N−1∑
j=1

[
− f†↑,jf↑,j+1 − f↑,jf↑,j+1 + h.c.

]
± 1

2

[
− f†↑,Nf↑,1 − f↑,Nf↑,1 + h.c.

]
+

1

2

N−1∑
j=1

[
− f†↓,jf↓,j+1 + f↓,jf↓,j+1 + h.c.

]
± 1

2

[
− f†↓,Nf↓,1 + f↓,Nf↓,1 + h.c.

]
. (2.22)

We consider reflection that exchanges two flavors ↑ and ↓ as

Rf†↑,jR
−1 = f†↓,N−j+1, Rf†↓,jR

−1 = f†↑,N−j+1, R |0f 〉 = |0f 〉 , (2.23)

where |0f 〉 is the Fock vacuum of the f↑ and f↓ fermions. The ground states |GSr/ns〉 of the R and NS sectors are
given by

|GSr/ns〉 =
( ∑
n:odd/even

∑
1≤p1<···<pn≤N

f†↑,p1
· · · f†↑,pn

)( ∑
m:odd/even

im
∑

1≤q1<···<qm≤N

f†↓,q1 · · · f
†
↓,qm

)
|0f 〉 . (2.24)

Then, we have

R |GSr/ns〉 =

{
− |GSr〉
|GSns〉 . (2.25)



13

Thus, the many-body Z2 invariant is given by the ground state expectation value of full reflection on the supercon-
ducting chain with the periodic boundary condition,

Z(KB, (ns, r)) = Trr
[
R
]

= 〈GSr|R|GSr〉 = −1. (2.26)

This agrees with the cobordism classification (2.20).

C. (1 + 1)d insulators with charge conjugation symmetry (ΩSpinc̃+

2 (pt))

Our next example concerns (1 + 1)d topological insulators protected by charge conjugation with C2 = 1, where the
action of C on the fermionic Fock space is defined as

Cψ†i (x)C−1 = Cijψj(x), CC∗ = 1, C |0〉 = |full〉 , (2.27)

where ψ†i (x) is a complex fermion operator defined on a closed ring of length L, |0〉 and |full〉 are the Fock vacuum

and the fully occupied state of ψ†i (x) fermions, respectively. This symmetry is relevant to, for example, the fermionic
Hubbard model at half filling. At the level of non-interacting fermions, the ensemble of single-particles Hamiltonians
with this symmetry is equivalent to the ensemble of BdG Hamiltonians (symmetry class D in Altland-Zirnbauer
symmetry classes80), where C plays the role of the particle-hole symmetry (constraint) for Nambu spinors. The
topological classification for this symmetry class in (1 + 1)d is Z2 in the absence of interactions, and this is expected
to be so even in the presence of interactions. In the following, we give the definition of the many-body Z2 invariant
in terms of the ground state with twisted boundary conditions. The relevant spin structures here for insulators with
charge-conjugation symmetry are called Spinc̃+ structures. This has to be distinguished from Spin structures for
charge neutral fermions in superconductors.

1. The Z2 equivariant line bundle

For our construction of the Z2 many-body topological invariant we consider twsited spatial boundary conditions by
symmetry of the problem. Thanks to the U(1) particle number conservation, we can introduce the twisted boundary
condition ψ(x + L) = eiθψ(x). Let |GS(θ)〉 be the ground state of the Hamiltonian with the twist θ ∈ U(1). Since
charge conjugation C flips the U(1) flux, we have a Z2-equivariant complex line bundle over the flux space U(1):

C |GS(θ)〉 = eiφ(θ) |GS(−θ)〉 , eiφ(θ)eiφ(−θ) = 1. (2.28)

This Z2-equivariant structure leads to the Z2 quantization of the Berry phase

γ = exp
[ ∮ π

−π
dθ 〈GS(θ)|∂θ|GS(θ)〉

]
= eiφ(π)−iφ(0) =

〈GS(π)|C|GS(π)〉
〈GS(0)|C|GS(0)〉 ∈ {±1}. (2.29)

Here we used
∫ π

0
dθ 〈GS(θ)|∂θ|GS(θ)〉 =

∫ π
0
dθ 〈GS(θ)|C−1∂θC|GS(θ))〉 = i(φ(π) − φ(0)) −

∫ 0

−π dθ 〈GS(θ)|∂θGS(θ)〉.
This is a candidate of the many-body Z2 invariant. Our remaining task is to show that the existence of a model with
nontrivial Z2 invariant.

2. A nontrivial model and the Z2 invariant

Let us consider the following two orbital model of complex fermions aj , bj in a closed ring,

H =

N−1∑
j=1

b†jaj+1 + b†Na1 + h.c., (2.30)

This model is invariant under the charge conjugation symmetry defined by

CajC
−1 = a†j , CbjC

−1 = −b†j , C |0〉 = |full〉 . (2.31)



14

We introduce the U(1)-twisted Hamiltonian H(θ) by

H(θ) :=

N−1∑
j=1

b†jaj+1 + e−iθb†Na1 + h.c., CH(θ)C−1 = H(−θ). (2.32)

By introducing “bond” complex fermions cj , dj(j = 1, . . . N − 1), cN (θ), dN (θ) as

cj :=
bj + aj+1√

2
, dj :=

bj − aj+1√
2

, (j = 1, . . . N − 1),

cN (θ) :=
bN + e−iθa1√

2
, dN (θ) :=

bN − e−iθa1√
2

, (2.33)

the Hamiltonian H(θ) can be written as

H(θ) =

N−1∑
j=1

[c†jcj − d†jdj ] + c†N (θ)cN (θ)− d†N (θ)dN (θ). (2.34)

The ground state of H(θ) is obtained by filling dj and dN (θ) fermions,

|GS(θ)〉 = d†1 · · · d†N−1d
†
N (θ) |0〉 . (2.35)

An explicit calculation shows that the Berry phase for |GS(θ)〉 is non-trivial, γ = −1. This can be confirmed from
the Z2-equivariant structure on the ground state |GS(θ)〉. By making use of

Cd†jC
−1 = −cj (j = 1, . . . , N − 1), Cd†N (θ)C−1 = −cN (−θ),

cN (−θ)b†Na†1 = −eiθd†N (−θ) + b†Na
†
1cN (−θ), (2.36)

then we have the nontrivial Z2-equivariant line bundle over U(1) as

C |GS(θ)〉 ∼ c1 · · · cN−1cN (θ) |full〉
∼ c1 · · · cN−1cN (θ)a†1 · · · a†Nb†1 · · · b†N |0〉
∼ eiθ |GS(−θ)〉 . (2.37)

3. Z2 anomaly on the edge state

Let us now have a further look at the topological non-triviality of the model, from the point of view of its boundaries.
By the bulk-boundary correspondence, the non-trivial bulk topological invariant (γ = −1) is expected to manifests
itself, in the presence of boundaries (edges), as a quantum anomaly. Let us now consider a topological insulator with
the non-trivial bulk Z2 invariant with open boundary conditions, and focus on the low-energy excitations of the one
of the edges. There is a fermion zero mode created/annihilated by a complex fermion creation operator a†/a. The
charge conjugation (particle-hole) operator C acts on the fermion mode as Ca†C−1 = a. The edge theory defined in
terms of a†, a is anomalous in the sense that both the U(1) charge conservation and charge conjugation C symmetries
(the total symmetry group = U(1) oC) cannot be imposed on a unique ground state. In fact, the ground state with
the U(1) symmetry (having a definite particle number) is either |0〉 or a† |0〉. However, C exchanges |0〉 and a† |0〉
(where we set C |0〉 ∼ a† |0〉). It is also easy to see that this anomaly is Z2 in the sense that if we stack two identical
copies of the system, this anomaly disappears.

4. Cut and glue construction and the Z2 invariant

Once the physics at the edge of non-trivial Z2 topological insulators are understood, one can use the cut and glue
construction79 to give a proof that the corresponding bulk Z2 invariant (2.29) is nontrivial. Let us consider an interval
I = [0, N ] of the Z2 nontrivial insulating chain. The low-energy excitations can be described by two sets of edge

complex fermion creation/annihilation operators, {a†1, a1} and {b†N , bN}. The action of C on these fermion opeartors
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is given by Ca†1C
−1 = a1 and Cb†NC

−1 = −bN . The unique ground state of the Hamiltonian on the closed chain can
be approximated by the ground state of the following gluing Hamiltonian

Hglue(θ) = e−iθb†Na1 + h.c., (2.38)

where we have introduced the twisted boundary condition by the U(1) symmetry. A direct calculation shows that
the Z2 invariant (2.29) is nontrivial, γ = −1.

D. (2 + 1)d superconductor with reflection symmetry (ΩPin+

3 (pt) = Z2)

In this section, we give the many-body definition of the Z2 topological invariant for (2 + 1)-dimensional super-
conductors protected by reflection symmetry with R2 = 1. Topological superconductors in this symmetry class can
be considered as a CPT dual of class DIII topological superconductors in (2 + 1)d. Here, the reflection acts on the

fermion creation operator ψ†i (x, y) as

Rψ†i (x, y)R−1 = ψ†j (−x, y)Rji, R2 = 1, (2.39)

where (x, y) is the spatial coordinate and i, j are the flavor (orbital, spin, etc.) indices. The topological classification
is given by the Pin+ cobordism group

ΩPin+

3 (pt) = Z2. (2.40)

The generating manifold of the cobordism group Z2 is KB × S1 (KB = the Klein bottle),71 which is a mapping
torus. In other words, in the operator formalism, the many-body Z2 invariant can be constructed by considering a
fully symmetry action on twisted ground states.

1. The Z2 equivariant line bundle

Let us consider a superconductor on 2-torus T 2. There are four distinct spin structures: {(r, r), (r, ns), (ns, r), (ns, ns)}.
Since the reflection transformation R preserves these spin structures, we have the following Z2 equivariant bundle
over four points:

R |GS(η)〉 = (−1)ν(η) |GS(η)〉 , η ∈ {(r, r), (r, ns), (ns, r), (ns, ns)}. (2.41)

To remove “weak indices” (2.26) arising from (1+1)d superconductors with reflection symmetry, we define the “strong”
Z2 invariant (−1)ν specific to (2 + 1)d superconductors by

(−1)ν =
∏

η∈{(r,r),(r,ns),(ns,r),(ns,ns)}

(−1)ν(η). (2.42)

In the following, we show an example of a Z2 nontrivial model.

2. A nontrivial model and the many-body Z2 invariant

A model Hamiltonian is a reflection symmetric pair of (px + ipy) and (px − ipy) superconductors

H =
∑
k

ψ†↑(k)(m− cos kx − cos ky)ψ↑(k) +
1

2

∑
k

(sin kx + i sin ky)ψ†↑(k)ψ†↑(−k) + h.c.

+
∑
k

ψ†↓(k)(m− cos kx − cos ky)ψ↓(k) +
1

2

∑
k

(sin kx − i sin ky)ψ†↓(k)ψ†↓(−k) + h.c. (2.43)

The reflection R acts on the fermion fields as

Rψ†↑(kx, ky)R−1 = ψ†↓(kx,−ky), Rψ†↓(kx, ky)R−1 = ψ†↑(kx,−ky), R |0〉 = |0〉 , (2.44)

where |0〉 is the Fock vacuum of the ψ↑,↓ fermions. The ground state for each spin structure is given by the following
BCS form:81
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• For the R-R sector, the set of allowed momenta are (kx, ky) = ( 2πnx
L ,

2πny
L ), and the ground state is given by

|Ψ(r, r)〉 = Ψ†UP · exp

 ∑
kx>0

k 6=(0,0),(0,π),(π,0),(π,π)

{
g+(k)ψ†↑(k)ψ†↑(−k) + g−(k)ψ†↓(k)ψ†↓(−k)

} |0〉 . (2.45)

• For the NS-NS sector, the set of allowed momenta are (kx, ky) = ( 2π
L (nx+ 1

2 ), 2π
L (ny + 1

2 )), and the ground state
is given by

|Ψ(ns, ns)〉 = exp

(∑
kx>0

{
g+(k)ψ†↑(k)ψ†↑(−k) + g−(k)ψ†↓(k)ψ†↓(−k)

})
|0〉 . (2.46)

• For the R-NS sector, the set of allowed momenta are (kx, ky) = ( 2πnx
L , 2π

L (ny + 1
2 )), and the ground state is

given by

|Ψ(r, ns)〉 = exp

(∑
kx>0

{
g+(k)ψ†↑(k)ψ†↑(−k) + g−(k)ψ†↓(k)ψ†↓(−k)

})
|0〉 . (2.47)

• For the NS-R sector, the set of allowed momenta are (kx, ky) = ( 2π
L (nx + 1

2 ),
2πny
L ), and the ground state is

given by

|Ψ(ns, r)〉 = exp

(∑
kx>0

{
g+(k)ψ†↑(k)ψ†↑(−k) + g−(k)ψ†↓(k)ψ†↓(−k)

})
|0〉 . (2.48)

Here, g±(k) is given by

g±(k) =

√
ε2k + sin2 kx + sin2 ky − εk

sin kx ∓ i sin ky
, εk = m− cos kx − cos ky, (2.49)

and Ψ†UP is the contribution from unpaired fermions and given by

Ψ†UP :=


ψ†↑(0, 0)ψ†↑(π, π)ψ†↑(0, π)ψ†↑(π, 0)ψ†↓(0, 0)ψ†↓(π, π)ψ†↓(0, π)ψ†↓(π, 0) (m < −2)

ψ†↑(0, 0)ψ†↑(0, π)ψ†↑(π, 0)ψ†↓(0, 0)ψ†↓(0, π)ψ†↓(π, 0) (−2 < m < 0)

ψ†↑(0, 0)ψ†↓(0, 0) (0 < m < 2)
1 (2 < m)

(2.50)

Since the condensate of Cooper pairs in the BCS ground states is reflection symmetric, a nontrivial phase arises from
unpaired fermions:

R |Ψ(r, r)〉 =

{
− |Ψ(r, r)〉 (−2 < m < 0, 0 < m < 2)
|Ψ(r, r)〉 (m < −2, 2 < m)

,

R |Ψ(η)〉 = |Ψ(η)〉 (η ∈ {(r, ns), (ns, r), (ns, ns)}). (2.51)

Thus, the topological invariant is (−1)ν = −1 for topologically nontrivial phases (−2 < m < 0, 0 < m < 2).

III. PARTIAL REFLECTIONS

We now discuss some (1 + 1)d SPT phases, of which the detection requires the real projective plane RP 2 as a
generating manifold of the relevant cobordism group. For example, (1 + 1)d bosonic SPT phases with reflection
symmetry is classified by the unoriented cobordism group ΩO2 (pt) = Z2 with the generating manifold RP 2.25 Other
fermionic examples are discussed in the subsequent sections. Topologically, RP 2 is realized by introducing a cross-cap
on the spacetime manifold S2. In the operator formalism, introducing a cross-cap is intuitively equivalent to acting
with a partial reflection RI on an interval I of a closed ring S1, as shown in Fig. 1. In (1 + 1)d bosonic SPT phases
protected by reflection symmetry, Pollmann and Turner showed that the expectation value of the partial reflection
〈GS|RI |GS〉 on the ground state |GS〉 faithfully captures the Z2 SPT invariant.67 In this section, we extend this
approach to fermionic SPT phases. Some contents of this section were also discussed in Ref. 73.
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A. (1 + 1)d topological superconductors protected by reflection (ΩPin−
2 (pt) = Z8)

Let us consider (1 + 1)d topological superconductors protected by reflection R with R2 = (−1)F . These topolog-
ical superconductors can be thought of as a CPT dual of class BDI topological superconductors. The topological
classification is given by the Pin− cobordism group71

ΩPin−

2 (pt) = Z8, (3.1)

and the generating manifold is the real projective plane RP 2.

1. The Klein bottle partition function and the Z4 invariant

In the following, we first show that the action of symmetry (=reflection) on the ground states in the presence
of twisted boundary conditions is not sufficient to capture the Z8 classification. In fact, from the space-time path-
integral, this corresponds to the partition function defined on the spacetime Klein bottle, which is not the generating
manifold. The Klein bottle generates a modulo 4 subgroup of the Z8 group.

We consider the same model as (2.2) on a closed ring. This model is invariant under the following reflection
symmetry

Rf†jR
−1 = if†N−j+1, RfjR

−1 = −ifN−j+1, (3.2)

or equivalently,

RcLj R
−1 = cRN−j+1, RcRj R

−1 = −cLN−j+1 (3.3)

in terms of real fermions introduced in (2.4). In terms of the real fermions cLj , c
R
j , the reflection transformation R is

explicitly written by

R =: exp
[
− π

4

N∑
j=1

cLj c
R
N−j+1

]
:, (3.4)

where we introduced the normal ordering : · · · : with respect to the Fock vacuum |0f 〉 of fj fermions to fix the overall
phase of R, R |0f 〉 = |0f 〉. Observe that R2 = (−1)F , and hence R here generates a Z4 symmetry. From the concrete
expressions (2.9) of the ground states |GSr/ns〉, we obtain

R |GSr/ns〉 =
∑

n:odd/even

∑
1≤p1<p2<···<pn≤N

inf†N−p1+1f
†
N−p2+1 · · · f†N−pn+1 |0f 〉

=

{
i |GSr〉
|GSns〉 (3.5)

In other words, the partition function on the Klein bottle (KB) with the periodic boundary condition for the space
direction provides the Z4 sub group invariant:

Z(KB, (ns, r)) = Trr
[
R
]

= 〈GSr|R|GSr〉 = i. (3.6)

In other words, the full reflection cannot capture the Z8 invariant.

2. Partial reflection and the Z8 invariant

We have shown that the partial reflection faithfully defines the many-body Z8 invariant in Ref. 73. Here, we give
a quick derivation of the Z8 invariant by using the “cut and glue” construction of the reduced density matrix for
topological phases.79 Let |GS〉 be a ground state belonging to the 1 ∈ Z8 topological phase. We wish to compute the
expectation value of partial reflection 〈GS|RI |GS〉, where I = [1,M ] is an interval in a whole closed chain S1 = [0, N ].
If M and N −M are sufficiently larger than the correlation length of the bulk, the reduced density matrix on the
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interval I, ρI = trĪ(|GS〉 〈GS|), is approximated by the exponential of the entanglement Hamiltonian, consisting only
of edge Majorana fermions:

H̃ =
i

2
cR0 c

L
1 +

i

2
cRMc

L
M+1. (3.7)

Defining “in” and “out” complex fermions fin and fout by

f†in =
cRM + icL1

2
, f†out =

cR0 + icLM+1

2
, (3.8)

the ground state of H̃ is

|GS〉 =
1√
2

(f†in + f†out) |0〉 . (3.9)

The partial reflection acts only on the f†in fermion as

RIf
†
inR
−1
I = if†in, RIf

†
outR

−1
I = f†out, RI |0〉 = |0〉 . (3.10)

Hence, we obtain

〈GS|RI |GS〉 = Trin(RIρI) =
1 + i

2
=

1√
2
e
πi
4 . (3.11)

The U(1) phase e
πi
4 correctly captures the Z8 classification. In fact, the phase of 〈GS|RI |GS〉 coincides with the

Brown invariant of the Pin− structure on RP 2.71 (For the description of the Brown invariant, see Appendix A 2.)
Furthermore, with the partial reflection, the amplitude of the wave function overlap (the partition function) is reduced

from 1 to 1/
√

2. This “loss of the amplitude” is also of topological origin, which is the quantum dimension of the
edge Majorana fermion.

In the remainder of this section, we present two non-trivial applications of the partial reflection: First, we use the
partial reflection to map out the phase diagram of the disordered Kitaev Majorana chain. Second, we apply it to the
exact ground state of an interacting Majorana chain and show that it yields the expected Z8 phase.

3. Case study 1: Robustness of partial reflection against random disorder

In what follows, we compute the Z8 invariant for a microscopic realization of class D (with reflection symmetry)
topological superconductors in the presence of a random chemical potential disorder. In particular, we study the
robustness of the partial reflection against random disorder, and also show that we can use the many-body Z8

topological invariant to map out the phase diagram of the disordered Majorana chain, by reproducing the known
results.85,86 The lattice Hamiltonian consists of two parts H = Hclean + Hdis where Hclean is the Hamiltonian of the
Kitaev Majorana chain,

H = −
∑
j

[
tf†j+1fj −∆f†j+1f

†
j + H.c.

]
− µ

∑
j

f†j fj , (3.12)

and the disorder term is

Hdis =
∑
j

vjf
†
j fj , (3.13)

where vj is a random number uniformly distributed over the range [−W/2,W/2] and W is the disorder strength.
Figure 2 shows the complex phase of the averaged partial reflection Z = 〈GS|RI |GS〉 for various values of W over
a wide range of chemical potential including the trivial and topological phases. It is interesting to note that the
topological region (characterized by ∠Z = π/4) expands a little bit as the disorder strength is increased. This is
similar to the disorder induced topological phase due to quadratic corrections on the lattice models, which has been
discussed in the context of the 2D and 3D topological insulators.87–89 In addition, we provide the complex phase of
the partial reflection for one realization of disorder in Fig. 3. It is evident from this figure that the phase is quite
robust to moderate disorder.
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FIG. 2. (Color online) Complex phase of the partial reflection Z = 〈GS|RI |GS〉 for the disordered Kitaev Majorana chain.
Each curve represents an ensemble average over 1000 samples. Solid lines are guides for the eye. Here, we set ∆ = t, N = 200
and Npart = 100.

We use the complex phase associated with the partial reflection to map out the phase diagram of the disordered
Majorana chain as shown in Fig. 4(b). For reference, we compute the phase boundary between the trivial and
topological phases as a function of disorder strength W , using the transfer matrix approach85,86 (see Fig. 4(a)). In
the case of our model, the Majorana chain with nearest neighbor hopping, the Lyapunov exponent can be found
analytically,

Λ−1 =
∣∣∣ lim
n→∞

1

n

n∑
j=1

ln |µ+ vi
2t
|
∣∣∣

=

∣∣∣∣∣
∫ 1/2

−1/2

dx ln |µ+ xW

2t
|
∣∣∣∣∣

=

∣∣∣∣∣ln
[
|2µ+W | µW + 1

2

|2µ−W | µW − 1
2

]
− (1 + ln 2t)

∣∣∣∣∣ . (3.14)

The phase boundary can then be identified as a line of critical points at which Λ → ∞ is diverging. The diverging
Λ is indicative of delocalized states at zero chemical potential which are in turn responsible for the topological phase
transition. We show in Fig. 4(b) that the transfer matrix and our results are in remarkable agreement.

4. Case study 2: Partial reflection in the interacting Majorana chain

In this part, we consider the many-body Z8 invariant in the presence of interactions. We use the exact many-body
ground state constructed for the interacting Majorana chain in Ref. 84:

H = −
∑
j

[tf†j+1fj −∆f†j+1f
†
j +H.c.]− µ

∑
j

f†j fj + 4U
∑
j

(nj − 1/2)(nj+1 − 1/2). (3.15)

For parameter values satisfying the condition µ = 4
√
U2 + tU + (t2 −∆2)/4 can be written in a closed form as

|Ψr(ns)〉 = |Ψα
+〉 ∓ |Ψα

−〉 , (3.16)

where

|Ψα
±〉 =

1

(1 + α2)N/2

N∏
j=1

(1± αf†j ) |0〉

=
1

(1 + α2)N/2
e±αf

†
1 e±αf

†
2 . . . e±αf

†
N |0〉 , (3.17)

corresponding to odd (even) fermion parity sectors associated with (anti-)periodic boundary condition where α =√
cot(θ/2) and θ = arctan(2∆/µ). In the following, we analytically derive that the amplitudes and complex phases of
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FIG. 3. (Color online) Complex phase of the partial reflection Z = 〈GS|RI |GS〉 for one realization of the disorder potential.
Panels (a)-(f) represent different disorder strength from W = 1 to W = 6 (same as the legend in Fig. 2). Solid lines are guides
for the eye. Here, we set ∆ = t, N = 200 and Npart = 100.

FIG. 4. (Color online) Phase diagram of the disordered Kitaev Majorana chain. (a) Color code is the Lyapunov exponent cal-
culated using the transfer matrix approach (3.14), and (b) color code is the complex phase of the partial reflection 〈GS|RI |GS〉.
In panel (b), the red curve shows the phase boundary which is analytically determined by the transfer matrix as shown in (a).
Here, we set ∆ = t, N = 200 and Npart = 100.

partial reflection for a generic value of α converge to the anticipated values 1/
√

2 and π/4 in (3.11), as we approach
the long-chain limit (compared to the correlation length).

We prove our result for the case with anti-periodic boundary condition. A similar derivation can be carried out for
the case of periodic boundary condition. Consider a long chain with N sites in total and M sites in the subsystem
such that N = 2M (we take M to be even which means reflection with respect to the central link). The wave function
is given by

|Ψns〉 =
1√
A+(N)

N∏
j=1

(1 + αf†j )
∣∣∣
n∈even

|0〉 (3.18)
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where the normalization factor is

A±(n) =
1

2
[(1 + α2)n ± (1− α2)n]. (3.19)

For simplicity we choose the sites 1 to M to be in the subsystem. The wave function can be rewritten as

|Ψns〉 =
1√
A(N)

(1 + αf†1 )F †in(1 + αf†M )F †out

∣∣∣
n∈even

|0〉

=
1√
A(N)

[(1 + α2f†1f
†
M )F

(e)†
in F

(e)†
out + (1− α2f†1f

†
M )F

(o)†
in F

(o)†
out ] |0〉

+
α√
A(N)

[(f†1 + f†M )F
(e)†
in F

(o)†
out + (f†1 − f†M )F

(o)†
in F

(e)†
out ] |0〉 . (3.20)

We define the new operators

F
(o/e)†
in =

M−1∏
j=2

(1 + αf†j )
∣∣∣
n∈odd/even

,

F
(o/e)†
out =

N∏
j=M+1

(1 + αf†j )
∣∣∣
n∈odd/even

. (3.21)

The partial reflection is defined by

RIf
†
jR
−1
I = if†M−(j−1), for 1 ≤ j ≤M. (3.22)

Note that

〈0|F (o)
in RIF

(o)†
in |0〉 = iA−(M − 2),

〈0|F (o)
in RIF

(o)†
in |0〉 = A+(M − 2), (3.23)

where A±(n) is defined in (3.19). So, we have

ZN = 〈Ψns|RI |Ψns〉 =
1

A(N)

[
(1 + α4)A+(M − 2)A+(N −M) + i(1 + α4)A−(M − 2)A−(N −M)

]
+

2α2

A(N)
[iA+(M − 2)A−(N −M) +A−(M − 2)A+(N −M)] (3.24)

In the thermodynamic limit N →∞, this becomes

lim
N→∞

ZN =
(1 + α2)N−2

2(1 + α2)N
[(1 + α4)(1 + i) + 2α2(i+ 1)]

=
1 + i

2
, (3.25)

which is identical to (3.11). Here, we use the fact that

lim
n→∞

A±(n) =
1

2
(1 + α2)n. (3.26)

B. (1 + 1)d insulators protected by reflection (ΩPinc(pt) = Z4)

Next, we move on to the system described by complex fermions in the presence of reflection symmetry. Specifically,
we consider a reflection transformation acting on a multiplet of complex fermions operators ψi(x, t) together with a
U(1) transformation as

UαRψ
†
i (x, t)[UαR

−1] = ψ†j (−x, t)e−iαRji. (3.27)
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This operation, when used along with twisted boundary conditions, enables us to put the theory on an unoriented
manifold with the Pinc structure. In (1 + 1)-dimensions, the corresponding cobordism group is 57

ΩPinc

2 (pt) = Z4, (3.28)

which implies there are 4 topologically distinct phases. The generating manifold is RP 2. In this section, we will see
that the expectation value of full reflection captures the Z2 subgroup of the Z4 topological classification, whereas the
expectation value of partial reflection with an appropriate U(1) phase as introduced in Eq. (3.27) provides the Z4

invariant.

1. The Z2 equivariant line bundle

The existence of the many-body Z2 topological invariant, which is a subgroup of the Z4 classification, can be
understood by the Z2-equivariant structure of the line bundle over the flux space in the same way as Eqs. (2.28) and
(2.29). On the closed space circle S1, we have a Z2-equivariant complex line bundle

R |GS(θ)〉 = eiφ(θ) |GS(−θ)〉 , (3.29)

where |GS(θ)〉 is the ground state under the twisted boundary condition ψ(x+ L) = eiθψ(x). Then, we have the Z2

quantization of the Berry phase

γ = exp
[ ∮ 2π

0

dθ 〈GS(θ)|∂θGS(θ)〉
]

=
〈GS(π)|R|GS(π)〉
〈GS(0)|R|GS(0)〉 ∈ ±1. (3.30)

A Z2 nontrivial model is the same as (2.30) with the reflection symmetry defined by

Ra†jR
−1 = b†N−j+1, Rb†jR

−1 = a†N−j+1. (3.31)

One can show that R |GS(θ)〉 ∼ eiθ |Ψ(−θ)〉, which implies the nontrivial Z2 Berry phase γ = −1.

2. Partial reflection and the Z4 invariant

In a way similar to Sec. III A 2, we show that partial reflection provides the Z4 invariant. There are two issues
specific to Pinc structures: the choice of U(1) phase associated with partial reflection, and the choice of the center of
reflection, i.e., a lattice site or bond center.

Here, we calculate the partial reflection for the fixed point model (2.30). The ground state is given by

|GS〉 =
b†N − a†1√

2

b†1 − a†2√
2
· · · b

†
M − a†M+1√

2
· · · b

†
N−1 − a†N√

2
|0〉 . (3.32)

The partial reflection [UαR]I acts on interval I = {1, . . . ,M} as

[UαR]Ia
†
j [UαR]−1

I = e−iαb†M−j+1, [UαR]Ib
†
j [UαR]−1

I = e−iαa†M−j+1, [UαR]I |0〉 = |0〉 , (j = 1, . . . ,M). (3.33)

Even M and odd M correspond to the case of reflection centered at a lattice site or at a bond, respectively. We have

〈GS|[UαR]I |GS〉 =
1

2
(−1)

1
2M(M−1) sinαe−iMα. (3.34)

To obtain the quantum dimension of the edge complex fermions, α can be chosen as α = ±π2 , which implies that only
bond center partial reflection (odd M) provides Z4 phases ±i.

IV. PARTIAL ROTATIONS

In this section, we introduce a kind of nonlocal operators, partial n-fold rotations Cn,D, acting on a subdisk region
D in the 2-dimensional space manifold M . We find that the expectation value of partial rotations on the ground
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(a) (b)

FIG. 5. (a) Partial rotation on the ground state |Ψ〉. The figure shows the partial C4 rotation. (b) A construction of lens
space L(n, 1). The figure shows the boundary (∼= S2) of a 3-ball. The boundary of upper hemisphere is rotated by 2π/n angle,
and glued into the boundary of lower hemisphere. The shadow regions are identified.

state 〈GS |Cn,D |GS〉 (see Fig. 5 (a)) provides scale-independent quantities which characterize topological properties
of the bulk, if the length of the boundary of the subdisk D is sufficiently larger than the correlation length of bulk.
Intuitively, the action of partial Cn rotation can be thought of as a generalization of the procedure introducing a
cross-cap, which gives rise to lens spaces L(n, 1) if we act the partial rotation on S2 (see Fig. 5 (b)). In particular,
the case of n = 2 corresponds to RP 3 = L(2, 1).

In the following, we first temporarily depart from SPT phases and consider partial rotations in chiral topological
phases, and present the calculation of their ground state expectation value using their edge CFT. In this context, the
ground state expectation value of partial rotation can be used to extract a combination of modular S and T matrices:
It turns out that the low energy quasi particle description is consistent with lens space partition functions of (2 + 1)d
TQFTs.33,90 Our derivation of the formula for the partial rotation is similar to Ref. 72, where they introduced the
partial lattice translation on the cylinder. The surgery construction of lens spaces from the solid torus is summarized
in Appendix B.

A. (2 + 1)d chiral topological phase and partial rotation and lens space

Let us consider a (2 + 1)d chiral topological phase. For simplicity, we assume that the ground state is unique.
We further assume the bulk is symmetric under Cn rotation symmetry. Here we consider a right moving CFT with
dispersion ε(k) ∼ vk for the boundary theories, where v > 0 is the velocity of excitations. The cases with left moving
chiral CFT will be briefly discussed later.

We would like to estimate the expectation value of the partial rotation 〈GS |Cn,D |GS〉 on a subdisk D for the
ground state over a space manifold M . The edge chiral CFT is described by Hamiltonian and momentum operators

H =
2πv

L
(L0 −

c

24
), P =

H

v
, (4.1)

where c is the central charge, and L = |∂D| is the length of the boundary. By using the cut and glue construction,79

the reduced density matrix ρD for the subdisk D is approximated by the edge CFT with temperature determined by
the correlation length ξ of bulk,

ρD =
e−

ξ
vH

Tr
[
e−

ξ
vH
] . (4.2)

Then, partial Cn rotation is nothing but translation by L/n on the edge CFT,

〈GS|Cn,D|GS〉 =
Tr
[
e−iP̃

L
n e−

ξ
vH
]

Tr
[
e−

ξ
vH
] =

e
2πi
n (〈L0〉− c

24 )
∑
a∈irreps. χa( iξL − 1

n )∑
a∈irreps. χa( iξL )

, (4.3)
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where

χa(τ) = tra[e2πiτ(L0− c
24 )] (4.4)

is the Virasoro character of the a-th irreducible representation, and the summation
∑
a∈irreps. runs over Virasoro

representations of the CFT realized in the boundary ∂D. The generator of the translation, P̃ , was normalized as

P̃ :=
1

v
(H − E0) =

2π

L

[
L0 −

c

24
− 〈L0 −

c

24
〉
]

(4.5)

so that P̃ |vac〉 = 0 on the vacuum state |vac〉 of the CFT. Here, E0 = 〈vac|H|vac〉 is the vacuum energy.
We want to estimate (4.3) for a sufficiently large subdisc, ξ/L� 1. Using modular transformations,

χa

(
i`− 1

n

)
= Sabχb

(
− 1

i`− 1
n

)
= (STn)abχb

(
− −ni`
i`+ 1

n

)
= (STnS)abχb

(
i

n2`
+

1

n

)
, (4.6)

(4.3) can be expressed as a low-temperature partition function as

〈GS |Cn,D |GS〉 =
e

2πi
n (〈L0〉− c

24 )
∑
a∈irreps.

∑
b(ST

nS)abχb(
iL
n2ξ + 1

n )∑
a∈irreps.

∑
b Sabχb(

iL
ξ )

(4.7)

where S and T are modular matrices. Notice that
∑
b runs over all irreps. of the theory, which should be contrasted

with
∑
a∈irreps.. This formula enables us to estimate the ground state expectation value of the partial rotation through

the highest weight state |hb〉,

χb

(
iL

n2ξ
+

1

n

)
=

∞∑
m=0

p(m)e
2πi( iL

n2ξ
+ 1
n )(hb+m− c

24 )

= e
2πi
n (hb− c

24 )e
− 2πL
n2ξ

(hb− c
24 )
(

1 +

∞∑
m≥1

p(m)e
2πi( iL

n2ξ
+ 1
n )m

)
∼ e 2πi

n (hb− c
24 )e

− 2πL
n2ξ

(hb− c
24 )
, (4.8)

where hb is the conformal weight and p(m) is the number of states with energy hb +m. Subleading contributions are

suppressed by the factor e
− 2πL
n2ξ . In the same way,

χb

(
iL

ξ

)
= e−

2πL
ξ (hb− c

24 )
(

1 +

∞∑
m≥1

p(m)e
− 2πL
n2ξ

m
)
∼ e− 2πL

ξ (hb− c
24 ). (4.9)

The mapping torus T 2×STnS S1 built from the modular transformation STnS is knows as the lens space L(n, 1).90

Thus, the partial Cn rotation is related to the partition function on the lens space.

1. Left mover chiral CFT

For a left-mover chiral edge excitation with dispersion ε(k) ∼ −vk (v > 0), the momentum operator is changed to
P = −H/v, which leads to the formula of the partial rotation for the left-mover chiral topological phases

〈GS|Cn,D|GS〉 =
Tr
[
eiP̃

L
n e−

ξ
vH
]

Tr
[
e−

ξ
vH
]

=
e

2πi
n (〈L0〉− c

24 )
∑
a∈irreps. χa( iξL + 1

n )∑
a∈irreps. χa( iξL )

=
e−

2πi
n (〈L0〉− c

24 )
∑
a∈irreps.

∑
b(ST

−nS)abχb(
iL
n2ξ − 1

n )∑
a∈irreps.

∑
b Sabχb(

iL
ξ )

, (4.10)

This is the complex conjugate of Eq. (4.3). Thus, the non-chiral CFT without on-site symmetry cannot provide
nontrivial U(1) phases in partial rotations. However, if there is an on-site symmetry, we can associate the partial
on-site transformation with the partial rotation, which offers a nontrivial U(1) phase as shown in Sec. IV C.



25

B. (2 + 1)d (px − ipy) chiral superconductor with rotation symmetry

For an application of partial rotations, let us consider a (px − ipy) superconductor:

H =
∑
k

[
ψ†(k)(

k2

2m
− µ)ψ(k) +

∆

2
ψ†(k)(kx − iky)ψ†(−k) +

∆

2
ψ(−k)(kx + iky)ψ(k)

]
(4.11)

where ∆(k) = ∆(kx − iky) (∆ > 0) is the gap function and k is momentum. We introduce a polar coordinate
(x, y) = (r cosφ, r sinφ). This model has the following continuum rotation symmetry Cθ,

Cθψ
†(r, φ)C−1

θ = e−
iθ
2 ψ†(r, φ+ θ), C2π = (−1)F . (4.12)

Note that the 2π rotation is the fermion parity.
On the disk geometry, the system supports a right-moving gapless chiral real fermion mode γ(`) localized at the

boundary. The fermion mode γ(`) can be constructed explicitly as

γ(
Lφ

2π
) ∼

[
e
iφ
2 +πi

4 ψ(r, φ) + e−
iφ
2 −

πi
4 ψ†(r, φ)

]
e
∫ r µ(r′)

∆ dr′ , (4.13)

up to a normalization constant, where the chemical potential µ(r) is chosen such that a finite disk geometry is realized,
µ(r) > 0 for r < L

2π and µ(r) < 0 for r > L
2π , and L is the circumference. (See Appendix D 1 for the derivation of Eq.

(4.13).) γ(`) obeys the real condition γ†(`) = γ(`) and the antiperiodic boundary condition γ(`+ L) = −γ(`), which
reflects the absence of exact zero energy states since there is no π-flux inside the disk D.91 The Hamiltonian of the
edge theory is given by

Hns =
2π∆

L

( ∑
m>0

m∈Z+ 1
2

mγ−mγm −
1

48

)
, P =

H

∆
. (4.14)

The free real chiral fermion CFT is characterized by the data92

c =
1

2
, (h1, hψ, hσ) = (0,

1

2
,

1

16
), (4.15)

S =
1

2

 1 1
√

2

1 1 −
√

2√
2
√

2 0

 , T = e−
πi
24

1
−1

e
πi
8

 , (4.16)

where c is the chiral central charge, (h1, hψ, hσ) is the set of dimensions (topological spin) in the CFT (for the vacuum,
fermion, and Ising spin sectors, respectively), and the modular S and T matrices are given in the basis (1, ψ, σ). The
Virasoro representations that appear in the NS sector is [1]⊕ [ψ].

1. Partial Cn rotation

Let us consider partial Cn := Cθ= 2π
n

rotation. First, we need to specify the action of the Cθ rotation on the gapless

edge excitation γ(`), which can be read off from the concrete expression (4.13) as

Cθγ(`)C−1
θ = γ(`+

θL

2π
). (4.17)

This is consistent with C2π = (−1)F because of the anti-periodic boundary condition. From the formula (4.7), the
expectation value of partial Cn rotation on the (px − ipy) superconductor is given by

〈GS|Cn,D|GS〉 =
e−

2πi
n

1
48

∑
a=1,ψ

∑
b(ST

nS)abχb(
iL
n2ξ + 1

n )∑
a=1,ψ

∑
b Sabχb(

iL
ξ )

. (4.18)

From (4.15), the matrix elements (STnS)ab are given by

STnS = e−
n
24πi · 1

4

1 + (−1)n + 2e
n
8 πi 1 + (−1)n + 2e

n
8 πi
√

2− (−1)n
√

2

1 + (−1)n − 2e
n
8 πi 1 + (−1)n + 2e

n
8 πi
√

2− (−1)n
√

2√
2 + (−1)n

√
2

√
2 + (−1)n

√
2 2− 2(−1)n

 , (4.19)
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and hence we have

e
2πi
n (h1− 1

24 )
∑
a=1,ψ

(STnS)a1 =

{
e−

(n2+2)πi
24n (n : even)

0 (n : odd)
(4.20)

e
2πi
n (hψ− 1

24 )
∑
a=1,ψ

(STnS)aψ =

{
2 cos(nπ16 )e

(n2+44)πi
48n (n : even)

e
(n2+11)πi

12n (n : odd)
(4.21)

e
2πi
n (hσ− 1

24 )
∑
a=1,ψ

(STnS)aσ =

{
0 (n : even)
1√
2
e−

(n2−1)πi
24n (n : odd)

(4.22)

To evaluate Eq. (4.18) to the leading order, we note

e−
2πi
n

1
48χb

(
iL

n2ξ
+

1

n

)
∼ e 2πi

n (hb− 1
24 )e

− 2πL
n2ξ

(hb− 1
48 )
. (4.23)

There is an even odd effect: The leading contributions come from the vacuum sector b = 1 for even n, and the b = σ
quasiparticle for odd n, whereas the b = ψ quasipaticle contributes to the next leading contribution. Summarizing,
we have

〈GS|Cn,D|GS〉 ∼

 exp
[
− (n2+2)πi

24n − (1− 1
n2 ) 1

48
2πL
ξ

]
(n : even)

exp
[
− (n2−1)πi

24n − ln
√

2− (1 + 2
n2 ) 1

48
2πL
ξ

]
(n : odd)

(4.24)

For odd n, in addition to the topological U(1) phase, there is a topological amplitude e− ln
√

2, which is an analog of
the topological entanglement entropy.93,94 Here we show some examples of partial Cn,D rotations:

〈GS|C2,D|GS〉 ∼ exp
[
− πi

8
− 3

4

2πL

ξ

1

48

]
, (4.25)

〈GS|C3,D|GS〉 ∼ exp
[
− πi

9
− ln

√
2− 11

9

2πL

ξ

1

48

]
, (4.26)

〈GS|C4,D|GS〉 ∼ exp
[
− 3πi

16
− 15

16

2πL

ξ

1

48

]
, (4.27)

〈GS|C5,D|GS〉 ∼ exp
[
− πi

5
− ln

√
2− 27

25

2πL

ξ

1

48

]
, (4.28)

〈GS|C6,D|GS〉 ∼ exp
[
− 19

72
πi− 35

36

2πL

ξ

1

48

]
, (4.29)

〈GS|C7,D|GS〉 ∼ exp
[
− 2πi

7
− ln

√
2− 51

49

2πL

ξ

1

48

]
, (4.30)

〈GS|C8,D|GS〉 ∼ exp
[
− 11

32
πi− 63

64

2πL

ξ

1

48

]
, (4.31)

〈GS|C9,D|GS〉 ∼ exp
[
− 10

27
πi− ln

√
2− 83

81

2πL

ξ

1

48

]
. (4.32)

By including higher energy states in χb(
iL
n2ξ + 1

n ), we can estimate the expectation value of partial rotation to higher

orders in ξ/L� 1. For example, the expectation value of partial Cn rotations at next-to-leading order is given by

〈GS|Cn,D|GS〉

∼


e−

(n2+2)πi
24n e−(1− 1

n2 ) 1
48

2πL
ξ + 2 cos(nπ16 )e

(n2+44)πi
48n e−[(1− 1

n2 ) 1
48 + 1

2n2 ] 2πL
ξ , (n : even, n 6= 8(mod 16))

e−
(n2+2)πi

24n e−(1− 1
n2 ) 1

48
2πL
ξ (1− e− 1

2
2πL
ξ ), (n : even, n = 8(mod 16))

1√
2
e−

(n2−1)πi
24n e−(1+ 2

n2 ) 1
48

2πL
ξ + e

(n2+11)πi
12n e−[(1− 1

n2 ) 1
48 + 1

2n2 ] 2πL
ξ , (n : odd)

(4.33)

For example,

〈GS|C4,D|GS〉 ∼ e−
3πi
16 e−

15
16

2πL
ξ

1
48 (1 +

√
2e

πi
2 e−

1
32

2πL
ξ ). (4.34)
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(a) (b)
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R

FIG. 6. (Color online) (a) Partial C4 rotation on the square lattice, and (b) Partial C6 rotation on the hexagonal lattice.

2. Partial fermion parity

In fermionic topological phases, the fermion parity symmetry is always preserved. Here, we consider the partial
fermion parity flip (−1)FD on the ground state of the (px − ipy) superconductor. The partial fermion parity flip was
discussed in detection of quantum phases in some literature.66,95 The bulk fermion parity transformation induces the
edge fermion parity transformation through (4.13) as

(−1)F γ(`)(−1)F = −γ(`). (4.35)

Then, the partial fermion parity flip on the disk D is given by

〈GS|(−1)FD|GS〉 =
Tr
[
(−1)F e−

ξ
vH
]

Tr
[
e−

ξ
vH
] =

χ1( iξL )− χψ( iξL )

χ1( iξL ) + χψ( iξL )
=

∑
b(S1b − Sψb)χb( iLξ )∑
b(S1b + Sψb)χb(

iL
ξ )

=

√
2χσ( iLξ )

χ1( iLξ ) + χψ( iLξ )
∼ exp

[
ln
√

2− 1

16

2πξ

L

]
. (4.36)

We observe that there emerges a scale-independent, topological contribution to the amplitude, eln
√

2. In topologically
trivial phases there is no such topological amplitude associated with the partial fermion parity flip since the entan-
glement Hamiltonian is trivial. Hence, the existence of a finite topological amplitude in the partial fermion parity flip
is a hallmark of topologically nontrivial phases.

3. Numerical results for lattice models

In this section, we provide numerical results for partial rotation using the lattice realizations of topological super-
conductors in class D. We should note that point group symmetries in two dimensional Bravais lattices are limited
to four possible cases which are C2, C3, C4, and C6. Here, we study two models: (px − ipy) superconductors (4.11)
on the square lattice and on the hexagonal lattice. The former can be furnished with C2 or C4 symmetry groups and
the latter can have C2, C3, and C6 symmetries. In the following, we verify that the partial rotation in these systems
obeys the generic form of Eq. (1.11). In particular, we show that the complex phase θ and the area law coefficient α
match those predicted in Eq. (4.24). We find the expectation value of the partial rotation by rearranging the position
of lattice sites inside the subsystem as shown in Fig. 6 and then compute the inner product of the two wave functions
Z = 〈GS|Cn,D |GS〉. One important fact here is that the subsystem must be invariant under Cn rotation, otherwise
we cannot perform this procedure, since the full lattice after performing the partial Cn rotation will not be the same
as the original one, if the subsystem is not Cn symmetric.

As the first model, we consider the tight-binding Hamiltonian

H = − t
2

∑
x

[ψ†x+iψx + ψ†x+jψx + h.c.] +
1

2

∑
x

[i∆ψ†x+iψ
†
x + ∆ψ†x+jψ

†
x + h.c.]− µ

∑
x

ψ†xψx (4.37)

on a square lattice with the basis vectors i and j. For −2t < µ < 0, this model describes a (px + ipy) superconductor
where the long-wavelength theory around k = 0 is given by Eq. (4.11). Figure 7(a) shows the complex phase of the
partial C2 and C4 rotations as a function of µ. It is evident that ∠Z = Im ln 〈GS|Cn,D|GS〉 is zero in the trivial phase,
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FIG. 7. (Color online) Complex phase ∠Z = Im ln 〈GS|Cn,D|GS〉 of the partial rotation over (a) square lattice, and (b)
hexagonal lattice. We set t = ∆. The total number of sites is N = 322 and the size of the transformed subsystem is Npart = 162

for (a) and Npart = 217 where R = 8 for (b).

Ratio Eq. (4.24) Numerics Difference (%)
C2/C4 4/5 0.810 1.2
C2/C6 27/35 0.754 2.3
C3/C6 44/35 1.262 -0.4

TABLE II. Ratios of area-law coefficients in Eq. (4.24) for Hamiltonian (4.37). t = ∆ and µ = −1.

while it is quantized in the topological phase and the numerical values are in perfect agreement with the predicted
values from Eq. (4.24).

In order to realize C6 point group symmetry and its subgroups C3 and C2, we study the hexagonal lattice version
of the (px − ipy) superconductor, given by the Hamiltonian

H = − t
2

∑
x,m

[ψ†x+emψx + h.c.] +
1

3

∑
x

[i∆eiθmψ†x+emψ
†
x + h.c.]− µ

∑
x

ψ†xψx (4.38)

where m = 1, 2, 3 denotes the nearest-neighbor lattice vectors e1 = i, e2 = 1
2 i +

√
3

2 j, and e3 = − 1
2 i +

√
3

2 j. The phase
θm is the angle between nearest-neighbor link and the horizontal axis, i.e. cos θm = em · i. Notice that e1−e2 +e3 = 0
which means only two vectors out of the three are independent and can be used to construct a basis for the lattice.
Here, the chiral (px − ipy) superconductor is realized in the limit −3t < µ < t where the long wavelength theory is
determined by expanding near k = 0. The results are shown in Fig. 7(b) which conform with Eq. (4.24).

We also check the exponentiated area law behavior by looking at the amplitude of the partial rotation as a function
of subsystem size. We show some typical results for the partial C4 and C6 rotations in Figs. 8(a) and (b), respectively.
The linear behavior in terms of subsystem perimeter is evident. In addition, we look at the ratio of the area law
coefficients given by Eq. (4.24) where the microscopic quantity ξ is cancelled and as a result we should get a model-
independent (topological) value. Table II shows that the numerically calculated ratios are quite close to the values
predicted by Eq. (4.24).

Let us now make our final remark in this section regarding the topological contribution γ in Eq. (1.11). A direct
way to compute this quantity is by looking at the y-intercept of the area law plots (lnZ versus L). However, we



29

5 10 15 20
subsystem linear size, L

0

2

4

5

6

−
ln
|Z
|

(a)
µ =−1.5
µ =−1.0
µ =−0.5

4 6 8 10 12
subsystem radius, R

0

4

8

12
−

ln
|Z
|

(b)
µ =−2.0
µ =−1.0
µ = 0.0

FIG. 8. (Color online) Amplitude |Z| = | 〈GS|Cn,D|GS〉 | of (a) partial C4 rotation on the square lattice (4.37), and (b)
partial C6 rotation on the hexagonal lattice (4.38) for various values of the chemical potential µ. Here, we set t = ∆. The total
number of sites is N = 322 and the dimension of the subsystem is given in terms of L and R (see Fig. 6) in each case. Solid
lines are linear fits to data points.
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FIG. 9. (Color online) (a) The scheme to extract topological contribution γ in the partial fermion parity transformation
(4.39). (b) Numerical results for the (px − ipy) superconductor (Eq. (4.37)) as a function of the chemical potential µ. We set
t = ∆. Here, the total system size is N = 402 and the size of subsystem A is NA = 162.

should note that the expression (1.11) is derived for subsystems with smooth edges and any partitioning of a lattice
inevitably results in sharp corners. Therefore, the y-intercept method is likely to fail on lattice models due to extra
contributions from the corners which add to γ and make the evaluation of γ imprecise. Fortunately, there is a
scheme93,96 to overcome this issue and remove the corner terms by writing the γ in the following way

γ = ln |ZA|+ ln |ZB |+ ln |ZC | − ln |ZAB | − ln |ZAC | − ln |ZBC |+ ln |ZABC | (4.39)

where A,B, and C are three corner sharing subsystems as shown in Fig. 9(a). We use this scheme to extract the

topological contribution ln
√

2 in the partial fermion parity flip as given in Eq. (4.36). We compute γ over a wide
range of µ and the results are shown in Fig. 9. Away from the critical point in the topological phase, γ is quantized to
ln
√

2. The same procedure can be done for the hexagonal lattice which yields the same results (we do not show them
here). It is worth noting that the above scheme cannot be used for partial Cn rotation since, as mentioned earlier, in
order to compute the partial rotation all subsystems must be Cn-invariant and this is not the case for some segments
such as C and BC.
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C. (2 + 1)d nonchiral superconductors with C2 rotation symmetry (ΩSpin
3 (BZ2))

Fermionic SPT phases (which are non-chiral) with on-site Z2 symmetry are classified by the spin cobordism group

ΩSpin
3 (BZ2) = Z8 where BZ2 is the classifying space of Z2 group.11,97,98 The generating manifold of the ΩSpin

3 (BZ2)
group is 3d real projective space RP 3 with an appropriate background Z2 gauge field. A generating model Hamiltonian
is given by the (px + ipy)↑ ⊕ (px − ipy)↓ superconductor

H = H↑ +H↓,

H↑/↓ =
∑
k

ψ†↑/↓(k)(
k2

2m
− µ)ψ↑/↓(k) +

∑
k

[∆
2
ψ†↑/↓(k)(kx ± iky)ψ†↑/↓(−k) + h.c.

]
, (4.40)

with the on-site Z2 flavor symmetry

Uψ†↑/↓(x)U−1 = ∓ψ†↑/↓(x). (4.41)

That is to say, the fermion parity symmetry for each spin up and down fermions is separately preserved.
To introduce a cross-cap to have RP 3 as the spacetime, we need to consider partial C2 rotation in the canonical

formalism (i.e., in terms of a given ground state wave function). However, there is no C2 rotation symmetry a priori
in this model. Thus, instead of imposing the non-spatial Z2 symmetry, we consider C2 symmetry in advance. The
breakdown of the Z classification of (2 + 1)d class D non-chiral superconductors with C2 rotation symmetry99 is also
given by Z8

100, which is natural from the point of view of TQFTs since C2 rotation symmetry is an orientation
preserving symmetry. The translation from the non-spatial Z2 symmetry to the C2 rotation symmetry in the same
topological class is as follows: We introduce a combined rotation symmetry C̃2 = UC2 from the on-site Z2 symmetry U

and the inherent continuum rotation symmetry for chiral (px±ipy) superconductors Cθψ
†
↑/↓(x)C−1

θ = e±iθ/2ψ†↑/↓(Cθx)

introduced in (4.12), where C2 = Cπ. Then, the C̃2 rotation is defined as

C̃2ψ
†
↑/↓(x)C̃−1

2 = −iψ†↑/↓(−x). (4.42)

Under this C̃2 rotation symmetry, the model Hamiltonian (4.40) is the generating model of the Z8 group. Finally, we
can forget the on-site Z2 symmetry U and the continuum rotation symmetry Cθ: the Z8 classification is ensured only
by the C̃2 rotation symmetry.

Let us evaluate the ground state expectation value of partial C̃2 rotation. The contribution from the (px − ipy)↓
sector is the same as (4.25). On the other hand, for the (px + ipy)↑ sector, since the gapless edge excitation has

left-moving chirality, the expectation value of partial C̃2 rotation is given by

〈GS↑|C̃2,D|GS↑〉 =
Tr
[
(−1)F eiP̃

L
2 e−

ξ
vH
]

Tr
[
e−

ξ
vH
]

=
eπi

1
48

∑
b

{
(ST−2S)1b − (ST−2S)ψb

}
χb(

iL
4ξ − 1

2 )∑
a=1,ψ

∑
b Sabχb(

iL
ξ )

∼ e−πi8 e− 3
4

2πL
ξ

1
48 . (4.43)

Therefore, the total expectation value is

〈GS|C̃2,D|GS〉 = 〈GS↑|C̃2,D|GS↑〉 〈GS↓|C̃2,D|GS↓〉 ∼ e−
πi
4 e−

3
2

2πL
ξ

1
48 . (4.44)

Thus, the U(1) phase in the expectation value of partial C̃2 rotation does capture the Z8 classification.

D. (2 + 1)d topological insulators with rotation symmetry

In this section, we discuss partial rotations in (2 + 1)d Chern insulators. In Chern insulators (particle number
conserving systems), partial rotation can be combined with continuous U(1) phase rotation, which should be contrasted
with the case of superconductors where a partial rotation can be combined with the discrete Z2 fermion parity
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transformation. To be specific, let us consider the following simple model realizing a chiral Chern insulator

H =
∑
k

ψ†(k)
[
(
k2

2m
− µ)σz + vkxσx + vkyσy

]
ψ(k)

=
∑
k

[
ψ†(k)(

k2

2m
− µ)σzψ(k) + v(kx − iky)ψ†1(k)ψ2(k) + h.c.

]
, ψ(k) = (ψ1(k), ψ2(k))T . (4.45)

This model is invariant under the continuous spatial rotation and the U(1) charge rotation

Cθψ
†(x)Cθ = ψ†(Cθx)

(
e−iθ/2 0

0 eiθ/2

)
, Ubψ

†(x)U−1
b = e−2πibψ†(x), b ∈ R/Z. (4.46)

On the disk geometry, the chiral Chern insulator supports a chiral (right-moving) gapless excitations localized on
the boundary, which can be created by the following complex fermion operator γ(`)

γ†(
Lφ

2π
) ∼ (e−iφ/2ψ†1(r, φ) + ieiφ/2ψ†2(r, φ))e−

∫ r dr′m(r′), (4.47)

where ` = Lφ/2π is the spatial coordinate along the boundary, and L is the circumference of the boundary. We have
chosen the gauge of γ(`) such that γ(`) satisfies the anti-periodic boundary condition γ(` + L) = −γ(`). With this
boundary condition, the Hamiltonian and momentum operator for the edge mode can be written as

H =
2πv

L

∑
m∈Z+1/2

m : γ†mγm : − 1

24
, P =

H

v
, (4.48)

where γm is the m-th Fourier mode of γ(`). Here, the Hamiltonian and momentum operator are normal ordered with
respect to the Fermi sea which is filled with γ†m(m < 0) fermions. A derivation of (4.47) and (4.48) are summarized
in Appendix D.

1. Partial rotation with U(1) charge transformation

We now calculate the expectation value of the partial Cθ rotation together with the partial U(1) charge transfor-
mation. The partial rotation Cθ,D on the disk D combined with the partial U(1) transformation Ub,D acts on the
boundary fermion operators as

UbCθγ
†(`)(UbCθ)

−1 = e−2πibγ†(`+
θL

2π
). (4.49)

These transformations are generated by the momentum and the U(1) charge defined by

P̃ =
2π

L

∑
m∈Z+1/2

m : γ†nγm :, Q̃ =
∑

m∈Z+1/2

: γ†mγm : . (4.50)

Here we regularized P̃ and Q̃ so that P̃ |FS〉 = Q̃ |FS〉 = 0 where |FS〉 is the Fermi sea of the edge theory. The
expectation value of Ub,DCθ,D is given by

〈GS|Ub,DCθ,D|GS〉 ∼
Tra= 1

2

[
e−2πiQ̃be−iP̃

θL
2π e−

ξ
vH
]

Tra= 1
2

[
e−

ξ
LH
] =

e−
iθ
24Z 1

2 ,b+
1
2
( iξL − θ

2π )

Z 1
2 ,

1
2
( iξL )

. (4.51)

Here, Za,b(τ) is the partition function of the right-mover complex fermion theory defined on the spacetime torus with
twisted boundary conditions

Za,b(τ) = Tra

[
e−2πi(Q̃+a− 1

2 )(b− 1
2 )e2πiτ(L0− 1

24 )
]

=
θa− 1

2 ,
1
2−b

(0|τ)

η(τ)
, (4.52)

where θa,b(z|τ) and η(τ) is the generalized theta function and the Dedekind eta function, respectively.101
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p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

n = 2 −π
4

π
4

n = 3 − 2π
9

π
9

π
9

n = 4 − 3π
8
−π

8
5π
8

−π
8

n = 5 − 2π
5
−π

5
2π
5

2π
5

−π
5

n = 6 − 19π
36
− 13π

36
5π
36

35π
36

5π
36

− 13π
36

n = 7 − 4π
7
− 3π

7
0 5π

7
5π
7

0 − 3π
7

n = 8 − 11π
16
− 9π

16
− 3π

16
7π
16

21π
16

7π
16

− 3π
16
− 9π

16

n = 9 − 20π
27
− 17π

27
− 8π

27
7π
27

28π
27

28π
27

7π
27

− 8π
27
− 17π

27

TABLE III. The U(1) phases of the partial U p
n
Cn rotation (4.58) of the topological insulator with rotational symmetry defined

in (4.45) for n = 2, . . . , 9 and p = 0, . . . , 8.

We now specialize to partial n-fold rotation Cn := C 2π
n

combined with with the n-fold U(1) transformation Ub= p
n

(p = 0, . . . , n− 1). By noting the a, b dependence and the modular transformation of Za,b(τ),

Za+1,b(τ) = Za,b(τ), Za,b+1(τ) = e−2πi(a− 1
2 )Za,b(τ),

Za,b(τ + 1) = e−πia
2+πi

6 Za,b−a(τ), Za,b(−
1

τ
) = e−2πi(a− 1

2 )(b− 1
2 )Z1−b,a(τ), (4.53)

one can show

〈GS|U p
n ,D

Cn,D|GS〉 =
e−

iπ
12nZ 1

2 ,
p
n+ 1

2
( iξL − 1

n )

Z 1
2 ,

1
2
( iξL )

=
e−

iπ
12n−

niπ
12 + p2πi

n Z 1
2 +n

2 ,
1
2−

p
n

( iLn2ξ + 1
n )

Z 1
2 ,

1
2
( iLξ )

(4.54)

by the same modular transformation as (4.6). When the circumference of the disk is sufficiently larger than the
bulk correlation length, L � ξ, we can approximate (4.54) by taking lowest energy states. The denominator is
approximated as

Z 1
2 ,

1
2

(
iL

ξ

)
∼ e 2πL

ξ
1
24 . (4.55)

As for the numerator, when n = even, the unique vacuum state |0〉 1
2

gives the leading contribution

Z 1
2 +n

2 ,
1
2−

p
n

(
iL

n2ξ
+

1

n

)
= Z 1

2 ,
1
2−

p
n

(
iL

n2ξ
+

1

n

)
∼ e− πi

12n e
2πL
n2ξ

1
24 (n : even). (4.56)

On the other hand, when n is odd, the ground state associated with the torus partition function has double degeneracy
originated from the zero mode. We have

Z 1
2 +n

2 ,
1
2−

p
n

(
iL

n2ξ
+

1

n

)
= Z0, 12−

p
n

(
iL

n2ξ
+

1

n

)
∼ (eπip/n + e−πip/n)e

2πi( iL
n2ξ

+ 1
n )( 1

8−
1
24 )

= 2 cos
πp

n
e
πi
6n e
− πL

6n2ξ (n : odd). (4.57)

Combining these contributions,

〈GS|U p
n ,D

Cn,D|GS〉 ∼
{
e

12p2−n2−2
12n πie−(1− 1

n2 ) 2πL
ξ

1
24 (n : even)

2 cos πpn e
12p2−n2+1

12n πie−(1+ 2
n2 ) 2πL

ξ
1
24 (n : odd)

(4.58)

The U(1) phases in (4.58) for n = 2, . . . , 9 and p = 0, . . . , 8 are summarized in Table III. We have confirmed that all
these results in the above table match with numerical calculations in two dimensional lattice models for n = 2, 3, 4,
and 6.

The expectation value of the partial U p
n
Cn rotation is related to the appropriate TQFT partition function on L(n, 1).

In the same way, the partial (U p
n
Cn)m rotation with n and m being coprime is related to the the lens space L(n,m).
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p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

n = 3 14π
9

2π
9

2π
9

n = 5 0 2π
5

8π
5

8π
5

2π
5

n = 7 10π
7

12π
7

4π
7

0 0 4π
7

12π
7

n = 9 50π
27

2π
27

20π
27

50π
27

38π
27

38π
27

50π
27

20π
27

2π
27

TABLE IV. The U(1) phases of the partial (U p
n
Cn)2 rotation (4.59) of topological insulator with rotational symmetry defined

in (4.45) for n = 3, 5, 7, 9 and p = 0, . . . , 8.

The expectation value of the partial (U p
n
Cn)m can be evaluated by using an appropriate modular transformation,

which is determined by the fraction expansion of n
m (see Appendix B.) For instance, for odd n = 2k + 1, the partial

(U p
2k+1

C2k+1)2 rotation is computed by using the modular transformation ST kST−2S as

〈GS|(U p
2k+1 ,D

C2k+1,D)2|GS〉 =
e−

iπ
6(2k+1)Z 1

2 ,
2p

2k+1 + 1
2
( iξL − 2

2k+1 )

Z 1
2 ,

1
2
( iξL )

=
e−

iπk(12k2+k(8−48p)+48p2−24p−3)
24k+12 Z 1

2 ,
1
2 + k

2 + p
2k+1

( iL
(2k+1)2ξ − k

2k+1 )

Z 1
2 ,

1
2
( iLξ )

∼ e−
iπk(3k2+k(2−12p)+12p2−6p−1)

6k+3 e
−(1− 1

(2k+1)2
) 2πL
ξ

1
24 .

(4.59)

The U(1) phases in (4.59) for n = 3, 5, 7, 9 and p = 0, . . . , 8 are summarized in Table IV. Notice that the boundary
condition of the space direction is still anti-periodic after the modular transformation in (4.59), which implies that the
partition function is approximated by the single vacuum state as in (4.56). For even n = 2k, the partial (U p

2k
C2k)2

transformation is the same as the partial U p
k
Ck transformation computed in (4.57).

2. (2 + 1)d non-chiral topological insulators with rotation symmetry (ΩSpinc

3 (BZn))

The calculations similar to the above results can be deployed to discuss a classification of SPT phases with Cn
rotation symmetry in non-chiral topological insulators: We first construct a model Hamiltonian and the Cn symmetry

in a similar way to Sec. IV C; we then introduce the combined C̃n symmetry from the model Hamiltonian with Zn
on-site symmetry and continuum rotation symmetry. The topological classification of non-chiral Chern insulators

with Zn symmetry is given by the Spinc bordsim group ΩSpinc

3 (BZn). The cobordism groups ΩSpinc

3 (BZn) and their
generating manifolds are derived by Bahri and Gilkey57,102 by use of the η-invariant of Dirac operators with a Spinc

structure. In Appendix E, we briefly summarize their results and a relation to the equivariant K-theory classification
at the free fermion level.

The third column in Table V shows the cobordism group ΩSpinc

3 (BZn) for n = 2, . . . , 9. (1− t) and (1− t2) represent
generating model Hamiltonians as follows: We consider a 4 flavor non-chiral Chern insulator

H1−tp =
∑
k

ψ†p(k)
[
(
k2

2m
− µ)σz + vkxσx + vkyσy

]
ψp(k)

+
∑
k

ψ†0(k)
[
(
k2

2m
− µ)σz + vkxσx − vkyσy

]
ψ0(k), (4.60)

ψs(k) = (ψs,1(k), ψs,2(k))T , s = p, 0, p ≥ 1. (4.61)

Here, subscripts of ψs(x), s ∈ {0, . . . n− 1} mean 1-dimensional representations of the Zn symmetry as Uψs(x)U−1 =

e−
2πis
n ψs(x). As shown in Table V, the generating models of ΩSpinc

3 (BZn) for n ≥ 3 are given by H1−t and H1−t2
which generate independent cyclic groups. In addition to the Zn symmetry, the Hamiltonian (4.60) has the continuum
rotation symmetry

Cθψ
†
p(x)C−1

θ = ψ†p(Cθx)e−iθσz/2, Cθψ
†
0(x)C−1

θ = ψ†0(Cθx)eiθσz/2. (4.62)
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Partial C̃n transformation The partial (C̃n)2 transformation Cobordism

H1−t H1−t2 H1−t H1−t2 ΩSpinc

3 (BZn)

n = 2 π
2

0 0 0 Z4[1− t]

n = 3 π
3

π
3

2π
3

2π
3

Z3[1− t]⊕ Z3[1− t2]

n = 4 π
4

π π
2

0 Z8[1− t]⊕ Z2[1− t2]

n = 5 π
5

4π
5

2π
5

8π
5

Z5[1− t]⊕ Z5[1− t2]

n = 6 π
6

2π
3

π
3

π
3

Z12[1− t]⊕ Z3[1− t2]

n = 7 π
7

4π
7

2π
7

8π
7

Z7[1− t]⊕ Z7[1− t2]

n = 8 π
8

π
2

π
4

π Z16[1− t]⊕ Z4[1− t2]

n = 9 π
9

4π
9

2π
9

8π
9

Z9[1− t]⊕ Z9[1− t2]

TABLE V. The 2nd and 3rd (4th and 5th) columns show the U(1) complex phases of the expectation value of the partial

C̃n ((C̃n)2) rotation 〈GS|C̃n|GS〉 (〈GS|(C̃n)2|GS〉) on the Hamiltonian (4.60) with p = 1 and 2, respectively. The rightmost
column show the Spinc cobordsim group classification of SPT phases with on-site Zn symmetry. The notation Zq[1− tp] means

that the Spinc cobordism group ΩSpinc

3 (BZn) consists of Zq groups generated by the Hamiltonian H1−tp defined in (4.60).

We introduce the combined n-fold rotation symmetry by C̃n := UCn where Cn = Cθ= 2π
n

.

Let us evaluate the expectation value of the partial C̃n rotation with respect to the ground state of (4.60). The
expectation value is expected to simulate the path integral (the partition function) on lens spaces with background

Spinc structures with a Zn gauge field. The contribution from the ψp fermion, 〈GSp|C̃n,D|GSp〉, is the same as the
previous section. On the other hand, for the ψ0 fermion sector, since the gapless edge excitation has left-moving
chirality, the expectation value of the partial Cn rotation is given by the complex conjugate of (4.54),

〈GS0|C̃n,D|GS0〉 =
Tra= 1

2

[
eiP̃

L
n e−

ξ
vH
]

Tra= 1
2

[
e−

ξ
vH
] = 〈GS|Cn,D|GS〉∗ . (4.63)

In the same way, the expectation value of the partial (C̃n)2 rotation with respect to the ground state (4.60) is

computed. The total U(1) phases of the expectation value 〈GS|C̃n,D|GS〉 and 〈GS|(C̃n,D)2|GS〉 are summarized in
Table V. To compare with SPT phases with on-site Zn symmetry, we list the Spinc cobordisms in the rightmost
column of Table V.

It is interesting to note that, from Table V, the partial (C̃n)2 rotation provides less information than the partial

C̃n rotation. Except for n = 2, 6, the U(1) phase of the partial (C̃n)2 rotation is twice that of the partial C̃n
rotation. As an example, let us focus on the C3 rotation symmetry. The Spinc cobordism with Z3 on-site symmetry,
ΩSpinc(BZ3) = Z3 ⊕ Z3, suggests the existence of two inequivalent/independent SPT phases which are generated by
Hamiltonians (4.60) with p = 1 and 2, respectively. In general, in order to confirm that the classification of SPT
phases is given by two or more Abelian groups (e.g., Zp ⊕ Zq), multiple many-body invariants are needed. (I.e.,

multiple many-body invariants are required to distinguish all possible SPT phases.) However, the partial C̃3 and

(C̃3)2 rotations give rise to the same U(1) phases for ground states of both Hamiltonians H1−t and H1−t2 , which

implies that the partial C̃3 and (C̃3)2 rotations cannot distinguish these two series of SPT phases. The ground state

expectation value of the full C̃3 rotation103 is a candidate for the manybody topological invariant to differentiate these
two groups of SPT phases.

More generically, for even n, the expectation value of the partial C̃n rotations gives rise to the U(1) phases which
are consistent with the cobordism classification of fermionic SPT phases protected by the on-site Zn symmetry. On

the other hand, for odd n, there is a mismatch between partial C̃n rotations and cobordism groups: The partial C̃n
rotation gives at least one Z2n SPT phase whereas ΩSpinc

3 (BZn) = Zn ⊕ Zn. This mismatch suggests that either one
of the following statements can be true: (i) The SPT phase protected by Cn rotation symmetry for odd n includes a
Z2n phase, which differs from the SPT phase protected by on-site Zn symmetry. I.e., the statement/conjecture made

in the end of Sec. I C is not correct in this case. (ii) The Z2n U(1) phases associated with the partial C̃n rotation for
odd n is not stable; that is, it reduces to the Zn U(1) phase under perturbations and/or disorder. We wish to clarify
this point in a future work.



35

FIG. 10. Partial inversion on a ground state on 3d space torus T 3. The partial inversion transformation is performed only on
inside of the 3-ball D (the shadow region).

E. (2 + 1)d nonchiral superconductors with Cn rotation symmetry (n ≥ 3)

Here, we briefly comment on how to construct n-fold rotation symmetry in non-chiral superconductors for n ≥ 3. To
this end, let us first consider how to realize an on-site Zn symmetry in real fermion systems. Since a single-component
real fermion field does not have the U(1) phase degree of freedom, the Zn symmetry on the one-component real
fermion cannot be introduced except for n = 2. To define Zn symmetry on real fermions, it is necessary to introduce
a complex fermion operator φ(x) consisting of two real fermion operators χ(x), η(x) as

φ†(x) = χ(x) + iη(x), φ(x) = χ(x)− iη(x). (4.64)

The on-site Zn symmetry is now defined such that the complex fermion operator transforms as a 1-dimensional
representation of Zn, Uφ†(x)U−1 = e−2πip/nφ†(x), p = 0, . . . , n − 1, which is equivalent to in terms of the real
fermions,

Uχ(x)U−1 = cos
2πp

n
χ(x) + sin

2πp

n
η(x), Uη(x)U−1 = − sin

2πp

n
χ(x) + cos

2πp

n
η(x). (4.65)

As the combined transformation C̃2 in Sec. IV D 2, the on-site Zn phase rotation can be combined with Cn rotation

to define C̃n rotation. The computation of the ground state expectation value of the partial C̃n rotation is recast into
the calculation presented in Sec. IV D 2.

V. PARTIAL INVERSIONS

There are SPT phases in (3 + 1)d, which are protected by orientation-reversing symmetry, and the generating
manifold of the relevant cobordism group is the 4d real projective space, RP 4. For example, (3 + 1)d topological
superconductors with inversion/reflection symmetry, which are the CPT dual of class DIII time-reversal symmetric

topological superconductors, are classified by the Pin+ cobordism group, ΩPin+

4 (pt) = Z16. The abelian group Z16 is
generated by RP 4.11,71 In this section, given a ground state wave function and symmetry actions, we aim at directly
computing the many-body topological invariant associated to RP 4. RP 4 is not a mapping torus, and hence we need to
employ a partial symmetry operation similar to partial reflection introduced in Sec. III. Topologically, RP 4 is realized
by inserting a cross-cap in S4. The path-integral on RP 4 is expected to be simulated by considering an expectation
value of the partial inversion operator ID defined for a subregion D, which is a three-ball of the total system (Fig. 10).

Taking (3 + 1)d topological superconductors and insulators as an example, we will demonstrate below that the
expectation value of the partial inversion correctly reproduces the known topological classification. We will evaluate
the expectation value of partial inversion both numerically and analytically. For our analytical calculations, we will
again make use of the cut and glue construction:79 We assume that the reduced density matrix for the 3-ball D,
obtained by taking the partial trace TrD̄ for the complimentary region D̄ = T 3\D of the pure state |GS〉〈GS|, is
given approximately by the canonical thermal density matrix of a gapless theory (CFT) realized on the boundary
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S2 = ∂D. The fictitious temperature is determined by the correlation length ξ of the bulk. Namely,

ρD = TrT 3\D
[
|GS〉 〈GS|

]
∼ e−

ξ
vHS2

Tr
[
e−

ξ
vHS2

] , (5.1)

where v is a velocity of gapless theory on S2. The gapless theory is defined on the spacetime manifold S2(R)×S1(ξ/v)
where R is the radius of the 3-ball D. We assume, for simplicity, that the Hamiltonian HS2 is rotation symmetric,
and exclude the possibility of surface topological order.24 The expectation value of the partial inversion is given in
terms of the gapless surface theory as the expectation value of an antipodal map IS2 on S2:

〈GS|ID|GS〉 ∼
Tr
[
IS2e−

ξ
vHS2

]
Tr
[
e−

ξ
vHS2

] , IS2 : (θ, φ) 7→ (π − θ, φ+ π), (5.2)

where (θ, φ) is the polar coordinates of S2. We will be interested in the behavior of (5.2) for sufficiently large R,
R� ξ.

In this section, we deal with two examples of free theories: class D superconductors with inversion symmetry and
class A insulators with inversion symmetry. It will turn out that the surface CFT calculations of partial inversions
indeed provide Z16 and Z8 topological invariants.10,11,14,15,100,104 We also show numerical calculations for lattice
models, in which the results are consistent with the calculation of the surface CFTs. A generalization to higher
spacetime dimensions will be discussed at last.

A. (3 + 1)d superconductors with inversion symmetry (ΩPin+

4 (pt) = Z16)

Let us consider (3 + 1)d topological superconductors protected by inversion symmetry I with I2 = (−1)F . The

topological classification is given by the Pin+ cobordism group, ΩPin+

4 (pt) = Z16. Notice that the π rotation Cπ of
the real fermions are associated with ±i phase as shown in (4.12), which implies that the inversion transformation
I = CπR with I2 = (−1)F in 3-space dimensions is equivalent to the reflection transformation with R2 = 1, that is,
the Pin+ structure. The generating manifold is RP 4.11,71,100 A convenient model Hamiltonian, which describes the
3He-B phase, is given by

H =
∑
k

Ψ†(k)
[( k2

2m
− µ

)
τz + ∆τxσ · k

]
Ψ(k), Ψ(k) = (ψ↑(k), ψ↓(k), ψ†↓(−k),−ψ†↑(−k))T . (5.3)

The model is invariant under inversion defined by

Iψ†σ(x)I−1 = iψ†σ(−x), (σ =↑, ↓). (5.4)

To compute the expectation value of partial inversion using the cut and glue construction, we first look for the
effective surface theory on the boundary of the 3-ball.105 We consider the Hamiltonian (5.3) on the open 3-ball
with radius R. We introduce a polar coordinate (x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ). Instead of specifying a
boundary condition, we consider the following Jackiw-Rebbi type domain wall one-particle Hamiltonian

H = −i∆τx(σx∂x + σy∂y + σz∂z) + µ(r)τz. (5.5)

with µ(r) < 0 for r < R and µ(r) > 0 for r > R. From a straightforward calculation (Appendix D 2 b), we obtain the
explicit form of the complex fermion operators γ†(θ, φ) creating gapless surface excitations

γ†(θ, φ) ∼
[
− e−iφ2 sin

θ

2

{
iψ†↑(r, θ, φ) + ψ↓(r, θ, φ)

}
+ ei

φ
2 cos

θ

2

{
iψ†↓(r, θ, φ)− ψ↑(r, θ, φ)

}]
e−

∫ r µ(r′)
∆ dr′ ,

γ(θ, φ) ∼
[
− e−iφ2 cos

θ

2

{
ψ†↑(r, θ, φ) + iψ↓(r, θ, φ)

}
− eiφ2 sin

θ

2

{
ψ†↓(r, θ, φ)− iψ↑(r, θ, φ)

}]
e−

∫ r µ(r′)
∆ dr′ . (5.6)

Notice that the anti-periodic boundary condition in the φ direction, γ†(θ, φ + 2π) = −γ†(θ, φ), is satisfied. In terms
of these fermion operators, the effective surface BdG Hamiltonian is given by

HS2 =

∫
sin θdθdφ

(
γ†(θ, φ),−γ(θ, φ)

)
H
(

γ(θ, φ)
−γ†(θ, φ)

)
,

H =
∆

R

(
0 −i∂θ − 1

sin θ∂φ − i cot θ
2

−i∂θ + 1
sin θ∂φ − i cot θ

2 0

)
. (5.7)
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The one-particle Hamiltonian H is solved by using the monopole harmonics Y gl,m(θ, φ) with g = ± 1
2 (see, for

example, Ref. 106):

HΨ±n,m(θ, φ) = ±n∆

R
Ψ±n,m(θ, φ), Ψ±n,m(θ, φ) =

1√
2

 Y
− 1

2

n− 1
2 ,m

(θ, φ)

∓iY
1
2

n− 1
2 ,m

(θ, φ)

 ,

n = 1, 2, . . . , m = −(n− 1

2
), . . . , n− 3

2
, n− 1

2
. (5.8)

There is no zero mode, which is consistent with the absence of a monopole inside of the 3-ball D. The degeneracy of
the states with the eigenvalue ±n∆

R is 2|n|. The explicit form of the monopole harmonics is106

Y gl,m(θ, φ) = 2m

√
(2l + 1)(l −m)!(l +m)!

4π(l − g)!(l + g)!
(sin

θ

2
)−(m+g)(cos

θ

2
)−(m−g)P

(−m−g,−m+g)
l+m (cos θ)eimφ

= (−1)l+m

√
(2l + 1)(l −m)!(l +m)!

4π(l − g)!(l + g)!
eimφ

∑
n

(−1)n
(
l − g
n

)(
l + g

g −m+ n

)
(sin

θ

2
)2l−2n−g+m(cos

θ

2
)2n+g−m

(5.9)

where Pα,βn (x) is the Jacobi polynominals and sum
∑
n runs over all possible integers. The periodicities of eigenstates

agree with anti-periodic boundary condition of γ(θ, φ), Ψ±n,m(θ, φ + 2π) = −Ψ±n,m(θ, φ). In terms of these eigen
functions, we introduce the Bogoliubov operators χ†n,m for the positive energy states by

χ†n,m :=

∫
sin θdθdφ

[ 1√
2
Y
− 1

2

n− 1
2 ,m

(θ, φ)γ†(θ, φ) + i
1√
2
Y

1
2

n− 1
2 ,m

(θ, φ)γ(θ, φ)
]
, (n > 0). (5.10)

In terms of the Bogoliubov operators, the Hamiltonian HS2 can be written as

HS2 =
∆

R

∑
n∈Z,n>0

∑
m=−(n− 1

2 ),··· ,n− 3
2 ,n−

1
2

nχ†n,mχn,m. (5.11)

1. Partial inversion

To compute the partial inversion on the surface theory (5.11), we first derive the antipodal transformation IS2 on
the Bogoliubov operators χn,m. It is induced by the inversion transformation in the bulk (5.4) through (5.6), (5.7),
and (5.10) as

IS2χ†n,mI
−1
S2 = i(−1)nχ†n,m, IS2χn,mI

−1
S2 = −i(−1)nχn,m, (n > 0). (5.12)

Here, we have used

Iγ†(θ, φ)I−1 = −iγ(π − θ, φ+ π), Iγ(θ, φ)I−1 = iγ†(π − θ, φ+ π),

Y
1
2

n− 1
2 ,m

(π − θ, φ+ π) = (−1)niY
− 1

2

n− 1
2 ,m

(θ, φ), Y
− 1

2

n− 1
2 ,m

(π − θ, φ+ π) = (−1)niY
1
2

n− 1
2 ,m

(θ, φ). (5.13)

As explained around (5.2), the expectation value of the partial inversion is given by that of the antipodal map
within the surface theory:

〈GS|ID|GS〉 ∼
Tr
[
IS2e−

ξ
∆HS2

]
Tr
[
e−

ξ
∆HS2

] =

∏∞
n=1(1 + i(−q)n)2n∏∞
n=1(1 + qn)2n

, q = e−
ξ
R . (5.14)

Here we normalized the antipodal transformation IS2 so that IS2 |0χ〉 = |0χ〉 where |0χ〉 is the Fock vacuum of χn,m
fermions.

Equation (5.14) can be evaluated in the same way as in Ref. 107. Here we briefly sketch the method. What we
want to compute are

I1(q) =

∞∑
n=1

n ln(1 + qn), I2(q) =

∞∑
n=1

n ln(1 + i(−q)n) (5.15)
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for δ � 1 with q = e−δ. In terms of I1,2(q), the partial inversion is given by

〈GS|ID|GS〉 ∼ exp
[
2I2(e−

ξ
R )− 2I1(e−

ξ
R )
]
. (5.16)

By using the Cahen-Mellin integral

e−y =
1

2πi

∫ c+i∞

c−i∞
y−sΓ(s)ds (5.17)

for c > 0, Re(y) > 0 and y−s on the principal branch (Γ(s) is the Gamma function), I1(q) is written as

I1(q = e−δ) = −
∑
n

n

∞∑
r=1

r−1(−1)re−δnr

= −
∑
n

n

∞∑
r=1

r−1(−1)r
1

2πi

∫ c+i∞

c−i∞
ds(δnr)−sΓ(s) (c� 0)

=
1

2πi

∫ c+i∞

c−i∞
dsδ−s

[
Γ(s)ζ(s− 1)(1− 2−s)ζ(s+ 1)

]
, (5.18)

where c is sufficiently far to the right. ζ(s) =
∑∞
n=1 n

−s is the Riemann zeta function. From the contour integral, one
finds the contributions from the poles of the integrand F (s) = Γ(s)ζ(s− 1)(1− 2−s)ζ(s+ 1) as

I1(q = e−δ) =
∑

s∈poles

Res(F, s)

δs
. (5.19)

(There is no multiple pole in this case.) To estimate this for small δ > 0, it is sufficient to include only poles with
Re(s) ≥ 0. Furthermore, the pole at s = 0 is scale independent, i.e., it is a topological contribution. There are two
simple poles at s = 0 and s = 2. (Recall that ζ(s) has a single pole at s = 1 with residue 1, Γ(s) has single poles at

integers n ≤ 0 with residue (−1)n

n! , and ζ(s) has zeros at negative even integers. One of the poles at s = 0 is canceled
by zero of (1− 2−s).) One can show

I1(q = e−δ) =
3

4
ζ(3)δ−2 − 1

12
ln(2) +

δ2

960
+ · · · . (5.20)

Similarly, we obtain (see Appendix F)

I2(q = e−δ) =
1

2πi

∫ c+i∞

c−i∞
dsδ−s

[
− 21−sΓ(s)ζ(s− 1)Lis+1(−i)− (1− 21−s)Γ(s)ζ(s− 1)Lis+1(i)

]
=

3

32
ζ(3)δ−2 − πi

16
− 1

24
ln(2) +

δ2

480
+ · · · . (5.21)

Here, Lis(z) :=
∑∞
n=1

zn

ns is the polylogarithm function. Let us consider the imaginary part of I2(q),

Im
[
I2(q = e−δ)

]
=

1

2πi

∫ c+i∞

c−i∞
dsδ−sΓ(s)ζ(s− 1)(22−s − 1)β(s+ 1), (5.22)

where β(s) =
∑∞
n=0

(−1)n

(2n+1)s is the Dirichlet beta function. There is a dramatic cancellation: Since β(s+ 1) has zeros

at even negative integers s = −2,−4,−6, . . . , all the poles from Γ(s) are canceled with zeros! Moreover, the zero from
(22−s − 1) at s = 2 is canceled with the pole from ζ(s− 1). Eventually, there remains only one pole at s = 0, which
implies an exactly scale-independent value

Im
[
I2(q = e−δ)

]
= −πi

16
. (5.23)

Finally, we get the formula of partial inversion

〈GS|ID|GS〉 = | 〈GS|ID|GS〉 |eiθtop , θtop = −π
8
, (5.24)

| 〈GS|ID|GS〉 | ∼ exp
[ 1

12
ln(2)− 21

16
ζ(3)

(
R

ξ

)2 ]
. (5.25)

The topological U(1) phase e−
πi
8 is indeed consistent with the cobordism classification ΩPin+

4 (pt) = Z16. Also, observe

that in addition to the topological U(1) phase, a topological amplitude e
1
12 ln(2) appears.



39

−4 −2 0 2 4
µ/t

−1.0

−0.5

0.0

0.5

6
Z
/(

π/
4)

Top. II TrivialTrivial Top. I Top. I

FIG. 11. (Color online) Complex phase of the partial inversion ∠Z = Im ln 〈GS|ID|GS〉 computed for 3D inversion symmetric
topological superconductor (class D). Top. I (II) corresponds to the phase with odd (even) number of gapless Majorana surface
states. Here, we set t = ∆. The size of total system and subsystem are N = 123 and Npart = 63, respectively.

2. Numerical results for lattice systems

In this section, we provide a direct numerical evidence for the partial inversion of the three-dimensional lattice
models. A generating model in class D is given by the BdG Hamiltonian

Ĥ =
1

2

∑
k

Ψ†(k)h(k)Ψ(k), (5.26)

on a cubic lattice, where

h(k) = [−t(cos kx + cos ky + cos kz)− µ] τz + ∆ [sin kxτxσx + sin kyτxσy + sin kzτxσz] . (5.27)

in which the τ and σ matrices act on particle-hole and spin subspaces, respectively. As mentioned earlier, the above
Hamiltonian also describes the 3He-B phase. The inversion symmetry in this model is defined as in Eq. (5.4). This
model exhibits three different topological phases depending on the chemical µ potential as follows:

1. |µ| < t: Top. II. This phase supports an even number of 2d gapless Majorana surface states. It is topologically
equivalent to a stack of 2d topological superconductors in the same symmetry class.

2. t < |µ| < 3t: Top. I. This phase hosts a 2d gapless Majorana surface states.

3. |µ| > 3t: Trivial. No topological surface states.

Figure 11 shows the calculated complex phases ∠Z = Im ln 〈GS|ID|GS〉 of the partial inversion for various values
of µ. This quantity is computed in a similar fashion to the two-dimensional case that is to calculate the inner product
Z = 〈GS| ID |GS〉 after rearranging the lattice sites in the subsystem (to get ID |GS〉). Remarkably, the partial
inversion gives the correct Z16 and Z8 phases in the topological phases characterized by odd and even number of
gapless Majorana surface modes, respectively. We should note that the latter case is topologically equivalent to
stacking two dimensional reflection symmetric class D SPT layers which obey a Z8 classification.

3. Other partial symmetry operations

In addition to partial inversion, we now discuss three additional partial symmetry operations: partial fermion
parity, partial reflection, and partial π-rotation. In the partial fermion parity flip and the partial reflection, we have
a logarithmic term log(R/ξ) as will be shown in Eq. (5.31). The partial π-rotation gives rise to a scale-independent
contribution (5.39).

a. Partial fermion parity Following our discussion on (2 + 1)d topological superconductors in Sec. IV B 2, let us
consider the partial fermion parity flip on (3 + 1)d topological superconductors. Since the partial fermion parity flip
induces the fermion parity flip on the surface fermions as (−1)Fχn,m(−1)F = −χn,m, we have

〈GS|(−1)FD|GS〉 ∼
Tr
[
(−1)F e−

ξ
∆HS2

]
Tr
[
e−

ξ
∆HS2

] =

∏∞
n=1(1− qn)2n∏∞
n=1(1 + qn)2n

= exp
[
2I3(q = e−

ξ
R )− 2I1(q = e−

ξ
R )
]

(5.28)
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with

I3(q = e−δ) =

∞∑
n=1

n ln(1− qn) = − 1

2πi

∫ c+i∞

c−i∞
dsδ−s

[
Γ(s)ζ(s− 1)ζ(s+ 1)

]
. (5.29)

The integrand has a double pole at s = 0, which leads to an algebraic power law for δ = ξ
R ∼ 0,

I3(q = e−δ) ∼ −ζ(3)δ−2 − 1

12
ln(δ)− 1

12
+ ln(A), (5.30)

where A ∼= 1.2824 . . . is the Glaisher-Kinkelin constant. Finally, we obtain the following formula for the expectation
value of the partial fermion parity in the (3 + 1)d topological superconductor

〈GS|(−1)FD|GS〉 ∼ exp
[
− 1

6
+

1

6
ln(2) + 2 ln(A) +

1

6
ln

(
R

ξ

)
− 7

4
ζ(3)

(
R

ξ

)2 ]
. (5.31)

It should be noted that the logarithmic term appears in addition to the area law term. A similar logarithmic
contribution to the the entanglement entropy in gapped phases is discussed in Ref. 108, where the authors pointed
out that the non-flatness of the curvature of the boundary of a region D is a necessary condition to give a constant
part of the entanglement entropy.

b. Partial reflection The topological classification of (3 + 1)d superconductors with reflection symmetry with
R2 = 1 is the same as the topological classification of inversion symmetric superconductors discussed in Sec. V A, i.e.,

it is given by ΩPin+

4 (pt) = Z16, and the generating manifold is RP 4. However, it seems difficult to make a 4d analog
of the cross-cap leading to RP 4 by using the reflection. Let us consider a general partial point group transformation
on a subregion D in a 3-space manifold. In order to make the resulting 4-manifold free from a singularity, the partial
transformation should act freely on the boundary ∂D. In the case of the reflection x 7→ −x, only the partial reflection
on the subregion in the form of [−L,L] ×M2 (M2 is a 2-space manifold) meets this condition, which leads to the
4-manifold RP 2 ×M2, not RP 4. Here, we discuss the partial reflection on a 3-ball D. Let us consider the reflection
symmetry Rz for the model (5.3),

Rzψ
†
i (x, y, z)R

−1
z = ψ†j (x, y,−z)[σz]ji. (5.32)

By using the following relations

Rzγ
†(θ, φ)R−1

z = iγ(π − θ, φ), Rzγ(θ, φ)R−1
z = −iγ†(π − θ, φ),

Y
1
2

n− 1
2 ,m

(π − θ, φ) = (−1)n+ 1
2−mY

− 1
2

n− 1
2 ,n−

1
2−m

(θ, φ), Y
− 1

2

n− 1
2 ,m

(π − θ, φ) = (−1)n+ 1
2−mY

1
2

n− 1
2 ,n−

1
2−m

(θ, φ), (5.33)

We see that the Bogoliubov operators are transformed as

Rzχ
†
n,mR

−1
z = (−1)n+ 1

2−mχ†n,m, Rzχn,mR
−1
z = (−1)n+ 1

2−mχn,m, (n > 0). (5.34)

The half of degenerate energy states labeled by n have the negative reflection parity Rz = −1. Then, the partial
reflection on the 3-ball D is given by

〈GS|Rz,D|GS〉 ∼
Tr
[
Rze

− ξ
∆HS2

]
Tr
[
e−

ξ
∆HS2

] =

∏∞
n=1(1− qn)n∏∞
n=1(1 + qn)n

, q = e−
ξ
R , (5.35)

which is exactly the square root of the partial fermion parity flip (5.28). This is real positive number and has no
information for the Z16 classification.

c. Partial π-rotation Finally, we consider the π-rotation symmetry of the model (5.3),

Czψ
†
i (x, y, z)C

−1
z = −iψ†j (−x,−y, z)[σz]ji. (5.36)

From the point of view of TQFTs, the existence of π-rotation symmetry is equivalent to the on-site Z2 symmetry, thus

we expect the topological classification is given by the Spin cobordism ΩSpin
4 (BZ2) = Z.11 Here, the integer cobordism

group means that there is a topological action parameterized by a ∈ U(1) through Hom
[
ΩSpin

4 (BZ2), U(1)
]

= U(1).

a ∈ U(1) is a material parameter determined by a model Hamiltonian similar to axion θ term in (3+1)d insulators.109

In the context of SPT phases, the topological action parameterized by U(1) does not mean the existence of a nontrivial
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SPT phase since all phases labeled by a ∈ U(1) are adiabatically connected unless there is a symmetry fixing a ∈ U(1)
to a discrete value.25

Here we compute the partial π-rotation on a 3-ball D. One can show

Czγ
†(θ, φ)C−1

z = γ†(θ, φ+ π), Czγ(θ, φ)C−1
z = γ(θ, φ+ π),

Y
1
2

n− 1
2 ,m

(π, φ+ π) = −i(−1)m+ 1
2Y

1
2

n− 1
2 ,n−

1
2−m

(θ, φ), Y
− 1

2

n− 1
2 ,m

(θ, φ+ π) = −i(−1)m+ 1
2Y
− 1

2

n− 1
2 ,n−

1
2−m

(θ, φ), (5.37)

then, we have

Czχ
†
n,mC

−1
z = i(−1)m+ 1

2χ†n,m, Czχn,mC
−1
z = i(−1)m+ 1

2χn,m, n > 0). (5.38)

The expectation value of the partial π-rotation on the 3-ball D is given by

〈GS|Cz,D|GS〉 ∼
Tr
[
Cze

− ξ
∆HS2

]
Tr
[
e−

ξ
∆HS2

] =

∏∞
n=1(1 + iqn)n(1− iqn)n∏∞

n=1(1 + qn)2n
= exp

[
I1(q = e−

2ξ
R )− 2I1(q = e−

ξ
R )
]

∼ exp
[ 1

12
ln(2)− 21

16
ζ(3)

(
R

ξ

)2 ]
. (5.39)

Note that this coincides with the amplitude part of the partial inversion (5.25).

B. (3 + 1)d insulators with inversion symmetry (ΩPinc

4 (pt) = Z8 ⊕ Z2)

In this section, we consider (3 + 1)d topological insulators protected by inversion symmetry. The topological
classification is given by the Pinc cobordism57

ΩPinc

4 (pt) = Z8 ⊕ Z2. (5.40)

The latter direct summand Z2 arises from bosonic SPT phases corresponding to one of Z2 of the unoriented cobordism
group ΩO4 (pt) = Z2⊕Z2.110 Our focus here is on the former direct summand Z8. This part is generated by RP 4, and
the following four-orbital free fermion model

H =
∑
k

ψ†(k)H(k)ψ(k), ψ(k) = {ψτ,σ}τ,σ=1,2,

H(k) = (
k2

2m
− µ)τz + ∆τxk · σ, (m,µ,∆ > 0), (5.41)

which is equivalent to the two copies of the (3 + 1)d superconductor (5.3). The inversion symmetry is defined by

Iψ†(x)I−1 = ψ†(−x)τz. (5.42)

In addition to the inversion symmetry, there is the U(1) charge conservation symmetry,

Ubψ
†(x)U−1

b = e−2πibψ†(x). (5.43)

As in the case of (3 + 1)d topological superconductors protected by inversion, the expectation value of the partial
inversion is a candidate of the Z8 SPT invariant. The U(1) phase in the expectation value of the partial inversion is
simply twice that of the (3 + 1)d superconductors. On the other hand, in the topological insulator system, there is
the additional charge U(1) symmetry, which can be combined with the partial inversion to introduce IDUb,D, where
ID and Ub,D is the partial inversion and partial U(1) transformation for the 3-ball D. We will focus on the role of
this U(1) twist.

1. Partial inversion with U(1) transformation

We first give an analytical evaluation of 〈GS|IDUb,D|GS〉. In the same way as in Sec. V A, we have a surface
entanglement Hamiltonian on S2 (see Appendix D 2 a)

HS2 =

∞∑
n=1

n− 1
2∑

m=−(n− 1
2 )

∆n

R

[
χ†n,mχn,m + χ−n,mχ

†
−n,m

]
. (5.44)
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Here, we have normal-ordered the fermion operators with respect to the fermi sea |FS〉, which is defined by fully

occupying states created by χ†−n,m(n > 0). In general, an entanglement chemical potential µe can be added, which is
determined by the geometries of the ballD and other region. Here, for simplicity, we assume µe = 0. The quasiparticles
operators χ†n,m are obtained from the surface Dirac fermion operators in the spherical coordinate γ1,2(θ, φ) as

χ†n,m :=

∫
sin θdθdφ

[ 1√
2
Y
− 1

2

n− 1
2 ,m

(θ, φ)γ†1(θ, φ)− i 1√
2
Y

1
2

n− 1
2 ,m

(θ, φ)γ†2(θ, φ)
]
,

χ†−n,m :=

∫
sin θdθdφ

[ 1√
2
Y
− 1

2

n− 1
2 ,m

(θ, φ)γ†1(θ, φ) + i
1√
2
Y

1
2

n− 1
2 ,m

(θ, φ)γ†2(θ, φ)
]
, (5.45)

where n > 0. The surface Dirac fermion operators are related to the bulk fermion operators as

γ†1(θ, φ) ∼
[
− e−iφ2 sin

θ

2

{
iψ†τ=1,σ=1(r, θ, φ) + ψ†τ=2,σ=1(r, θ, φ)

}
+ ei

φ
2 cos

θ

2

{
iψ†τ=1,σ=2(r, θ, φ) + ψ†τ=2,σ=2(r, θ, φ)

}]
e−

∫ r m(r′)
v dr′ , (5.46)

γ†2(θ, φ) ∼
[
e−i

φ
2 cos

θ

2

{
ψ†τ=1,σ=1(r, θ, φ) + iψ†τ=2,σ=1(r, θ, φ)

}
+ ei

φ
2 sin

θ

2

{
ψ†τ=1,σ=2(r, θ, φ) + iψ†τ=2,σ=2(r, θ, φ)

}]
e−

∫ r m(r′)
v dr′ . (5.47)

From the transformation law

Iγ†1(θ, φ)I−1 = γ†2(π − θ, φ+ π), Iγ†2(θ, φ)I−1 = −γ†1(π − θ, φ+ π), (5.48)

and Eq. (5.13), we note the partial inversion and partial U(1) charge transformation act on the quasiparticle operators
χ†n,m as

Iχ†n,mI
−1 = (−1)nχ†n,m, Iχ†−n,mI

−1 = −(−1)nχ†−n,m, (n > 0),

Ubχ
†
n,mU

−1
b = e−2πibχ†n,m. (5.49)

We fix constant phases associated with the antipodal map I and U(1) transformation so that I |FS〉 = mbUb |FS〉 =
|FS〉. Then, the expectation value of the combined partial inversion with partial U(1) charge transformation can be
evaluated as

〈GS|UbI|GS〉 ∼
Tr
[
UbIe

− ξ
∆ H̃S2

]
Tr
[
e−

ξ
∆ H̃S2

] =

∏∞
n=1(1 + e−2πib(−q)n)2n(1− e2πib(−q)n)2n∏∞

n=1(1 + qn)2n(1 + qn)2n
. (5.50)

From Appendix F, the phase and amplitude of this expectation value, 〈GS|UbI|GS〉 = | 〈GS|UbI|GS〉 |eiθtop , are
evaluated as

θtop =

{
π
4 (0 < b < 1

2 )
−π4 (− 1

2 < b < 0)
, (5.51)

| 〈GS|UbI|GS〉 | = exp
[
−
(

3ζ(3) +
1

4

{
Li3(e4πib) + Li3(e−4πib)

})(R
ξ

)2

− 1

6
ln
∣∣∣ sin(2πb)

2

∣∣∣
+

3 + cos(4πb)

480 sin2(2πb)

( ξ
R

)2

+
125 + 68 cos(4πb)− cos(8πb)

96768 sin4(2πb)

( ξ
R

)4

+ · · ·
]
, (5.52)

for e−2πib 6= ±1. Notice that the result of the U(1) phase part eiθtop is exact, which is independent of the scale ξ/R.
The quantized scale-independent U(1) phase (5.51) is somewhat unexpected from the viewpoint of Pinc structure. In
the Pinc structure on RP 4, the holonomy associated to the Z2 nontrivial loop threading the cross-cap is quantized
to ±i. However, (5.51) means that even if the holonomy is not properly chosen to be e−2πib = ±i, the U(1) phase
of the partial inversion is well quantized. This agrees with the numerical calculation (see Fig. 13), where the plateau
structure of the U(1) phase becomes sharper as one increases the sizes of the subsystem. As b approaches the “phase
transition” points e−2πib = ±1, the higher-order terms proportional to (ξ/ sin(2πb)R)2` in (5.52) contribute to the
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FIG. 12. (Color online) The phase (∠Z) and modulus (|Z|) of the expectation value of the partial inversion, Z = 〈GS|ID|GS〉,
computed for the 3D inversion symmetric topological insulator (class A) as a function of the mass parameter m for various
values of the U(1) phase transformation b defined in Eq. (5.43). Strong (weak) TI refers to the phase with odd (even) number
of Dirac surface states. Here, we set t = r. The size of total system and subsystem are N = 123 and Npart = 63, respectively.

amplitude. At the points e−2πib = ±1, there appears a double pole at s = 0 and it gives an algebraic correction to
the amplitude, in addition to the area law decay, as

| 〈GS|Ub=0,1/2I|GS〉 |

= exp
[
− 7ζ(3)

2

(R
ξ

)2

+
1

6
ln
(R
ξ

)
+

12 ln(A)− 1 + ln(2)

6
− 1

720

( ξ
R

)2

− 1

25920

( ξ
R

)4

− · · ·
]
, (5.53)

c.f., (F.6) and (5.30).

2. Numerical results for lattice systems

In this section, we study the standard Wilson-Dirac Hamiltonian on a cubic lattice as a simple model of the
three-dimensional inversion-symmetric TI109,111

H =
1

2

∑
x

s=1,2,3

[
ψ†x+es(itαs − rβ)ψx + h.c.

]
+m

∑
x

ψ†xβψx (5.54)
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FIG. 13. (Color online) The phase (∠Z) and modulus (|Z|) of the expectation value of the partial inversion, Z = 〈GS|ID|GS〉,
computed for the 3D inversion symmetric topological insulator as a function of the U(1) phase transformation b defined in
Eq. (5.43). Here, we set t = r and m = 2. The sizes of the whole system and the subsystem are N = 163 and Npart = L3,
respectively.

where the Dirac matrices are given by

αs = τ1 ⊗ σs =

(
0 σs
σs 0

)
, β = τ3 ⊗ 1 =

(
I 0
0 −I

)
.

In this convention the σ and τ matrices act on the spin and orbital degrees of freedom respectively. Transforming to
reciprocal space, the Bloch Hamiltonian reads

h(k) =
∑

s=1,2,3

[
tαs sin ks − rβ cos ks

]
+mβ.

This model can exhibit a non-trivial 3D TI phase protected by the inversion symmetry which is defined by Eq. (5.42).
In fact, as the mass parameter m is varied, the Hamiltonian shows the following phases:

1. |m| < r: weak TI with an even number of Dirac cones on each boundary surface.

2. r < |m| < 3r: strong TI with a single Dirac cone on each boundary surface.

3. |m| > 3r: trivial phase equivalent to the atomic limit.

As shown in Fig. 12, we compute the complex phase ∠Z = Im ln 〈GS|UbI|GS〉 of the partial inversion for various
values of the U(1) phase ei2πb for t = r. The calculation procedure here is very similar to the two-dimensional case
where in order to get UbI |GS〉 we relocate the lattice points inside the subsystem according to the inversion symmetry
operator I and multiply the states by the U(1) phase given by Ub and finally the inner product Z = 〈GS|UbI |GS〉
is computed. In particular, we observe that as b changes from negative values to positive values the complex phase
transitions from −π/4 to π/4 (see Fig. 13). It is worth noting that as the subsystem is made larger, the transition
becomes sharper and sharper indicating that this change will turn into a discontinuity in the thermodynamic limit.
All these observations conform with our analytical results in the previous parts.

C. General even spacetime dimensions

The topological U(1) phase emerging in the expectation value of the partial inversion for inversion symmetric
topological superconductors can be generalized to any even spacetime dimensions. Let us consider the following BdG
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Hamiltonians which describe odd parity topological superconductors in (2p+ 1)-space dimensions:

H =
1

2

∑
k

Ψ†(k)H(k)Ψ(k), Ψ(k) = (ψ(k), ψ†(−k))T ,

H(k) = ∆

2p+1∑
µ=1

kµΓµ +mΓ2p+2, {Γµ,Γν} = 2δµν (µ, ν = 1, . . . , 2p+ 2). (5.55)

Here, we consider the gamma matrices having the minimum possible dimension to satisfy the reality condition112

p ≡ 0, 1 (mod 4) −→ 2p+1 × 2p+1,

p ≡ 2, 3 (mod 4) −→ 2p+2 × 2p+2. (5.56)

Inversion acts on the BdG Hamiltonian and the fermion operators as

IHI−1 = H, Iψ†(x)I−1 = iψ†(−x), (5.57)

Note that inversion (5.57) is CPT dual of time-reversal of class DIII for odd p and class BDI for even p: The
π rotation of the real fermions is associated with ±i phase as shown in (4.12), which implies that the inversion
transformation with I2 = (−1)F in (2p + 1)-dimensions is equivalent to the reflection transformation with R2 = 1
for odd p and R2 = (−1)F for even p. Also, R2 = 1 and R2 = (−1)F correspond to the TRS with T 2 = (−1)F and
T 2 = 1, respectively, due to the Wick rotation.11

We consider the reduced density matrix for a (2p+ 1)-dimensional ball of radius R, which can be described by the
surface theory on the sphere S2p (the Dirac Hamiltonian on S2p)113

Hsurf =
∆

R

[(
− i∂θ −

(2p− 1)i

2
cot θ

)
γ2p +

−i
sin θ

γi(ẽi −
1

2
ω̃ijkΣjk)

]
, (5.58)

where we have used the polar coordinates. The summations over i, j, k are implicit. θ is the angle from the north
pole, {ẽj}2p−1

j=1 is a vielbein on S2p−1, ω̃ijk = 1
2 (C̃ijk − C̃ikj − C̃jki) with [ẽi, ẽj ] =

∑2p
k=1 C̃ijkẽk, and Σjk = 1

4 [Γj ,Γk].

See Ref. 113 for more details. The dimension of gamma matrices {γi}2pi=1 is a half of (5.57). Eigenvalues of Hsurf are
given by113

En,p,± = ±∆

R
(n+ p) (n = 0, 1, . . . ), (5.59)

with degeneracy

D2p(n) =
2p(n+ 2p− 1)!cp

n!(2p− 1)!
, cp :=

{
1, p ≡ 0, 1 (mod 4)
2, p ≡ 2, 3 (mod 4)

(5.60)

Similar to our discussion on Sec. V A 1, the U(1) phase of the expectation value of partial inversion is given by

Im
[

ln 〈GS | ID |GS〉
]

= Im I2p(q = e−
ξ
R ),

I2p(q) = ln
∞∏
n=0

(1 + i(−q)n+p)D2p(n) =

∞∑
n=0

D2p(n) ln(1 + i(−q)n+p). (5.61)

One can show

Im I2p(q = e−δ) =
1

2πi

∫ c+i∞

c−i∞
ds

2pcp
(2p− 1)!

δ−sΓ(s)fp(s− 1)β(s+ 1), (5.62)

where

fp(s− 1) :=

∞∑
n=1

(n2 − 1)(n2 − 22) · · · (n2 − (p− 1)2)(−1)nn−s+1, (5.63)

and β(s) =
∑∞
n=0

(−1)n

(2n+1)s is the Dirichlet beta function. All poles except for s = 0 are canceled, and there is a single

pole at s = 0. We get a scale-independent exact result

Im
[

ln 〈GS | ID |GS〉
]

= (−1)p(2π)×
{

2−(p+3), p ≡ 0, 1 (mod 4)
2−(p+2), p ≡ 2, 3 (mod 4)

(5.64)
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This implies Z2p+3 classification for p ≡ 0, 1 (mod 4) and Z2p+2 classification for p ≡ 2, 3 (mod 4), which are consistent
with Refs. 11, 100, and 104. Once again, note that inversion symmetry (5.57) is CPT dual of time-reversal of class
DIII for odd p and class BDI for even p.

The partial inversion on class A insulators with inversion symmetry in even spacetime dimensions is given by adding
the contribution from the negative energy eigenstates in (5.59), which leads to the twice of p ≡ 0, 1 (mod 4) cases in
(5.64),

Im
[

ln 〈GS | ID |GS〉
]
|classA+I = (−1)p(2π)× 2−(p+2). (5.65)

This is also consistent with Refs. 100 and 104 and the free fermion part of Pinc cobordism group102 Z2p+2 ⊂ ΩPinc

2p+2(pt).

VI. CONCLUSION

In this paper, we developed an approach to detect interacting fermionic SPT phases by introducing non-local order
parameters, the expectation value of partial point group transformations with respect to a given ground state wave
function on a closed space manifold. From the point of view of TQFTs, the interacting SPT invariants are defined
as partition functions (path-integrals) on generating spacetime manifolds of cobordism group. In order to simulate
the path integrals, in the operator formalism, on various generating manifolds such as real projective spaces and
lens spaces, we showed that the partial point group transformations provide a unified way for this purpose: The
SPT topological invariants emerge as the complex U(1) phases of the expectation value of the partial point group
transformations, if the subregion D is sufficiently larger than the bulk correlation length. In addition to the topological
U(1) phases, we find that the amplitude part also includes scale-independent contributions, which is another signature
of nontrivial SPT phases.

We confirm these results both by analytic calculations using gapless surface theories and by numerics in lattice
models. It is worth emphasizing that the definition of the partial point group transformation depends only on the
symmetry of the problem, which contrasts with the modular transformation on the ground states on the 2-torus
T 2.59–61,63,64

Let us close by mentioning a number of interesting future directions.
– First, we focused in this paper on unitary symmetries. The definition of SPT invariants for SPT phases protected

by time-reversal symmetry (and more general anti-unitary symmetries) is not fully understood. In (1+1)d SPTs with
time-reversal symmetry, it is known that the partial transpose plays the role of “gauging time-reversal symmetry”
and yields real projective plane and Klein bottle for bosons67 and fermions.73 The construction of SPT invariant for
more general higher space dimensions is an open problem.

– We note that our formula (1.11) can be applied to symmetry-enriched topological (SET) phases by point group
symmetry. In topologically ordered phases where there are ground state degeneracies depending on the space manifold
M , the ground state |GS〉 in the formula (1.11) is replaced by a linear combinations of degenerate ground states as
|GS〉 =

∑
i ci |GSi〉, ci ∈ C,

∑
i |ci|2 = 1, where |GSi〉 is the ground state of the topological sector labeled by i. We

leave the detailed studies of SET phase for the future.
– Throughout this paper, we assumed that the entanglement chemical potential µe associated with the reduced

density matrix of the sub region D is zero. However, in general, µe can be nonzero, that depends on the geometry
of the region D and other details. The agreement between TQFT partition functions and the numerical calculation
of the partial point group transformations suggests that effect of a finite entanglement chemical potential can be
neglected in the boundary theory.

– Due to the lattice translational symmetry, numerical calculations of partial rotations in this paper are limited into
C2, C3, C4, and C6 rotations. It is an interesting problem to compute the partial rotations for rotation symmetries
which can not be defined on translational symmetric lattice systems such as C5 symmetry.
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Appendix A: Arf and Brown invariants

The purpose of this appendix is to introduce the Arf invariant115 (−1)Arf(η) of Spin structures η ∈ Spin(Σ) on
given 2-dimensional oriented manifolds Σ,116,117 and the Brown invariant118 for Pin− structures on unoriented 2-
manifolds.11,71,119

1. The Arf invariant

The obstruction to give a Spin structure on Σ is measured by the 2nd Stiefel-Whitney class w2(TΣ) ∈ H2(Σ,Z2).
For oriented 2-manifolds, i.e., Riemann surfaces Σg with genus g, w2(Σg) always disappears, hence one can define
Spin structures on Σg. The set of spin structures Spin(Σg) on Σg is equivalent to H1(Σg,Z2) as a set. Here,
H1(Σg, Z2) ∼= Hom(π1(Σg),Z2) has 22g elements and can be thought of as the space of Z2-Wilson lines (background
nontrivial Z2 gauge fields) on Σg. It is known that H1(Σg,Z2) acts on Spin(Σg) freely and transitively (i.e. Spin(Σg)
is a H1(Σg,Z2)-Torsor), which means any spin structures η ∈ Spin(Σg) can be given by an action of a Wilson line
a ∈ H1(Σg,Z2) on a some “reference” Spin structure η0. Note that there is no canonical choice of the reference spin
structure η0, which contrasts with Z2-Wilson lines where there is the zero flux in H1(Σg,Z2). The absence of any
reference elements is a feature of “Torsor”. See, for example, Ref. 120 for details, where the equivalence between the
Spin structures and the Kasteleyn orientations in the dimer model is also explained.

The Arf invariant is defined in a pure algebraic manner. For a given vector space V over the field Z2 and a fixed
bilinear form φ : V × V → Z2, one can define the Z2-valued Arf invariant of the quadratic forms Q2(V, φ), which will
be described in Sec. A 1 b.

It is known that the spin structures Spin(Σ) on an oriented 2 manifold Σ is equivalent to the quadratic forms
Q2(H1(Σ,Z2),

∫
x ∪ y) on H1(Σ,Z2) with the intersection form

∫
x ∪ y as a H1(Σ,Z2)-Torsor. (We do not explain

this equivalence in the present paper. See Ref. 120 for details.) This implies that one can define the Arf invariant
of the spin structures Spin(Σ), which is nothing but the Z2 topological invariant of the Spin TQFT in 2 spacetime
dimensions.11,47,71

a. Simplicial calculus

To describe Z2-Wilson lines belonging to H1(Σ,Z2) and the intersection form
∫
x∪y in a rigorous way, we introduce

the simplicial calculus, according to Appendix A in Ref. 121.
Let K be a triangulation of Σ and G be an Abelian group. A p-cochain f is a function over p-simplices {(v0, . . . , vp)}

to G. We assume the vertices of K are ordered in some way. The space of p-chains is denoted by Cp(K,G). The
differential operator δ : Cp(K,G)→ Cp+1(K,G) is defined by

(δf)(v0, . . . , vp+1) =

p+1∑
i=0

(−1)if(v0, . . . , v̂i, . . . , vp+1) (A.1)

for a (p+ 1) simplex (v0, v1, . . . , vp+1), where v̂i means that vi is excluded. One can show δ2 = 0 as

(δ2f)(v0, . . . , vp+2) =

p+2∑
i=0

(−1)i(δf)(v0, . . . , v̂i, . . . , vp+2)

=

p+2∑
j<i

(−1)i+jf(v0, . . . , v̂j , . . . , v̂i, . . . , vp+2) +

p+2∑
i<j

(−1)i+j−1f(v0, . . . , v̂i, . . . , v̂j , . . . , vp+2)

= 0. (A.2)

We define the coboundary Bp(K,G) = Im[δ : Cp−1(K,G) → Cp(K,G)] and the cocycle Zp(K,G) := Ker[δ :
Cp(K,G)→ Cp+1(K,G)] and the cohomology Hp(K,G) := Zp(K,G)/Bp(K,G).

If G is a commutative ring (for example, a cyclic group Zp), we can define the cup product ∪ : Cp(K,G) ×
Cq(K,G)→ Cp+q(K,G) by

(f ∪ g)(v0, . . . , vp+q) = f(v0, . . . , vp)g(vp, . . . , vp+q). (A.3)
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FIG. 14. (Color online) Wilson lines and the intersection forms.

(Here, the r.h.s. is the product of the ring G.) The cup product satisfies the Leibniz rule

δ(f ∪ g) = δf ∪ g + (−1)pf ∪ δg. (A.4)

Obviously, the cup product is well-defined in the cohomology Hp(K,G) since δ(f ∪ g) = 0 for δf = δg = 0.

b. A quadratic form and the Z2 Arf invariant

Let V be a finite dimensional vector space over the field Z2, and let φ : V × V → Z2 be a fixed bilinear form. A
quadratic form q on (V, φ) is a function q : V → Z2 (not a linear form) which satisfies

q(x+ y) = q(x) + q(y) + φ(x, y). (A.5)

Note that the difference (= sum) of two quadratic forms q1 + q2 on (V, φ) is a linear form on V because 2φ(x, y) = 0.
Therefore, the set Q2(V, φ) of quadratic forms on (V, φ) is a V ∗-torsor, i.e. all quadratic forms q is given by the action
of a linear form f : V → Z2 as (f · q)(x) := q(x) + f(x). The Arf invariant Arf(q) ∈ {0, 1} on the quadratic forms
Q2(V, φ) is defined by

(−1)Arf(q) :=
1√
|V |

∑
x∈V

(−1)q(x), q ∈ Q2(V, φ), (A.6)

where |V | is the number of elements in V .

c. The Arf invariant for Spin structures on T 2

Let T 2 be the 2-torus. Let us consider the quadratic forms Q2

(
H1(T 2,Z2),

∫
T 2 x∪y

)
. Here H1(T 2,Z2) = Z2⊕Z2 =

{0, ax, ay, ax + ay} is generated by two different Wilson lines ax and ay along the x and y-directions. Intersection
forms are given as ∫

T 2

ax ∪ ax =

∫
T 2

ay ∪ ay = 0,

∫
T 2

ax ∪ ay = 1. (A.7)

This is the even/odd parity of the number of intersections between Wilson lines. See Fig. 14. There are 24 = 16 kinds
of functions q : H1(T 2,Z2) = Z2 ⊕ Z2 → Z2. The quadratic forms have to obey

q(0) = q(0) + q(0),
q(ax) = q(ax) + q(0),
q(ay) = q(ay) + q(0),
q(ax + ay) = q(ax) + q(ay) + 1.

(A.8)
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Then, q(0) = 0 and q(ax + ay) = q(ax) + q(ay) + 1. Solving these equations, we have |H1(T 2,Z2)| = 4 distinct
quadratic forms: 

qns,ns(ax) = 0, qns,ns(ay) = 0
qns,r(ax) = 0, qns,r(ay) = 1
qr,ns(ax) = 1, qr,ns(ay) = 0
qr,r(ax) = 1, qr,r(ay) = 1

(A.9)

These four different quadratic forms correspond to spin structures {(ns, ns), (ns, r), (r, ns), (r, r)}, where r (ns) rep-
resents the periodic (anti-periodic) boundary condition of the real fermion along the x or y-directions. Through the
bijection

Spin(T 2) ∼= Q2

(
H1(T 2,Z2),

∫
T 2

x ∪ y
)
, (A.10)

we identify a quadratic form q ∈ Q2

(
H1(T 2,Z2),

∫
T 2 x ∪ y

)
with a spin structure η ∈ Spin(T 2). Finally, we obtain

the Arf invariant for each spin structures Spin(T 2) as

(−1)Arf(ns,ns) = (−1)Arf(ns,r) = (−1)Arf(r,ns) = 1,

(−1)Arf(r,r) = −1. (A.11)

This is the same as the partition function on T 2 of the Kitaev chain model (2.12).

2. A Quadratic form and the Z8 Brown invariant

In the same way, the Brown Z8 invariant118 is constructed as follows. Let V be a finite dimensional vector space
over the field Z2 and let φ : V × V → Z2 be a fixed bilinear form. We consider a quadratic form q on (V, φ) is a
function q : V → Z4 which satisfies

q(x+ y) = q(x) + q(y) + 2φ(x, y). (A.12)

Note that the difference (= sum) of two quadratic forms q1, q2 on (V, φ) is a linear form on V since 4φ(x, y) = 0. The
set Q4(V, φ) of quadratic forms q : V → Z4 is an V ∗-torsor by the action (f · q)(x) = q(x) + 2f(x) of f : V → Z2 on
q ∈ Q4(V, φ). The Brown invariant β(q) ∈ Z8 is defined by

e2πiβ(q)/8 :=
1√
|V |

∑
x∈V

iq(x), q ∈ Q4(V, φ), (A.13)

where |V | is the number of elements in V .

a. The Brown invariant for Pin− structures on RP 2

There is a canonical 1 to 1 correspondence between Pin− structures on an unoriented surface Σ and quadratic
forms q : H1(Σ,Z2) → Z4.71 Let RP 2 be the real projective plane. Let us consider Z4-valued quadratic forms
q : H1(RP 2,Z2) → Z4 with the intersection form

∫
RP 2 x ∪ y. Here H1(RP 2,Z2) = Z2 = {0, a} is generated by the

Wilson line a for noncontractible loop of RP 2. The intersection form is given by∫
RP 2

a ∪ a = 1 (A.14)

See Fig. 15. There are 42 = 16 kinds of functions q : H1(RP 2,Z2)→ Z4. The quadratic form q : H1(RP 2,Z2)→ Z4

should satisfy

q(0) = q(0) + q(0), q(a+ a) = q(a) + q(a) + 2, (A.15)

which implies that there are two distinct quadratic forms:

q+(a) = 1, q−(a) = 3. (A.16)

We identify these quadratic forms with two different Pin− structures η+, η− on RP 2, respectively. Finally, we have
the Z8 Brown invariant for each Pin− structure as

e2πiβ(η+)/8 = eπi/4, e2πiβ(η−)/8 = e−πi/4. (A.17)

The former one is the U(1) phase part which appeared in (3.11).
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FIG. 15. (Color online) The Wilson line and the intersection form on RP 2.

Appendix B: Lens space

The lens space L(p, q) = S3/Zp is defined by the quotient

(z1, z2) ∼ (e
2πi
p z1, e

2qπi
p z2), (B.1)

where (z1, z2) with |z1|2 + |z2|2 = 1 represent the 3-sphere S3, and p and q are coprime.
The surgery construction of the lens space L(p, q) is given by the following modular transformation90

STmt−1STmt−2 · · ·STm1 , (B.2)

on the boundary of a solid torus in S3. Here, (m1, . . . ,mt−1) is determined by the fraction expansion of (p, q)

−p
q

= mt−1 −
1

mt−2 − 1
···− 1

m1

. (B.3)

For example, the surgery by STnS leads to L(−n, 1).

Appendix C: Eta and theta functions

In this section, we summarize the properties of the Dedekind eta function η(τ) and the generalized theta function
θa,b(z|τ) used in the main text. For q = e2πiτ (Im τ > 0), the Dedekind eta function is defined as

η(τ) := q1/24
∞∏
n=1

(1− qn). (C.1)

The theta function is defined as

θa,b(z|τ) :=
∑
n∈Z

eiπτ(n+a)2+2πi(n+a)(z+b)

= e2πia(z+b)q
1
2a

2
∞∏
n=1

(1− qn)
(

1 + e2πi(z+b)qn+a− 1
2

)(
1 + e−2πi(z+b)qn−a−

1
2

)
, (C.2)

where we noted the Jacobi’s triple identity∑
n∈Z

eπiτn
2+2πinv =

∞∏
m=1

(1− e2mπiτ )(1 + e(2m−1)πiτ+2πiv)(1 + e(2m−1)πiτ−2πiv). (C.3)

θa,b(z|τ) obeys the following periodicities and modular transformations

θa+1,b(z|τ) = θa,b(z|τ), θa,b+1(z|τ) = e2πiaθa,b(z|τ), (C.4)

θa,b(z|τ + 1) = e−πi(a
2+a)θa,b+a+1/2(z|τ), θa,b(

z

τ
| − 1

τ
) =
√
−iτe2πiabe

iπ
τ z

2

θb,−a(z|τ), (C.5)

η(τ + 1) = eπi/12η(τ), η(−1

τ
) =
√
−iτη(τ). (C.6)
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Appendix D: Derivation of boundary theories

Here, we summarize the derivation of gapless boundary theories in (2 + 1)d and (3 + 1)d free fermion topological
phases. We employ the same approach as Ref. 105; We first solve the radial part of the eigenvalue equation of single-
particle Hamiltonians, and then construct an effective single-particle boundary Hamiltonians for directions tangential
to the boundary.

1. Edge theory on the boundary of disc

Let us consider the following single-particle Hamiltonian describing a (2 + 1)d bulk topological phase defined on
the disc:

H = −iσx∂x − iσy∂y +m(r)σz. (D.1)

Here, the profile of the position-dependent m(r) (r =
√
x2 + y2) is chosen to create the disk geometry: m(r) < 0

for r < R and m(r) > 0 for r > R, where R is the radius of the disc. Introducing the polar coordinate (x, y) =
(r cosφ, r sinφ), H can be written as

H = Hr +Hφ,

Hr = e−i
φ
2 σz
[
− iσx∂r +m(r)σz

]
ei
φ
2 σz , Hφ = e−i

φ
2 σz

1

r
σy(−i∂φ −

σz
2

)ei
φ
2 σz . (D.2)

In the following, we approximately derive the wave function of the edge state and effective edge Hamiltonian. Since
gapless edge excitations are exponentially localized at r ∼ R � ξ (ξ is the correlation length of bulk which is
determined by the gap m(r)), the edge state wave function is approximated by solving Hr as

Hrφedge(r, φ) = 0, φedge(r, φ) ∼ u(φ) · e−iφ2 σz
(

1
i

)
e−

∫ rm(r′)dr′ , u(φ+ 2π) = −u(φ). (D.3)

Here u(φ) is a complex-valued function representing the φ-dependence and obeys anti-periodic boundary condition

to account for the factor ei
φ
2 σz . Since φedge(r, φ) is well localized at r = R, we can replace 1/r by 1/R. Then, the

effective single-particle Hamiltonian for the edge excitations is given by

Hedge =

∫
rdr[φedge(r, φ)]†Hφφedge(r, φ) ∼ 1

R
u∗(φ)(−i∂φ)u(φ). (D.4)

In the following, we use the above result for the single-particle bulk and the corresponding edge Hamiltonians to
construct (second quantized) fermionic operators creating/annihilating edge excitations and the Hamiltonians. We
will discuss topological insulators and superconductors separately.

a. Chern insulator

Let ψ(x) = (ψ1(x), ψ2(x))T be a two-orbital complex fermion and consider a Chern insulator on the disk

H =

∫
d2xψ†(x)

[
− iσx∂x − iσy∂y +m(r)σz

]
ψ(x). (D.5)

From (D.3), the complex fermion annihilation operator γ(φ) for edge excitations is given by

γ†(φ) ∼
[
e−i

φ
2 ψ†1(r, φ) + iei

φ
2 ψ†2(r, φ)

]
e−

∫ rm(r′)dr′ , γ(φ+ 2π) = −γ(φ) (D.6)

with the Hamiltonian

H =
1

R

∫
dφ γ†(φ)(−i∂φ)γ(φ). (D.7)
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b. (px − ipy) superconductor

Let us consider the following model of a (px − ipy) superconductor,

H =

∫
d2xΨ†(x)

[
− iσx∂x − iσy∂y +m(r)σz

]
Ψ(x), Ψ(x) = (ψ(x), ψ†(x))T . (D.8)

From (D.3), the Majorana fermion operator γ(φ), γ†(φ) = γ(φ), for edge excitations is given by

γ(φ) ∼
[
e−i

φ
2−

π
4 iψ†(r, φ) + ei

φ
2 +π

4 iψ(r, φ)
]
e−

∫ rm(r′)dr′ , γ(φ+ 2π) = −γ(φ) (D.9)

with the Hamiltonian

H =
1

R

∫
dφ γ(φ)(−i∂φ)γ(φ). (D.10)

2. Surface theory on the boundary of ball

Let us consider the following single-particle Hamiltonian

H = −iτx(σx∂x + σy∂y + σz∂z) +m(r)τz (D.11)

representing a bulk topological phase on a 3-ball. We assume m(r) < 0 for r < R and m(r) > 0 for r > R, where R is
the radius of the ball. By introducing polar coordinate (x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ), H can be written
as

H = Hr +Hθ,φ,
Hr = e−i

φ
2 σze−i

θ
2σy
[
− iτxσz∂r +m(r)τz

]
ei
θ
2σyei

φ
2 σz ,

Hθ,φ = e−i
φ
2 σze−i

θ
2σy
[1

r
τxσx(−i∂θ −

σy
2

) +
1

r sin θ
τxσy(−i∂φ −

cos θ

2
σz −

sin θ

2
σx)
]
ei
θ
2σyei

φ
2 σz . (D.12)

Two-component wave functions of boundary gapless excitations φsurf(r, θ, φ) are well approximated by solving the
radial part as

Hrφsurf(r, θ, φ) = 0,

φsurf(r, θ, φ) ∼ e−iφ2 σze−i θ2σy
(
u1(θ, φ)

(
i
1

)
τ

⊗
(

0
1

)
σ

, u2(θ, φ)

(
1
i

)
τ

⊗
(

1
0

)
σ

)
e−

∫ rm(r′)dr′ ,

ui(θ, φ+ 2π) = −ui(θ, φ), (i = 1, 2). (D.13)

Here ui(θ, φ) (i = 1, 2) are scalar functions representing the (θ, φ)-dependence and obey anti-periodic boundary

condition in φ to account for the factor ei
φ
2 σz . Since φsurf(r, φ) is well localized at r = R, we can approximate 1/r by

1/R. The effective single-particle Hamiltonian for the surface is given by

Hsurf =

∫
r2dr[φsurf(r, φ)]†Hθ,φφsurf(r, φ)

∼ (u∗1(θ, φ), u∗2(θ, φ))
1

R

(
0 −i∂θ − 1

sin θ∂φ − i cot θ
2

−i∂θ + 1
sin θ∂φ − i cot θ

2 0

)(
u1(θ, φ)
u2(θ, φ).

)
(D.14)

a. (3 + 1)d topological insulator

Let ψ(x) = {ψτσ(x)}τ,σ=1,2 be a four-orbital complex fermion. We consider a massive Dirac Hamiltonian defined
on a ball of radius R,

H =

∫
d3xψ†(x)

[
− iτxσ · ∂ +m(r)τz

]
ψ(x). (D.15)
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From (D.13), gapless surface excitations γi(θ, φ)(i = 1, 2) are given by

γ†1(θ, φ) ∼
[
− e−iφ2 sin

θ

2

{
iψ†τ=1,σ=1(r, θ, φ) + ψ†τ=2,σ=1(r, θ, φ)

}
+ ei

φ
2 cos

θ

2

{
iψ†τ=1,σ=2(r, θ, φ) + ψ†τ=2,σ=2(r, θ, φ)

}]
e−

∫ rm(r′)dr′ ,

γ†2(θ, φ) ∼
[
e−i

φ
2 cos

θ

2

{
ψ†τ=1,σ=1(r, θ, φ) + iψ†τ=2,σ=1(r, θ, φ)

}
+ ei

φ
2 sin

θ

2

{
ψ†τ=1,σ=2(r, θ, φ) + iψ†τ=2,σ=2(r, θ, φ)

}]
e−

∫ rm(r′)dr′ . (D.16)

and obey the boundary condition

γi(θ, φ+ 2π) = −γi(θ, φ) (i = 1, 2). (D.17)

The effective Hamiltonian on S2 is given by

H =
1

R

∫
sin θdθdφ (γ†1(θ, φ), γ†2(θ, φ))

(
0 −i∂θ − 1

sin θ∂φ − i cot θ
2

−i∂θ + 1
sin θ∂φ − i cot θ

2 0

)(
γ1(θ, φ)
γ2(θ, φ)

)
, (D.18)

b. (3 + 1)d topological superconductor

Let ψ(x) = {ψσ(x)}σ=↑,↓ be a two-orbital complex fermion. We consider a topological superconductor on a ball of
radius R,

H =

∫
d3xΨ†(x)

[
− iτxσ · ∂ +m(r)τz

]
Ψ(x), Ψ(x) = (ψ↑(x), ψ↓(x), ψ†↓(x),−ψ†↑(x))T . (D.19)

From (D.13), complex fermion operators γ†i (θ, φ)(i = 1, 2) for gapless surface excitations are given by

γ†1(θ, φ) ∼
[
− e−iφ2 sin

θ

2

{
iψ†↑(r, θ, φ) + ψ↓(r, θ, φ)

}
+ ei

φ
2 cos

θ

2

{
iψ†↓(r, θ, φ)− ψ↑(r, θ, φ)

}]
e−

∫ rm(r′)dr′ ,

γ†2(θ, φ) ∼
[
e−i

φ
2 cos

θ

2

{
ψ†↑(r, θ, φ) + iψ↓(r, θ, φ)

}
+ ei

φ
2 sin

θ

2

{
ψ†↓(r, θ, φ)− iψ↑(r, θ, φ)

}]
e−

∫ rm(r′)dr′ . (D.20)

They satisfy γ†2(θ, φ) = −γ1(θ, φ) and the boundary condition,

γ1(θ, φ+ 2π) = −γ1(θ, φ). (D.21)

The effective Hamiltonian on S2 is given by

H =
1

R

∫
sin θdθdφ

(
γ†1(θ, φ),−γ1(θ, φ)

)( 0 −i∂θ − 1
sin θ∂φ − i cot θ

2

−i∂θ + 1
sin θ∂φ − i cot θ

2 0

)(
γ1(θ, φ)

−γ†1(θ, φ)

)
, (D.22)

Appendix E: Spinc cobordism group ΩSpinc

3 (BZn)

Spinc cobordism groups ΩSpinc

d (BG) for a cyclic group G = Zn for any dimensions are computed in Ref. 102. The
result is

Ω̃Spinc

∗ (BZn) ∼= {A∗(n)⊗ Z[CP 2,CP 4, . . . ]} ⊕ ker∗(η, n), (E.1)

kerm(η, n) ∼=
⊕
j<m

Tor(ΩSpinc

j ), A2k+1(n) ∼= (1− t)/((1− t)k+2), A2k(n) = 0, (E.2)

where Ω̃Spinc

∗ (BZn) is the kernel of the symmetry forgetting functor of Zn symmetry, says,

ΩSpinc

∗ (BZn) ∼= Ω̃Spinc

∗ (BZn)⊕ ΩSpinc

∗ (pt). (E.3)
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(1− t) and ((1− t)k+2) are R(Zn)-modules defined by ,

(1− t) = {(1− t)f(t)|f(t) ∈ R(Zn)},
(
(1− t)k+2

)
= {(1− t)k+2f(t)|f(t) ∈ R(Zn)}. (E.4)

R(Zn) = Z[t]/(1− tn) is the representation ring of Zn. Z[CP 2,CP 4, . . . ] represents contributions from bosonic SPT
phases. As will be explained in Sec. E 2, the ideal (1 − t) means non-chiral SPT phases of free fermions and the
quotient (1− t)/((1− t)k) is interpreted as the breakdown of free fermionic classification by interactions.

For our purposes, only ΩSpinc

3 (BZn) is needed, in which there is no contribution from bosonic SPT phases. We have

ΩSpinc

3 (BZn) ∼= (1− t)/((1− t)3). (E.5)

Calculations for some n are illustrated in Sec. E 3.

1. Smith homomorphism

Pinc cobordism groups ΩPinc

2k (pt) in even spacetime dimensions are isomorphic to the Spinc cobordism group in
one-higher spacetime dimensions with Z2 on-site symmetry. The Smith homomorphism provides an isomorphism102

Ω̃Spinc

2k+1 (BZ2)
∼=−→ Ω̃Pinc

2k (pt) (E.6)

in the present case. The l.h.s. means (2k + 1)d SPT phases of complex fermions with onsite Z2 symmetry, which can
be computed by the formula (E.1, E.2). The r.h.s. represents (2k)d SPT phases of complex fermions with orientation
reversing symmetry (class A with reflection symmetry or class AIII, say). We show some examples in low dimensions

Ω̃Pinc

2 (pt) ∼= Ω̃Spinc

3 (BZ2) = Z4[A3] = Z4, (E.7)

Ω̃Pinc

4 (pt) ∼= Ω̃Spinc

5 (BZ2) = Z8[A5]⊕ (Z2[A1]⊗ Z[CP 2]) = Z8 ⊕ Z2, (E.8)

Ω̃Pinc

6 (pt) ∼= Ω̃Spinc

7 (BZ2) = Z16[A7]⊕ (Z4[A3]⊗ Z[CP 2]) = Z16 ⊕ Z4, (E.9)

Ω̃Pinc

8 (pt) ∼= Ω̃Spinc

9 (BZ2) = Z32[A9]⊕ (Z8[A5]⊗ Z[CP 2])⊕ (Z2[A1]⊗ Z[CP 4])⊕ (Z2[A1]⊗ Z[(CP 2)2])

= Z32 ⊕ Z8 ⊕ Z2 ⊕ Z2. (E.10)

Here we used the relation

(1− t)/
(
(1− t)k+2

)
= (1− t)/

(
2k+1(1− t)

)
= Z2k+1 (E.11)

in the R(Z2)-module. (E.11) is the breakdown formula of the free fermion topological phases in class A with reflection
symmetry or class AIII, which is consistent with Refs. 100 and 104.

2. K-theory classification

The K-theory classification of (2d+ 1)-dimensional class A topological insulators with on-site G symmetry is given
by the G-equivariant complex K-theory9,122,123

KG(S2d) ∼= R(G)⊗K(S2d) = R(G)⊗ (Z⊕ Z) ∼= R(G)⊕R(G), (E.12)

where G trivially acts on S2d. We introduce the reduced K-theory to remove the trivial contribution from a point in
S2d as

K̃G(S2d) = R(G), KG(S2d) = K̃G(S2d)⊕KG(pt) (E.13)

Here, R(G) is the representation ring of G, which is generated by irreps. of G and multiplicative structure is induced
by the tensor product of representations.

For our purposes, we consider K̃Zn(S2) ∼= R(Zn) that represents the classification for Zn symmetry in 2 space
dimensions. The representation ring is given by

R(Zn) = Z[t]/(1− tn) = {m0 +m1t+ · · ·+mn−1t
n−1|mp ∈ Z}. (E.14)
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A base element tp ∈ R(Zn) corresponds to the following chiral Chern insulator, in which the complex fermion operator
is in the the e−2πip/n representation of Zn symmetry:

Htp =
∑
k

ψ†(k)
[
kxσx + kyσy + (m− k2)σz

]
ψ(k), (m > 0), (E.15)

ψ(k) = (ψ1(k), ψ2(k))T , Uψ†(k)U−1 = e−2πip/nψ†(k). (E.16)

For general insulators specified by f(t) = m0 +m1t+ · · ·+mn−1t
n−1 ∈ R(Zn), the 1st Chern number is given by the

sum ch 1

(
f(t)

)
= f(1) = m0 +m1 + · · ·+mn−1. Thus, the subgroup representing non-chiral phases is characterized

by f(1) = 0, which is the ideal (1− t),

(1− t) = {(1− t)f(t)|f(t) ∈ R(Zn)}, (E.17)

where the basis is spanned by

{1− t, 1− t2, . . . , 1− tn−1}. (E.18)

Here 1− tp ∈ R(Zn) represent the following non-chiral topological insulators,

H1−tp =
∑
k

ψ†↑(k)
[
kxσx + kyσy + (m− k2)σz

]
ψ↑(k)

+
∑
k

ψ†↓(k)
[
kxσx − kyσy + (m− k2)σz

]
ψ↓(k), (m > 0), (E.19)

where

ψs(k) = (ψs,1(k), ψs,2(k))T , (s =↑, ↓),
Uψ†↑(k)U−1 = ψ†↑(k), Uψ†↓(k)U−1 = e−2πip/nψ†↓(k). (E.20)

3. Calculations of (1− t)/((1− t)3)

In this section, we illustrate the computation of the breakdown formula

ΩSpinc

3 (BZn) ∼= (1− t)/((1− t)3). (E.21)

We show it for n = 2, 3, 4.

a. n = 2

Since (1− t)3 = 4− 4t in R(Z2), we have

ΩSpinc

3 (BZ2) ∼= (1− t)/((1− t)3) = (1− t)/(4− 4t) ∼= Z4[1− t]. (E.22)

Thus, the topological classification is given by Z4 and it is generated by the non-chiral topological insulator H1−t.

b. n = 3

In the representation ring R(Z3) = Z[t]/(1− t3),
(
(1− t)3

)
reads

(
(1− t)3

)
= (−3t+ 3t2), which is spanned by

{−3t+ 3t2, t(−3t+ 3t2)} = {3(1− t)− 3(1− t2), 3(1− t2)} ∼ {3(1− t), 3(1− t2)}. (E.23)

This leads to

ΩSpinc

3 (BZ2) ∼= (1− t)/((1− t)3) = Z3[1− t]⊕ Z3[1− t2]. (E.24)

H1−t and H1−t2 provide two independent generators of the Z3 classification.
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c. n = 4

((1− t)3) = (1− 3t+ 3t2 − t3) is spanned by

{1− 3t+ 3t2 − t3.t(1− 3t+ 3t2 − t3), t2(1− 3t+ 3t2 − t3)}
= {3(1− t)− 3(1− t2) + (1− t3),−(1− t) + 3(1− t2)− 3(1− t3), (1− t)− (1− t2) + 3(1− t3)}
∼ {3(1− t)− 3(1− t2) + (1− t3), 8(1− t), 2(1− t2)}, (E.25)

then,

(1− t)/((1− t)3) = Z8[1− t]⊕ Z2[1− t2]. (E.26)

The Z8 and Z2 direct summands are generated by the non-chiral topological phases, H1−t and H1−t2 , respectively.

Appendix F: Calculations of
∏∞
n=1(1 + eiφ(−q)n)n

In this appendix, we compute

I(q = e−δ, z) =

∞∑
n=1

n ln(1 + z(−q)n) =

∞∑
n=1

(2n) ln(1 + zq2n) +

∞∑
n=1

(2n− 1) ln(1− zq2n−1) (F.1)

with a pure phase z = eiφ. Using the Cahen-Mellin integral,

∞∑
n=1

(2n) ln(1 + zq2n) = −
∞∑
n=1

(2n)

∞∑
r=1

r−1(−z)rq2nr

= −
∞∑
n=1

(2n)

∞∑
r=1

r−1(−z)r 1

2πi

∫ c+i∞

c−i∞
ds(2δnr)−sΓ(s)

=
1

2πi

∫ c+i∞

c−i∞
dsδ−s

[
− 21−sΓ(s)ζ(s− 1)Lis+1(−z)

]
,

∞∑
n=1

(2n− 1) ln(1− zq2n−1) = −
∞∑
n=1

(2n− 1)

∞∑
r=1

r−1zrq(2n−1)r

= −
∞∑
n=1

(2n− 1)

∞∑
r=1

r−1zr
1

2πi

∫ c+i∞

c−i∞
ds(δ(2n− 1)r)−sΓ(s)

=
1

2πi

∫ c+i∞

c−i∞
dsδ−s

[
− Γ(s)(1− 21−s)ζ(s− 1)Lis+1(z)

]
. (F.2)

We used

ζ(s) =
1

1− 2−s

∞∑
n=1

1

(2n− 1)s
(Re(s) > 1), (F.3)

and introduced the polylogarithm function

Lis(z) :=

∞∑
n=1

zn

ns
. (F.4)

Then,

I(q = e−δ, z) =
1

2πi

∫ c+i∞

c−i∞
dsδ−s

[
− 21−sΓ(s)ζ(s− 1)Lis+1(−z)− (1− 21−s)Γ(s)ζ(s− 1)Lis+1(z)

]
. (F.5)
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The integrand has a double pole at s = 0 at z = ±1 since Lis+1(1) = ζ(s + 1). From the contour integral, for small
δ, we have following expansions:

I(q = e−δ, z = 1) = −1

8
ζ(3)δ−2 +

1

12
− ln(A) +

1

12
ln(δ) +

17

2880
δ2 + · · · ,

I(q = e−δ, z = −1) = −1

8
ζ(3)δ−2 − 1

6
− 1

12
ln(2) + 2 ln(A)− 1

6
ln(δ)− 13

2880
δ2 + · · · , (F.6)

for z = ±1, and for z 6= ±1

I(q = e−δ, z = eiφ) = −1

8
Li3(e2iφ)δ−2 +

1

12

{
ln(1− eiφ)− 2 ln(1 + eiφ)

}
+

1− 15 cosφ

480 sin2 φ
δ2 + · · ·

= −1

8
Li3(e2iφ)δ−2 +

1

12

{
ln |2 sin

φ

2
| − 2 ln |2 cos

φ

2
|
}

+
1

12
·
{
−πi2 −

iφ
2 (0 < φ < π)

πi
2 −

iφ
2 (−π < φ < 0)

}
+

1− 15 cosφ

480 sin2 φ
δ2 + · · · .

(F.7)

Here, A ∼= 1.2824 . . . is the Glaisher-Kinkelin constant. Especially,

I(q = e−δ, z = ±i) =
3

32
ζ(3)δ−2 − 1

24
ln(2)∓ πi

16
+

δ2

480
+ · · ·

I(q = e−δ, z = eiφ) + I(q = e−δ, z = −e−iφ)

= −1

8

{
Li3(e2iφ) + Li3(e−2iφ)

}
δ−2 − 1

12
ln |2 sinφ|+

{
−πi8 (0 < φ < π)
πi
8 (−π < φ < 0)

}
+

1

240 sin2 φ
δ2 + · · · . (F.8)

1. The imaginary part of I(q, e2πix)

If we look at the imaginary part of I(q, e2πix), we obtain the following formula:

Im
[
I(q = e−δ, z = e2πix)

]
=

1

2i

[
I(q = e−δ, z = e2πix)− I(q = e−δ, z = e−2πix)

]
=

1

2πi

∫ c+i∞

c−i∞
dsδ−s

[
− 21−sΓ(s)ζ(s− 1)

Lis+1(−e2πix)− Lis+1(−e−2πix)

2i

− (1− 21−s)Γ(s)ζ(s− 1)
Lis+1(e2πix)− Lis+1(e−2πix)

2i

]
. (F.9)

In this expression, poles of Γ(s) at odd negative integers are canceled with zeros of ζ(s− 1), and also poles of Γ(s) at
even negative integers are also canceled since

Li−n(z) + (−1)nLi−n(z−1) = 0 (n = 1, 2, 3, . . . ). (F.10)

The integrand has poles only at s = 0, 2 and we get an exact result

Im
[
I(q = e−δ, z = e2πix)

]
=

{
−π6B1(x+ 1

2 ) + π
12B1(x+ 1)− π3

12B3(2x+ 1)δ−2 (−1/2 < x < 0)

−π6B1(x+ 1
2 ) + π

12B1(x)− π3

12B3(2x)δ−2 (0 < x < 1/2)

=

{
− π

12 (x− 1
2 )− 2π3

3 x(x+ 1
4 )(x+ 1

2 )δ−2 (−1/2 < x < 0)

− π
12 (x+ 1

2 )− 2π3

3 x(x− 1
4 )(x− 1

2 )δ−2 (0 < x < 1/2)
(F.11)

Here, B1(x) = x− 1
2 , B3(x) = x(x− 1

2 )(x− 1) are the Bernoulli polynomials. At x = ± 1
4 , Im

[
I(q = e−δ, z = e2πix)

]
is δ-independent, which is the origin of the very sharp plateau structure in the expectation value of partial inversion
in (3 + 1)d superconductors in Fig. 11.
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