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Abstract

Numerous experiments have reported discrete symmetry breaking in the high temperature pseudogap

phase of the hole-doped cuprates, including breaking of one or more of lattice rotation, inversion, or

time-reversal symmetries. In the absence of translational symmetry breaking or topological order, these

conventional order parameters cannot explain the gap in the charged fermion excitation spectrum in the

anti-nodal region. Zhao et al. (Nature Physics 12, 32 (2016)) and Jeong et al. (Nature Communications

8, 15119 (2017)) have also reported inversion and time-reversal symmetry breaking in insulating Sr2IrO4

similar to that in the metallic cuprates, but co-existing with Néel order. We extend an earlier theory

of topological order in insulators and metals, in which the topological order combines naturally with

the breaking of these conventional discrete symmetries. We find translationally-invariant states with

topological order co-existing with both Ising-nematic order and spontaneous charge currents. The link

between the discrete broken symmetries and the topological-order-induced pseudogap explains why the

broken symmetries do not survive in the confining phases without a pseudogap at large doping. Our

theory also connects to the O(3) non-linear sigma model and CP1 descriptions of quantum fluctuations of

the Néel order. In this framework, the optimal doping criticality of the cuprates is primarily associated

with the loss of topological order.
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I. INTRODUCTION

Experimental studies of the enigmatic high temperature ‘pseudogap’ regime of the hole-

doped cuprate compounds have reported numerous possible discrete symmetry breaking order

parameters.1–13 There is evidence for lattice rotation symmetry breaking, interpreted in terms of

an Ising-nematic order,14 and for one or both of inversion and time-reversal symmetry breaking,

usually interpreted in terms of Varma’s current loop order.15–17 Both of these orders have the full

translational symmetry of the square lattice, and cannot, by themselves, be responsible for gap in

the charged fermionic spectrum near the ‘anti-nodal’ points ((π, 0) and (0, π)) of the square lattice

Brillouin zone.

An interesting and significant recent development has been the observation of inversion11 and

time-reversal13 symmetry breaking in the iridate compound Sr2Ir1−xRhxO4; Ref. 18 has shown that

this iridate is described by a one-band Hubbard model very similar to that for the cuprates. The

inversion symmetry breaking is strongest in the insulator at x = 0 where it co-exists with Néel

order; at non-zero x, both orders persist, but the discrete order is present at higher temperatures.

Motivated by the similarities in the light and neutron scattering signatures between the cuprate

and iridate compounds, we will present here a common explanation based upon the quantum

fluctuations of antiferromagnetism.

Long-range Néel order (which breaks translational symmetry) can clearly be the origin of a gap

in the charged fermionic spectrum at the anti-nodes. In the traditional spin density wave theory

of the quantum fluctuations of the Néel order,19 there is a transition to a state without Néel order,

with full translational symmetry, a large Fermi surface, and no anti-nodal gap. However, the anti-

nodal gap can persist into the non-Néel phase20 when the resulting phase has topological order21–25

(see footnote26 for the precise definition of topological order, and the review in Ref. 27). We shall

use topological order as the underlying mechanism for the pseudogap. Moreover, early studies of

spin liquid insulators with Z2 topological order showed that there can be a non-trivial interplay

between topological order and the breaking of conventional discrete symmetries. The Z2 spin liquid

obtained in Refs. 28 and 29 co-existed with Ising-nematic order: this was a consequence of the

p-wave pairing of bosonic spinons. A similar interplay with time-reversal and inversion symmetries

was discussed by Barkeshli et al.,30 using higher angular momentum pairing of fermionic spinons.

Here we shall use the formalism of Refs. 27, 31, and 32 to generalize the state28,29 with Z2 topological

order to also allow for the breaking of inversion and time-reversal symmetries, both in the insulator

and the metal. We will find states with spontaneous charge currents (see Fig. 2) and topological

order, one of which (Fig. 2a) also has the Ising-nematic order observed in experiments.1,3,6,8

The association between topological order and discrete broken symmetries implies that the bro-

ken symmetries will not be present in the confining phases at larger doping. This is an important
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advantage of our approach over more conventional excitonic condensation theories of broken sym-

metries. In the latter approaches there is no strong reason to connect the disappearance of the

pseudogap with vanishing of the symmetry order parameter.

We will begin in Section II by a semi-classical treatment of the quantum fluctuations of

antiferromagnetism33–35 using the O(3) non-linear sigma model. In the insulator, this approach

has been successfully used to describe the thermal fluctuations of the Néel order, and also the ad-

jacent quantum phase without Néel order; the latter was argued to have valence bond solid (VBS)

order,36,37 and is accessed across a deconfined quantum critical point.38,39 Here, we will identify an

order parameter, O, for inversion and time-reversal symmetry breaking in terms of the fields of

the O(3) sigma model.

It is also useful to formulate the semi-classical treatment using the CP1 model for bosonic,

fractionalized spinons coupled to a U(1) gauge field. In these terms, an order parameter O for

inversion and time-reversal symmetry breaking turns out to be the cross product of the emergent

U(1) electric and magnetic fields. The CP1 formulation yields an effective gauge theory, in Eq. (2.8)

for quantum phases with spontaneous charge currents, but without Néel order.

Formally, a model expressed in terms of spins alone has no charge fluctuations, and so has

vanishing electromagnetic charge current, J = 0. However, in practice, every spin model arises

from an underlying Hubbard-like model, in which states suppressed by the on-site repulsion U are

eliminated by a canonical transformation. If we undo this canonical transformation, we can expect

that a suitable multi-spin operator will induce a non-zero J at some order in the 1/U expansion.

As O has the same symmetry signature as J , we can expect that a state with 〈O〉 non-zero will also

have 〈J(r)〉 non-zero. We will examine states in which 〈O〉 is independent of r in the continuum

limit, so that translational symmetry is preserved. However, by Bloch’s theorem,40,41 we must have∫
d2r〈J(r)〉 = 0, (1.1)

and so J cannot be r independent. If we want to preserve translational symmetry, the resolution is

that there will be intra-unit cell variations in 〈J(r)〉 to retain compatibility with Bloch’s theorem.

In a tight-binding model with one site per unit cell, we label each unit cell by a site label, i, and a

link label ρ so that the combination (i, ρ) identifies the complete set of lattice links, with no double

counting. So from each lattice site i, there are set of vectors vρ connecting i to its neighboring

sites, and both vρ and −vρ are not members of this set: see Fig. 1. In this setup, Bloch’s theorem

states that ∑
ρ

〈Jρ〉 = 0. (1.2)

where Jρ is the current along the vρ direction. Note that Eq. (1.2) is a stronger statement than

current conservation because the sum over ρ does not include all links connected to site i, only
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FIG. 1. Definitions of currents on the square lattice with first and second neighbor hopping. The filled

circles are the sites of the Cu atoms in the cuprates. Shown above are the 4 currents Jρ from the central

lattice site. These currents obey Eq. (1.2) when the translational symmetry of the square lattice is

preserved.

half of them. Eq. (1.2) is equivalent to the statement that there are current ‘loops’, and these are

clearly possible even in a single-band model.42,43 In the presence of a r-independent O condensate,

we can write by symmetry that (to linear order in the broken symmetry)

〈Jρp〉 = Kρ
pp′ 〈Op′〉 , (1.3)

where p, p′ = x, y are spatial indices, and Kρ
pp′ is a response function obtained in the 1/U expansion

which respects all square lattice symmetries. Compatibility with Bloch’s theorem requires that∑
ρ

Kρ
ij = 0, (1.4)

and there are no conditions on the value of 〈O〉.
We will turn to an explicit treatment of the charged excitations, and a computation of Jρ

in Section III: our results there do obey Eqs. (1.1) and (1.4). Section III will present a lattice

formulation in which the U(1) gauge field of the CP1 model is embedded in a SU(2) lattice gauge

theory.27,31,32,44 This lattice gauge theory has the advantage of including all Berry phases and

charged fermionic excitations, and also for allowing an eventual transition into a conventional

Fermi liquid state at high enough doping. Our interest here will be in insulating and metallic

states at lower doping, which have topological order and a gap to charged fermionic excitations in

the anti-nodal region. At the same time we shall show that, with an appropriate effective action,

there can be a background modulated gauge flux under which gauge-invariant observables remain
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FIG. 2. Currents on the links in two classes of states with broken time reversal and inversion symmetries.

The states have the full translational symmetry of the square lattice, and the magnitude of the current is

noted on some links. The current vanishes on the dashed lines. In (a), the currents have the magnitudes

|J1| =
√

2I, |J2| = 0, |J3| = I, |J4| = I, and the order parameter O ∼ (−1, 0). In (b), the currents have

the magnitudes |J1| = I, |J2| = I, |J3| = 0, |J4| =
√

2I, and the order parameter O ∼ (1,−1). The state

in (a) has Ising-nematic order N1 non-zero, while the state in (b) has Ising-nematic order N2 non-zero

(see Eq. (1.5)). Experiments on the cuprates1,3,6,8 observe the Ising-nematic order N1.

translationally invariant but break one or more of inversion, time-reversal and lattice rotation

symmetries. Our computations will demonstrate the presence of spontaneous charge currents

obeying Eq. (1.2) in states which break both inversion and time-reversal, but preserve translation.

The two classes of spontaneous current patterns we find are shown in Fig. 2. Note that the product

of time-reversal and inversion is preserved in these states. The state in Fig. 2a has 〈O〉 ∼ (−1, 0),

while the state in Fig. 2b has 〈O〉 ∼ (1,−1). Both states belong to separate quartets of equivalent

states (with 〈O〉 ∼ (±1, 0), (0,±1) and 〈O〉 ∼ (±1,±1)) which can be obtained from them by

symmetry operations. Both states also break an Ising-nematic symmetry. In general, on the

square lattice, we can define two Ising-nematic order parameters, which are invariant under both

inversion and time-reversal, but not under lattice rotation symmetries. In terms of O, these order

parameters are

N1 = O2
x −O2

y , N2 = OxOy. (1.5)

The state in Fig. 2a has only 〈N1〉 6= 0, while the state in Fig. 2b has only 〈N2〉 6= 0. We note that

the state in Fig. 1b of Simon and Varma16 in a two band model has the same symmetry as the

state in our Fig. 2b, and also the spontaneous current states considered in Refs. 42 and 43. The

state in our Fig. 2a appears to not have been considered earlier: it has the same Ising-nematic
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T Tx Ty Ix Iy

~n − − − + +

~L − + + + +

ex + − − − +

ey + − − + −
b − − − − −
Jx − + + − +

Jy − + + + −

TABLE I. Symmetry signatures of various fields under time reversal (T ), translation by a square lattice

spacing along the x (Tx) and y (Ty) directions, and reflections about a square lattice site involving x→ −x
(Ix) or y → −y (Iy).

order observed in experiments in the cuprates.1,3,6,8

Finally, we note that our results are also easily extended to states with long-range antiferro-

magnetic order by condensing the spectator bosonic spinons.

II. O(3) NON-LINEAR SIGMA AND CP1 MODELS

The familiar O(3) model describes quantum fluctuations of the unit vector ~n(r, τ), representing

the local antiferromagnetic order, with action over space, r, and imaginary time τ

S~n =
1

2g

∫
d2rdτ (∂µ~n)2 , (2.1)

where µ extends over the 3 spacetime indices, and g is a coupling constant. For our purposes,

we need the symmetry transformation properties of the operator ~n and its canonically conjugate

angular momentum ~L; the latter is also interpreted as the conserved ferromagnetic moment.34 We

list these transformations properties in Table I.

Table I also shows the symmetry transformations of charge current J . Formally, a model ex-

pressed in terms of spins alone has no charge fluctuations, and so we will have J = 0. However,

in practice, every spin model arises from an underlying Hubbard-like model, in which states sup-

pressed by the on-site repulsion U are eliminated by a canonical transformation. If we undo this

canonical transformation, we can expect that a suitable multi-spin operator will couple linearly

to J at some order in the 1/U expansion; naturally, we need this multi-spin operator to have the

same symmetry signature as J . We therefore use Table I to find the simplest such combination of

6



~n and ~L; the needed operator turns out to be

O = ~L · (~n×∇~n). (2.2)

We will therefore be interested in states in which 〈O〉 is non-zero and independent of r. In

magnetically ordered states, 〈O〉 is non-zero for a ‘canted spiral’ in which the spins precess around

the base of a cone along a fixed spatial direction:45 a non-zero ~n×∇~n corresponds to a spin spiral,

which must cant to introduce a non-zero ~L. However, our interest here is in states in which 〈O〉
is non-zero without long-range magnetic order, in which 〈~n〉 = 0 and 〈~L〉 = 0. For example, we

can add to S~n an effective potential V (O) which is invariant under all symmetries, and a suitable

V (O) will induce an O condensate. In Section III, we will present specific lattice models for which

such condensates arise. In any such state with an O condensate, we can also expect that 〈J(r)〉
is also non-zero, and obeys Eqs. (1.3) and (1.4).

Let us now turn to the CP1 model. This is expressed in terms of bosonic spinons, zα, with

α =↑, ↓ and |z↑|2 + |z↓|2 = 1, related to the antiferromagnetic order by

~n = z∗α~σαβzβ, (2.3)

where ~σ are the Pauli matrices. The action for the CP1 model has an emergent U(1) gauge field

aµ = (aτ ,a):

Sz =
1

g

∫
d2rdτ |(∂µ − iaµ)zα|2. (2.4)

We define the associated emergent electric and magnetic fields by, as usual by

e = ∂τa−∇aτ , b = ẑ · (∇× a), (2.5)

where ẑ is a unit vector orthogonal to the square lattice in the x-y plane. These gauge-invariant

fields are connected to the topological charge of the O(3) order parameter ~n via

e =
1

2
~n · (∂τ~n×∇~n) , b =

1

2
~n · (∂x~n× ∂y~n) . (2.6)

We can now use (2.6) to deduce the symmetry signatures of e and b, and the results were shown

in Table I. Finally, as in the O(3) formulation, we now search for a combination of e and b which

has the same symmetry signature as the charge current; the simplest possibility is

O = e× (b ẑ). (2.7)

Note that the operators in Eqs. (2.2) and (2.7) are not equal to each other: they are distinct

representations with the same symmetry signature. The connection between O and the charge

current J in Eq. (1.3) also applies to Eq. (2.7). Also at this order, O is equal to the conserved
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Poynting vector of the gauge field, but we do not expect possible higher order terms in O to yield

a conserved quantity. Also, as for the O(3) model, we can add a suitable potential V (O) to the

CP1 action Sz in Eq. (2.4) and induce a phase with an O condensate.

The advantage of the CP1 formulation is that we can now write down an effective action for the

phase without Néel order, where the zα spinons are gapped. We integrate out the zα spinons and

generate an effective action for the U(1) gauge field aµ in the state where O is condensed; using

gauge invariance and symmetries, the imaginary time action has the form

Sa =

∫
d2rdτ

[γ1

2
(∂τai − ∂iaτ )2 +

γ2

2
(∂xay − ∂yax)2 + iΓi(∂τai − ∂iaτ )(∂xay − ∂yax)

]
, (2.8)

where γ1,2 are coupling constants. The novel feature is the last term which has a co-efficient

proportional to 〈O〉
Γ ∝ ẑ × 〈O〉; (2.9)

this term leads to a relatively innocuous modification of the gauge field propagator from the familiar

relativistic form. By itself, the U(1) gauge theory Sa is unstable to confinement by the proliferation

of monopoles and the appearance of VBS order.36 However, topological order can be stabilized if

there are Fermi surfaces of U(1) charged fermions46,47 which suppress monopoles. Alternatively, Z2

topological order can be stabilized28,29,48 by condensing a Higgs scalar with U(1) charge 2. We will

meet both mechanisms in the model of Section III. The resulting state has co-existing topological

order and spontaneous charge currents.

III. SU(2) LATTICE GAUGE THEORY

This section will extend the SU(2) gauge theory of Refs. 27, 31, 32, and 44 to obtain lattice model

realizations of the physics sketched in Section II. The SU(2) gauge theory was initially proposed

as a convenient reformulation of particular theories of topological order in insulators28,29,36,37 and

metals,47,49,50 which also allowed one to recover the large Fermi surface Fermi liquid at large doping.

For our purposes, it also turns out to be a convenient setting in which to realize the states discussed

in Section II. The theory explicitly includes charged fermionic excitations, and so it is possible to

obtain a gap near the antinodes, and also directly compute the charged currents.

We start with electrons ciα on the square lattice with dispersion

Hc = −
∑
i,ρ

tρ

(
c†i,αci+vρ,α + c†i+vρ,αci,α

)
− µ

∑
i

c†i,αci,α +Hint (3.1)

As discussed above Eq. (1.2), we label half the links from site i by the index ρ and the vector vρ:

to avoid double-counting the vectors vρ do not contain any pair that add to 0. With first, second,

and third neighbors, vρ ranges over the 6 vectors x̂, ŷ, x̂ + ŷ, −x̂ + ŷ, 2x̂, and 2ŷ.
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We represent the interactions between the electrons in a ‘spin-fermion’ form19 using an on-site

field Φ`(i), ` = x, y, z, which is conjugate to the spin moment on site i:

Hint = −λ
∑
i

Φ`(i)c†i,ασ
`
αβci,β + VΦ (3.2)

where σ` are the Pauli matrices. We leave the effective action for Φ in VΦ unspecified - different

choices for VΦ allow us to tune between the phases discussed below.

The key to obtaining insulators and metals with topological order (and hence a pseudogap

without breaking translational symmetry) is to transform the electrons to a rotating reference

frame27,31,32,44 along the local magnetic order, using a SU(2) rotation Ri and (spinless-)fermions

ψi,s with s = ±, (
ci↑

ci↓

)
= Ri

(
ψi,+

ψi,−

)
, (3.3)

where

R†iRi = RiR
†
i = 1. (3.4)

Note that this representation immediately introduces a SU(2) gauge invariance (distinct from the

global SU(2) spin rotation) (
ψi,+

ψi,−

)
→ Vi

(
ψi,+

ψi,−

)
(3.5)

Ri → RiV
†
i , (3.6)

under which the original electronic operators remain invariant, ciα → ciα; here Vi(τ) is a SU(2)

gauge-transformation acting on the s = ± index. So the ψs fermions are SU(2) gauge fundamentals,

carrying the physical electromagnetic global U(1) charge, but not the SU(2) spin of the electron:

they are the fermionic “chargons” of this theory, and the density of the ψs is the same as that

of the electrons. The bosonic R fields also carry the global SU(2) spin (corresponding to left

multiplication of R) but are electrically neutral: they are the bosonic “spinons”. We will relate

them below to the spinons, zα, of the CP1 model in Eq. (2.4). A useful summary of the gauge and

global symmetry quantum numbers of the various fields is in Table II.

Inserting the parameterization in Eq. (3.3) into Hint, we can write Eq. (3.2) as

Hint = −λ
∑
i

Ha(i)ψ†i,s σ
a
ss′ ψi,s′ + VH (3.7)

We have introduced here the on-site Higgs field Ha(i), where a = x, y, z and σa are the Pauli

matrices. This is the spin magnetic moment transformed into the rotating reference frame, and is

related to Φ`(i) via

Ha(i) =
1

2
Φ`(i)Tr

[
σ`Ri σ

aR†i

]
, (3.8)
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Field Symbol Statistics SU(2)gauge SU(2)spin U(1)e.m.charge

Electron c fermion 1 2 -1

Spin magnetic moment Φ boson 1 3 0

Chargon ψ fermion 2 1 -1

Spinon R or z boson 2̄ 2 0

Higgs H boson 3 1 0

TABLE II. Quantum numbers of the matter fields in the SU(2) Lattice gauge theory. The transformations

under the SU(2)’s are labelled by the dimension of the SU(2) representation, while those under the

electromagnetic U(1) are labeled by the U(1) charge. The spin correlations are characterized by Φ in

Eq. (3.2). The Higgs field is the transform of Φ into a rotating reference frame via Eq. (3.8).

and the inverse relation

Φ`(i) =
1

2
Ha(i)Tr

[
σ`Ri σ

aR†i

]
. (3.9)

These relations can also be written as

σaHa(i) = R†i σ
`Φ`(i)Ri. (3.10)

The Higgs field transforms as an adjoint under the SU(2) gauge transformation, but does not carry

spin or charge (see Table II)

Ha(i)→ 1

2
Hb(i)Tr

[
σaVi σ

bV †i

]
, (3.11)

or equivalently

σaHa(i)→ Vi σ
bHb(i)V †i . (3.12)

We recall in Fig. 3 an earlier mean-field phase diagram27 obtained by condensing R or H or

both. Our interest here will be primarily in phase C, which has Z2 topological order because the

condensation of the Higgs field breaks the SU(2) invariance down to Z2.

We focus here on the effective Hamiltonian for the ‘chargons’, the ψ fermions in phase C. This is

motivated by our aim of eventually computing the charge currents. To obtain the Hamiltonian, we

insert the parameterization in Eq. (3.3) into the hopping terms in Hc, and decouple the resulting

quartic terms. Such an effective Hamiltonian has the form

Hψ = −
∑
i,ρ

(
wρψ

†
i,s U

ρ
ss′(i)ψi+vρ,s′ + H.c.

)
− λ

∑
i

Ha(i)ψ†i,s σ
a
ss′ ψi,s′ − µ

∑
i

ψ†i,sψi,s (3.13)

The magnitudes of the bare hoppings of the ψ fermions are determined by the real numbers wρ; for

simplicity, we fix these hopping parameters at their bare values wρ = tρ. We have also included a
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(A) Antiferromagnetic 
metal

(B) Fermi liquid with 
large Fermi surface

hRi = 0, hHai = 0

hRi 6= 0, hHai = 0hRi 6= 0, hHai 6= 0

hRi = 0, hHai 6= 0

LGW-Hertz criticality
of antiferromagnetism

Increasing SDW orderIncreasing SDW order

Increasing SDW order

Higgs criticality:
deconfined SU(2) 
gauge theory with 
large Fermi surface

Increasing SDW order

(D) SU(2) ACL eventually 
unstable to pairing and 
confinement

(C) Metal with Z2 
topological order and 
discrete symmetry 
breaking

FIG. 3. Phase diagram of the SU(2) lattice gauge theory adapted from Ref. 27. The x and y axes are pa-

rameters controlling the condensates of H and R respectively. There is long-range antiferromagnetic order

only in phase A. The Landau-Ginzburg-Wilson-Hertz theory19 describing transition between the conven-

tional phases A and B is believed to provide a suitable framework for the Fe-based superconductors.51 The

hole-doped cuprate superconductors are proposed to follow the route A-C-D-B with increasing doping.

Our interest here is in the pseudogap metal phase C. The optimal doping criticality52 is the transition

from C to D, where the Higgs condensate vanishes in the presence of a large Fermi surface of fermions

carrying SU(2) gauge charges. Phase D describes the overdoped regime, and is proposed to underlie the

extended regime of criticality found in a magnetic field,53 and the non-BCS superconductivity.54

SU(2) matrix on every link, Uρ(i), which represents the gauge connection used by the ψ fermions

to hop between sites. This clearly transforms under the gauge transformation in Eq. (3.5,3.6) via

Uρ(i)→ ViU
ρ(i)V †i+vρ . (3.14)
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The previous analyses of this model27,31,32,44 only examined the unit SU(2) matrix case Uρ = I.
Below, we will describe other choices for Uρ, and show that they can lead to states with spontaneous

charge currents: this is the main new proposal in this paper for the SU(2) lattice gauge theory.

We will work with a translationally invariant ansatz55 for the SU(2) gauge-charged fields, Uρ(i)

and Ha(i), which can be taken to be independent of i. However, to make contact with earlier

formulations in which the SU(2) is broken down to a U(1) or Z2 gauge theory,27,31,32 it is useful

to sometimes perform a gauge transformation to a spatially-dependent ansatz. The spatially

dependent form cannot be gauge transformed back to the translationally invariant form using only

the U(1) or Z2 gauge transformations, and so the spatial dependence is not optional in the U(1)

or Z2 gauge theories. We choose the space dependence of the SU(2) gauge fields in the following

form

Uρ(i) = Vi

[
exp

(
iθρ`

a
ρσ

a
)

exp

(
− i

2
(Q · vρ)σz

)]
V †i+vρ

σaHa(i) = Vi σ
bΘb V †i , (3.15)

where

Vi = exp

(
− i

2
(Q · ri)σz

)
. (3.16)

The background gauge and Higgs fields are fully specified by the wavevector Q, the 3 real numbers

Θa, the angle θρ and the unit vector `aρ (
∑

a=x,y,z(`
a
ρ)

2 = 1) on each ρ link. Note that the ri depen-

dence is purely in fields performing the gauge transformation so all gauge-invariant combinations

will be translationally invariant. In component form, we can write Eq. (3.15) as

Hx(i)± iHy(i) = (Θx ± iΘy)e±iQ·ri

Hz(i) = Θz

Uρ(i) = cos(θρ) + i sin(θρ)
[
`zρσ

z + (`xρ − i`yρ)e−iQ·riσ+ + (`xρ + i`yρ)e
iQ·riσ−

]
(3.17)

where σ+ = (σx + iσy)/2.

The remaining task before us is to describe the physical properties of the phases obtained

for different values of the parameters Θa, θρ, `
a
ρ which are determined by minimizing a suitable

free energy. We will do this first for the previously studied phases in Section III A, and then in

Section III B for the new phases obtained here. We will find that almost all ansatzes break the

SU(2) gauge symmetry to a smaller gauge group: this Higgs phenomenon is accompanied by the

appearance of topological order and the gapping of the fermionic spectrum to yield a pseudogap

state.

Before turning to this task, we note the transformations of the ψi, Ri, H
a(i) and Uρ(i) under

symmetries in Table I. The simplest choice is to assign the transformations so that they commute

with SU(2) gauge transformations. Then the transformations under spatial symmetries (Tx, Ty, Ix,
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and Iy) are equal to the identity in SU(2) space, and simply given by the transformations on the

spatial indices. More non-trivial are the transformations under time reversal, T ; these we assign

as

T : ψ → −iσy ψ , R→ R , H → −H , U → U, (3.18)

along with the anti-unitary complex conjugation.

We close this discussion by pausing to recall the reasoning44,56,57 for the presence of Z2 topolog-

ical order in the Higgs state C in which the SU(2) gauge invariance has broken down to Z2, and

why such a state can have small Fermi pockets and a pseudogap even in the presence of transla-

tional symmetry. To break SU(2) down to Z2, the configuration of Higgs and link fields, Θa and

`aρ, must transform under global SU(2) transformations like a SO(3) order parameter. Because

π1(SO(3)) = Z2, there are vortex line defects with single-valued Higgs and link fields. Such a

defect must also correspond to a single-valued vortex configuration of the antiferromagnetic order.

Now we imagine undoing the vortex configuration by choosing R such that the ψ fermions observe

a locally constant background in Hψ. Then we will find that R is double-valued, with R → −R
upon encircling a loop around the vortex. Consequently, the ψ fermions acquire a Berry phase of π

around the vortex, and the ψ fermions and vortex excitations (the ‘visons’58) are relative semions.

These vortices will be suppressed in the Higgs-condensed ground state, and in such a ground state

we can globally transform to a rotating reference frame in which the ψ fermions are described by

Hψ. The Q dependent configuration of Higgs and link fields in Eq. (3.17) can then reconstruct

the ψ Fermi surface into pockets.

A. Previously studied phases

1. Insulators with Néel or VBS order

These are obtained from the saddle point with Q = (π, π) and Θa = (Θ, 0, 0), while all the

θρ = 0 so that Uρ = I. The Higgs field has two sublattice order polarized the x direction with

Ha(i) = ηi(Θ, 0, 0) where ηi = ±1 on the two sublattices.

The dispersion of the ψ fermions is the same as that of electrons in the presence of Néel order, and

we obtain the needed fermionic gap in the anti-nodal regions of the Brillouin zone. Note however

that Eq. (3.9) implies that the appearance of physical Néel order requires the condensation of R.

We assume Θ is large, and choose the chemical potential to lie within the band gap which has

magnitude |Θ|. Consequently, the ψ fermions form a band insulator, and the charge gap is of order

|Θ| which we assume is of order the U of the underlying Hubbard model.

We now argue that fluctuations about this ‘band insulator’ saddle point are described by the CP1

model of Eq. (2.4). A key observation is that presence of the Higgs condensate Ha(i) = ηi(Θ, 0, 0)
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breaks the SU(2) gauge invariance down to U(1). Such a Higgs condensate is invariant under

residual U(1) gauge transformations about the x axis. So we parameterize the the fluctuations of

the link fields by

Uρ = exp (iσxa · vρ) ; (3.19)

then a transforms like the spatial component of a U(1) gauge field under the residual gauge

transformation. To obtain the spinons zα in Eq. (2.4), we need to parameterizeR in terms zα so that

Eq. (3.6) implies that zα have unit gauge charge under the gauge transformation V = exp(iσxζ),

where ζ generates the gauge transformation. This is obtained from

R =
1√
2

(
z↑ + z∗↓ −z∗↓ + z↑

z↓ − z∗↑ z∗↑ + z↓

)
, (3.20)

under which zα → zαe
−iζ .

We note here a subtlety in identifying the zα and a above with the fields of the CP1 model of

Eq. (2.4): the symmetry assignments discussed near Eq. (3.18) for the SU(2) gauge theory do not

map under Eq. (3.19) to the symmetry assignments in Table I and Ref. 59. The difference is present

for transformations Tx, Ty and T , under which the Higgs field Θ→ −Θ in the SU(2) formulation

for Q = (π, π). In the CP1 formulation, it is implicitly assumed that the Higgs field is invariant

under all transformations. To remedy this, we need to combine the SU(2) gauge transformation

V = exp(−i(π/2)σz) with the operations of Tx, Ty, and T in the SU(2) gauge theory.

Beyond the fluctuations described by the CP1 model, we have to consider the non-perturbative

role of monopoles in the U(1) gauge field.36,37 In the earlier works, the spin liquid was described

using Schwinger bosons with a unit boson density per site. In the presence of monopoles, this

background density of bosons contributed a net Berry phase.37 In the present formulation, we

have a background of a filled band of the ψ fermions. The monopole Berry phase computation of

Ref. 37 (Section III.A) carries over with little change to the fermion case, and we obtain the same

monopole Berry phases.

The remaining analysis of the CP1 model augmented with monopole Berry phases is as

before.36–39 The phase with 〈zα〉 6= 0 has Néel order, while the strong coupling phase 〈zα〉 = 0 is

initially a U(1) spin liquid which eventually confines at the longest scales to a VBS; the transition

between these phase is described by the critical CP1 model.

2. Insulators with spiral spin order or Z2 topological order

The saddle point is similar to that in Section III A 1, except that Q is incommensurate. So

we have Θa = (Θ, 0, 0), while all the θρ = 0 so that Uρ = I. Eq. (3.15) implies that the spatial
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dependence of the Higgs field is specified by

Ha(i) = Θ(cos(Q · ri), sin(Q · ri), 0). (3.21)

For generic Q, there is no residual U(1) gauge invariance left by such a condensate. Instead, the

only residual gauge invariance is Z2, associated with the choice Vi = ±1. Consequently, the spin

liquid described by this Higgs condensate has Z2 topological order. Again, to obtain an insulator

we assume that the chemical potential is within the gap of the ψ bands.

The phases obtain by Eq. (3.21) are precisely those described in Refs. 28, 29, and 60, and the

earlier analyses can be applied directly here. The phase with R condensed has spiral spin order,

while the phase with R gapped is a Z2 spin liquid.

3. Metals with topological order

A key advantage of the present SU(2) gauge theory formulation is that the results obtained in

Sections III A 1 and III A 2 are immediately generalized from insulators to metals. One only has

to change the chemical potential µ so that one of the ψ bands is partially occupied, and we obtain

a Fermi surface of ψ chargons.

For the U(1) gauge theory in Section III A 1, the ψ Fermi surface can suppress the monopoles,

and the U(1) topological order survives in an ‘algebraic charge liquid’ (ACL).47 The Z2 topological

order was already stable in the insulator in Section III A 2, and it continues to survive in the

presence of the ψ Fermi surface.

It is also possible that the ACL becomes a ‘fractionalized Fermi liquid’ (FL*).21–23 This appears

when the ψ fermions bind with the R spinons to form ‘small’ Fermi surfaces of electron-like

quasiparticles24,25,47,49 while retaining the topological order.

B. States with SU(2) gauge fields on links

We turn to our new results on the SU(2) lattice gauge theory. We will examine saddle points

with non-zero Higgs condensate 〈H〉 6= 0 (as above) and also a non-trivial background gauge flux

Uρ 6= I. We will find that such saddle points can break time-reversal and inversion symmetries in

gauge-invariant observables, and that is sufficient to induce charge currents. Ising-nematic order

can also be present, as found previously, but it can also co-exist with spontaneous charge currents.

This subsection will report results in the gauge Q = 0. Recall that the value of Q is merely a

gauge choice in the full SU(2) gauge theory (but not in U(1) or Z2 gauge theory formulations). In

this gauge, the Higgs field is i independent with Ha(i) = Θa.
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Formally, we should integrate out the fermions in Hψ in Eq. (3.13), and then minimize the

resulting action functional for the Higgs and gauge fields. However, this is computationally de-

manding, and the structure assumed in Hψ is phenomenological anyway. So we will be satisfied

by minimizing a phenomenological gauge-invariant functional of the Higgs and gauge fields, con-

sisting of short-range terms that can be constructed out of a single plaquette. In metallic states,

the fermion determinant can also induce longer-range terms with a power-law decay, but we will

not include those here: in our simple treatment, we assume that the dominant energy arises from

the short-range terms.

The effective potential also has terms contributing to a Higgs potential VH which arise from VΦ

in Eq. (3.2) via Eq. (3.9). As we will not specify VH , we assume that this potential has already

been minimized to yield the values of Θa. So we will only consider the remaining free energy, F ,

which is a function only of the Uρ.

The following gauge-invariant link variables are useful ingredients in constructing the free energy

Lρ = ΘaΘb Tr(σaUρσbUρ†); (3.22)

These link variables are even under the time-reversal operation described in Eq. (3.18). In terms

of these link variables, we can define the nematic order parameters in Eq. (1.5) by

N1 = L1 − L2 , N2 = L3 − L4. (3.23)

In writing the free energy, it is useful to change notation and write the link variables via

Uρ(i)→ Uij ,with rj = ri + vρ. (3.24)

We minimized the free energy

F = K1

(
L1 + L2

)
+K8(L1 − L2)2 +K9

(
L3 − L4

)2

+
∑
@ij
k

[
K3 Tr (UijUjkUki) +K4 [Tr (UijUjkUki)]

2 +K5 Tr
(
UijUjkσ

aUkiσ
b
)

ΘaΘb

−K6 Tr
(
Uijσ

aUjkUkiσ
b
)

ΘaΘb
]

+
∑

ij
k `

K7 Tr (UijUjkUk`U`i) . (3.25)

In the above expressions we assume that all terms obtained from the pictured symbols by square

lattice symmetry operations have been summed over. This free energy depends upon 9 parameters

K1−9, and a priori they are free to take arbitrary values. We used the residual SU(2) gauge degree

for freedom to set Θa = (Θ, 0, 0), and then with 4 possible values of the link variable ρ, the free

depends upon 12 real numbers which determine the Uρ.
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We characterized the free energy minima by their values of the nematic order parameters N1

and N2. We also need gauge-invariant observables which are odd under time-reversal; for this we

evaluated the combinations defined on right triangles, ijk:

Pijk = iTr (σaUijUjkUki)H
a(i). (3.26)

The spatial patterns of the Pijk, along with the values of Tr (UijUjkUki), yield much information

on the nature of time-reversal and inversion symmetry breaking. Note that the Pijk are non-zero

only if the Higgs field is non-zero—this is a consequence of the transformation in Eq. (3.18). So

time-reversal symmetry can only be broken in states in which the SU(2) gauge invariance is also

broken.

Another important characterization of the states is provided by the values of the physical charge

current. We used the values of the link variables obtained by the minimization of F , and inserted

them into the Hamiltonian Hψ in Eq. (3.13). We then determined the current on each link by

evaluating the expectation value of the current operator

Jρ(i) = −ivρ
(
wρψ

†
i,s U

ρ
ss′(i)ψi+vρ,s′ − H.c.

)
(3.27)

in the fermion state specified by the Hamiltonian Hψ at a low temperature. As shown in Ap-

pendix A, for the background field configurations in Eq. (3.17), 〈Jρ(i)〉 turns out to be independent

of i for general values of the variational parameters Θa, θρ, `
a
ρ and Q in the Hamiltonian. This

is as expected from our arguments that Eq. (3.17) implies that all gauge-invariant observables

should be translationally invariant. Moreover, we find that the value of 〈Jρ〉 always obeys Bloch’s

theorem in Eq. (1.2); this is true in our numerics, and a general proof is in Appendix A.

It is also useful to examine local gauge-invariant operators which have the same symmetry

signatures as the physical current Jρ. Such operators will be realizations of the operator O

characterizing states with broken inversion and time-reversal symmetry. We obtained expressions

using the symmetry transformations described near Eq. (3.18), and one set of operators is presented

in Fig. 4. A derivation based upon a large |Ha(i)| expansion is presented in Appendix C, along with

other sets of possible operators. For the translationally invariant solution and Q = 0 gauge being

considered here, Fig. 4 yields these expressions for the order parameters Oρ along the directions

vρ:

O1 = iTr
(
σaU1U2†U4

)
Θa − iTr

(
σaU1†U2†U3

)
Θa + iTr

(
σaU1U2U3†)Θa − iTr

(
σaU1†U2U4†)Θa

O2 = iTr
(
σaU2U1U3†)Θa − iTr

(
σaU2†U1U4

)
Θa + iTr

(
σaU2U1†U4†)Θa − iTr

(
σaU2†U1†U3

)
Θa

O3 = iTr
(
σaU2U1U3†)Θa − iTr

(
σaU1†U2†U3

)
Θa + iTr

(
σaU1U2U3†)Θa − iTr

(
σaU2†U1†U3

)
Θa

O4 = iTr
(
σaU2U1†U4†)Θa − iTr

(
σaU1U2†U4

)
Θa + iTr

(
σaU1†U2U4†)Θa − iTr

(
σaU2†U1U4

)
Θa

(3.28)
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ji k

l m n

Omj = i Tr (�aUmjUjkUkm) Ha(m)

� i Tr (�aUjmUmnUnj) Ha(j)

+ i Tr (�aUmjUjiUim) Ha(m)

� i Tr (�aUjmUmlUlj) Ha(j)

Omk = i Tr (�aUmjUjkUkm) Ha(m)

� i Tr (�aUkjUjmUmk) Ha(k)

+ i Tr (�aUmnUnkUkm) Ha(m)

� i Tr (�aUknUnmUmk) Ha(k)

FIG. 4. Expressions for the time and inversion symmetry breaking order parameter O in terms of the

variables of the SU(2) gauge theory. We use the same notation as in Eq. (3.24) for the link values of Uρ(i)

and O with Oij = O · vρ when rj = ri + vρ.

These will be connected to Jρ via an expression like Eq. (1.3). Note that the Oρ can only be non-

zero when the Higgs condensate is non-zero, because only the Higgs field is odd under time-reversal

in Eq. (3.18). An explicit demonstration that a non-zero charge current requires a non-zero Higgs

field is in Appendix B.

Turning to the minimization of F in Eq. (3.25), we did not perform an exhaustive search of

different classes of states over the 9 parameters, K1−9 in F . Rather we explored a few values

to yield representative minima, and will describe a few of the typical states in the subsections

below. All of the minimization was performed with the Higgs field oriented along the x direction,

Θa = (Θ, 0, 0).

1. Symmetric state

This state preserves all square lattice symmetries and time reversal. We obtained such a mini-

mum at K1 = 1, K2 = −1, K3 = 2, K4 = 2, K5 = 2, K6 = 2, K7 = 0.1, K8 = 0, K9 = 0. In the
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Q = 0 gauge, the link fields take the values:

U1 = i sin(θ)σx − i cos(θ)σy

U2 = i sin(θ)σx + i cos(θ)σy

U3 = −1

U4 = 1, (3.29)

where θ = 0.344π. All the Oρ, N1 and N2 order parameters, and the currents Jρ, vanish in this

state. The SU(2) gauge invariance is broken down to Z2 because the Uρ and Θa have no common

orientation, and so this state has Z2 topological order.

2. Ising-nematic order

This state preserves time reversal and inversion, but breaks a square lattice rotation symmetry.

We obtained such a minimum at K1 = 0.5, K2 = 0.5, K3 = −1, K4 = 0.25, K5 = 0, K6 = 0,

K7 = 0, K8 = 0, K9 = 5. In the Q = 0 gauge the link fields take the values:

U1 = −i σz

U2 = cos(θ1) + i sin(θ1)σz

U3 = cos(θ2) + i sin(θ2)σz

U4 = − cos(θ2)− i sin(θ2)σz (3.30)

where θ1 = 0.672π and θ2 = 0.427π. All the Oρ, and the currents Jρ, vanish in this state. However

the nematic order N1 6= 0, while N2 = 0. Note that the Uρ are oriented along a common z

direction, while the Higgs field Θa is oriented along the distinct x direction. So SU(2) gauge

invariance is broken down Z2, and Z2 topological order is present. In the insulator, this state has

the same properties as the “(π, q) SRO” state of Refs. 28 and 29.

3. State with broken time-reversal

Now we present a state which breaks time-reversal but not inversion. So this state has no

spontaneous currents, and Oρ = 0 and Jρ = 0. Nevertheless, time reversal is broken as signaled by

the non-zero values of some of the Pijk. Roughly speaking, such a state has spontaneous currents

along different directions in the gauge group, but the net electromagnetic current vanishes. We

obtained such a minimum at K1 = 0.5, K2 = 0.5, K3 = 1, K4 = 0.667, K5 = 0, K6 = 0, K7 = 1,
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K8 = 5, K9 = 5. In the Q = 0 gauge the link fields take the values:

U1 = − cos(θ1)− i sin(θ1)σz

U2 = cos(θ1) + i sin(θ1)σy

U3 = cos(θ2) + i sin(θ2) (σy + σz)/
√

2

U4 = − cos(θ2) + i sin(θ2) (σy − σz)/
√

2, (3.31)

where θ1 = 0.446π and θ2 = 0.497π. Again, SU(2) gauge invariance is broken down Z2, and Z2

topological order is present.

4. States with spontaneous charge currents.

Finally, we turn to a description of the states presented in Fig. 2.

First, we present a state with the symmetry of Fig. 2a. Such a state was obtained for K1 = 0.5,

K2 = 0.5, K3 = −1, K4 = 0.25, K5 = 0, K6 = 0, K7 = 0, K8 = 2, K9 = 5. In the Q = 0 gauge

the link fields take the values

U1 = cos(θ1) + i sin(θ1) (cos(φ1)σx + sin(φ1)σz)

U2 = i (cos(φ2)σx + sin(φ2)σz)

U3 = − cos(θ2) + i sin(θ2) (cos(φ1)σx + sin(φ1)σz)

U4 = cos(θ2) + i sin(θ2) (cos(φ1)σx + sin(φ1)σz) (3.32)

where θ1 = 0.410π, φ1 = 0.5063π, φ2 = 0.558π, θ2 = 0.387π. This state has the Oρ and Jρ

non-zero, along with a non-zero Ising-nematic order N1 6= 0, but N2 = 0. So it has the full generic

symmetry structure of Fig. 2a. The gauge field configuration shows that SU(2) is broken down

to Z2, and so Z2 topological order is present. States in this class were the most common in our

search over the parameters K1−9 among those that broke time-reversal symmetry.

Among states with a residual U(1) gauge invariance, we found global minima with the symmetry

of Fig. 2a only when we restricted the search to states in which the Higgs and link fields were

collinear in the gauge SU(2) space. We can parameterize the fluctuations about such a saddle point

by multiplying the Uρ by the factor in Eq. (3.19), and then we obtain a theory of a gapless U(1)

photon aµ. Because of the presence of the breaking of inversion and time-reversal symmetries, this

action will take the form in Eq. (2.8), including the term proportional to Γ. As in Section III A 1,

we have to consider the non-perturbative effects of monopoles: such a state can be stable against

monopole proliferation only in the presence of gauge-charged Fermi surfaces.

Next, we present a state with the symmetry of Fig. 2b. Such a state was obtained for K1 = 0.5,

K2 = 0.5, K3 = 1, K4 = 0.667, K5 = 0, K6 = 0, K7 = 0, K8 = 5, K9 = −1. In the Q = 0 gauge
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the link fields take the values

U1 = − cos(θ1)− i sin(θ1)σz

U2 = cos(θ1) + i sin(θ1)σz

U3 = cos(θ2) + i sin(θ2)σz

U4 = cos(θ3)− i sin(θ3)σx (3.33)

where θ1 = 0.451π, θ2 = 0.503π, θ3 = 0.379π. The order parameters Oρ and the currents Jρ are

non-zero, and are consistent with the pattern in Fig. 2a. There is also a non-zero Ising-nematic

order N2 6= 0, but N1 = 0. The non-collinear alignment of the gauge and Higgs fields indicates

the presence of Z2 topological order.

IV. CONCLUSIONS

We have presented computations showing that emergent background gauge connections, and

associated Berry phases, arising from the local antiferromagnetic spin correlations can induce

spontaneous charge currents, while preserving translational symmetry. The main requirement on

the gauge theory is that gauge-invariant observables break time-reversal and inversion, but preserve

translation. At the same time, the topological order associated with the emergent gauge fields can

account for the anti-nodal gap in the charged fermionic excitations.

The specific model we used for a stable pseudogap metal had Z2 topological order. We employed

a SU(2) lattice gauge theory with a Higgs field to realize such a phase. Going beyond earlier work

on this theory, we allowed the SU(2) gauge fields on the links to acquire non-trivial values in

the saddle point of the Higgs phase. These link fields had two important consequences. First,

it became possible to obtain Z2 topological order even under conditions in which the proximate

magnetically ordered phase had collinear spin correlations at (π, π); earlier realizations27–29,31,32

required non-collinear spiral spin correlations. Second, the gauge-invariant combinations of the

SU(2) gauge fluxes and the Higgs field could break time-reversal and inversion symmetries without

breaking translational symmetry. This allowed the appearance of spontaneous charge currents and

Ising-nematic order in the Higgs phase. Linking the discrete broken symmetries to the presence

of the Higgs condensate also explains why the broken symmetries do not survive in the confining

phases at large doping.

An attractive features of our results is that the charge currents, and the anti-nodal gap, continue

largely unmodified across transitions to states with long-range antiferromagnetic order, but without

topological order. This is consistent with recent experiments11,13 on Sr2Ir1−xRhxO4 showing co-

existence of Néel order and inversion and time reversal breaking over a certain range of doping

and temperature.
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The possible patterns of symmetry breaking in the translationally-invariant states with broken

time-reversal and inversion (but not their product) are illustrated in Fig. 2. Both states also break

a lattice rotation symmetry, and so they also have Ising-nematic order. The state in Fig. 2b has the

same pattern of symmetry breaking as states considered earlier.16,42,43 However, the state in Fig. 2a

does not appear to have been described previously in the literature. The Fig. 2a state has the

attractive feature that its Ising-nematic order is precisely that observed in other experiments.1,3,6,8

The onset of Ising-nematic order and time-reversal and inversion symmetry breaking could happen

at the same or distinct temperatures, as we also found states in Section III B 2 with Ising-nematic

order but no charge currents. However, if a particular symmetry is broken in the pseudogap phase

(phase C in Fig. 3), it must be restored when the Higgs condensate vanishes in the over-doped

regime (phases D and B in Fig. 3).

The existing experiments11,13 do not contain the polarization analysis needed to distinguish

between the states in Fig. 2a and b, and we hope such experiments will be undertaken.

We placed our results in the context of a global phase diagram for antiferromagnetism and su-

perconductivity in two dimensions in Fig. 3. In particular, we noted that this phase diagram27,31,32

is in accord with experiments exploring the hole-doped cuprates over a range of carrier density.

Badoux et al.52 observe pseudogap metal at low T and large doping, without any charge density

wave order: this is a candidate for our phase C. We note recent theoretical works61,62 which studied

electrical and thermal transport across the phase transition C → D in Fig. 3, and found results

in good accord with observations.52,63–65 Cooper et al.53 observe an extended overdoped regime of

linear-in-T resistivity when the superconductivity is suppressed by a magnetic field: our phase D

could be such a critical phase. And Božović et al.54 see strong deviations from BCS theory in the

doping and temperature dependence of the superfluid stiffness in the overdoped regime: this could

also be described by phase D.
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Appendix A: Momentum space

This appendix presents a few expressions from Section III in momentum space. These expres-

sions were used for our numerical computation.

The momentum space form of the electron dispersion in Eq. (3.1) is

Hc = −2
∑
k,ρ

tρ cos(k · vρ)c†k,αck,α − µ
∑
k

c†k,αck,α +Hint. (A1)

The Hamiltonian for the ψ fermions is obtained from Eqs. (3.13) and (3.17) (we have set

λ = −1)):

Hψ =
∑
k

ψ†k,+

(
−µ+ Θz − 2

∑
ρ

wρ

[
cos(θρ) cos(k · vρ)− `zρ sin(θρ) sin(k · vρ)

])
ψk,+

+
∑
k

ψ†k+Q,−

(
−µ−Θz − 2

∑
ρ

wρ

[
cos(θρ) cos((k + Q) · vρ) + `zρ sin(θρ) sin((k + Q) · vρ)

])
ψk+Q,−

+
∑
k

ψ†k,+ψk+Q,−

(
Θx − iΘy +

∑
ρ

wρ sin(θρ)(`
x
ρ − i`yρ)

[
−iei(k+Q)·vρ + ie−ik·vρ

])
+ H.c.. (A2)

The average kinetic energy and current on each bond can be evaluated from

−
〈
wρψ

†
i U

ρ(i)ψi+vρ

〉
= −wρ

[
cos(θρ) + i`zρ sin(θρ)

]∑
k

eik·vρ
〈
ψ†k,+ψk,+

〉
−wρ

[
cos(θρ)− i`zρ sin(θρ)

]∑
k

ei(k+Q)·vρ
〈
ψ†k+Q,−ψk+Q,−

〉
−iwρ sin(θρ)(`

x
ρ − i`yρ)

∑
k

ei(k+Q)·vρ
〈
ψ†k,+ψk+Q,−

〉
−iwρ sin(θρ)(`

x
ρ + i`yρ)

∑
k

eik·vρ
〈
ψ†k+Q,−ψk,+

〉
. (A3)

Note that the result is explicitly independent of the site i. The kinetic energy is twice the real

part of the result, while the current, Jρ in Eq. (3.27), is −vρ times the imaginary part.

From the expression in momentum space, it is straightforward to see that the value of 〈Jρ〉
always obeys Bloch’s theorem. The Hamiltonian Hψ can be re-written in momentum space in

terms of a 2-component spinor χk as follows:

Hψ =
∑
k

χ†k hk χk, where χk =

(
ψk,+

ψk+Q,−

)
. (A4)

The minimal coupling to an external electromagnetic gauge field A corresponds to a transformation

k → k −A in the momentum space Hamiltonian hk. The operator for the net current J in any
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given direction is the negative of the derivative with respect to A at A = 0, which can be recast

as a derivative with respect to k:

∑
ρ

〈Jρ〉 =
∑
ρ

∫
d2k

(2π)2
〈Jρ(k)〉 =

∫
d2k

(2π)2
〈χ†k

∂hk
∂k

χk〉 =

∫
d2k

(2π)2

∂

∂k
〈χ†khkχk〉 = 0, (A5)

where the last step uses the Feynman-Hellman theorem and periodicity in the Brillouin zone.

Appendix B: Relation between loop currents and Higgs condensate

We show that a non-zero current necessarily requires a Higgs condensate. To do so, we need

an operator which reverses the current, and is a symmetry of the Hamiltonian only if the Higgs

condensate is absent. Consider the following anti-unitary operator T that leaves the Higgs field

unchanged:

T ψs,k T
−1 = (−iτ y)s,s′ ψs′,−k, T i T−1 = −i, T Hi T

−1 = Hi. (B1)

Note that T is not equivalent to the physical time-reversal T defined earlier in Eq. (3.18), which

always leaves Hψ invariant. Rather, as we show below, T leaves the Hamiltonian invariant only if

the Higgs condensate is absent.

Under T , we find the following transformation of the Hamiltonian Hψ:

THψT
−1 = Hψ −

∑
k

χ†k,sΘ̂s,s′ χk,s′ , where Θ̂ = 2

(
Θz Θ−

Θ+ −Θz

)
= 2 Θbτ b. (B2)

Therefore, the Hamiltonian Hψ commutes with T when Θ̂ = 0. One can also show that the charge

current operator Jρ(i) is odd under T , i.e,

T Jρ(i)T
−1 = −Jρ(i). (B3)

Therefore, when Θ̂ = 0, we can use the symmetry of Hψ under T to find that:

〈Jρ(i)〉 = 〈T Jρ(i)T−1〉 = −〈Jρ(i)〉 =⇒ 〈Jρ(i)〉 = 0. (B4)

The physical content of the above equation is that current loop order cannot arise if all the SU(2)

gauge bosons are deconfined, but can possibly arise when a Higgs condensate reduces the gauge

group to U(1) or Z2.
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Appendix C: Real space perturbation theory for current in presence of large Higgs field

We consider the limit where the Higgs field Ha(i) is much larger compared to the hopping matrix

elements of the ψ± fermions, characterized by wρUi,i+vρ . In the |Hi| → ∞ limit, the Hamiltonian

has only on-site terms, and therefore there is no current on the links. In this section, we perform

a perturbation series expansion in 1/|Hi| to find an expression for the current. Recall that the

charge gap of the SU(2) lattice gauge theory is determined by |Hi|, and so this is similar to a 1/U

expansion in the underlying Hubbard model.

We define a lattice Green’s function in imaginary time in the standard fashion:

Gij(τ) = −〈Tτ (ψi(τ)ψ†j(0))〉. (C1)

The Matsubara Green’s function in the bare limit, G0
i,n is diagonal in real space (we set λ = −1):

G0
i,n = (iωn −Ha

i σ
a)−1 =

iωn +Ha
i σ

a

(iωn)2 −H2
i

. (C2)

where we have set µ = 0 for convenience (it does not modify our conclusion). The Dyson equation

for the Green’s function in real space is given by:

Gij,n = G0
i,n δij +

∑
k

G0
i,nwkiUkiGkj,n

= G0
i,n δij +G0

i,nwjiUjiG
0
j,n +

∑
k

G0
i,nwkiUkiG

0
k,nwjkUjkG

0
j,n + ...

≡ G0
i,n δij +G

(1)
ij,n +G

(2)
ij,n + ... (C3)

where wij = wρ is the hopping along the link 〈i, j〉 = 〈i, i + vρ〉. Recall that the current operator

on the link 〈i, i+ vρ〉 is given by:

Ji,i+vρ = −ivρwρ
(
ψ†i Ui,i+vρ ψi+vρ − H.c.

)
. (C4)

Therefore, we can write the its expectation value in terms of the Green’s function defined above

as follows:

〈Ji,i+vρ〉 = −ivρwρ
[
Tr(Ui,i+vρGi+vρ,i)− Tr(Ui+vρ,iGi,i+vρ)

]
(τ → 0−). (C5)

The lowest order term in 1/|Hi| corresponds to Gij = G0
i δij, which gives zero current consistent

with our expectations. To the next order in 1/|Hi|, we find that the forward and backward currents

exactly cancel and therefore the current is equal to zero to this order as well (via the cyclic property

of the trace).

〈J (1)
i,i+vρ

〉 = −ivρwρ
[
Tr(Ui,i+vρG

(1)
i+vρ,i

)− Tr(Ui+vρ,iG
(1)
i,i+vρ

)
]

= −ivρwρ
[
Tr(Ui,i+vρG

0
i+vρUi+vρG

0
i )− Tr(Ui+vρ,iG

0
iUi,i+vρG

0
i+vρ)

]
= 0. (C6)
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This exemplifies the importance of requiring non-nearest neighbor coupling for a non-zero current

on the nearest neighbor bonds, albeit in a large Higgs field limit.

The next term in the perturbation series, coming from G(2), gives us a non-zero current. To

be more specific, let us label the sites as in Fig. 4, and compute the current from m to j. It

involves all triangles consisting of m, j and a third site connected to both by a non-zero hopping

(for simplicity we consider only nearest neighbor and next nearest neighbor hoppings ).

〈J (2)
j,m〉 = ivjmw

2
1w2 Tr

[
UjmG

0
m

(
UmlG

0
lUlj + UmiG

0
iUij + UmnG

0
nUnj + UmkG

0
kUkj

)
G0
j

]
−ivjmw2

1w2 Tr
[
UmjG

0
j

(
UjlG

0
lUlm + UjiG

0
iUim + UjnG

0
nUnm + U jkG0

kUkm
)
.G0

m

]
(C7)

where w1, w2 are the nearest and next nearest neighbor hopping respectively. Note that the second

term is just the Hermitian conjugate of the first term. We now convert to Matsubara Green’s

functions and evaluate the frequency summation (for simplicity we assume that Hi are different

on each site). The eigenstates at site i have energy ±|Hi|, therefore in the T = 0 limit only the

negative energy eigenstates contribute to the current.

Since the contribution of all triangular plaquettes to the current are similar, we only evalu-

ate the contributions to the current by the first term in Eq. (C7) and its Hermitian conjugate

(corresponding to the triangular plaquette 4jlm).

1

β

(∑
iωn

Tr
[
UjmG

0
mUmlG

0
lUljG

0
j

]
− Tr

[
UjmG

0
mUmlG

0
lUljG

0
j

])
=

Tr

[
Ujm

(−|Hm|+Ha
mσ

a

−2|Hm|

)
Uml

(−|Hm|+Ha
l σ

a

H2
m −H2

l

)
Ulj

(−|Hm|+Ha
j σ

a

H2
m −H2

j

)]
+ (j → m→ l→ j) + (j → l→ m→ j)− H.c. (C8)

Using the unitarity of U and Uαβ = U †βα, we can show quite generally that Tr(UjmUmlUlj) =

Tr(UjlUlmUmj), so the term without any Higgs field Ha
ασ

a for some site α cancels with the con-

tribution from the second line in Eq. (C7). The terms with two Higgs fields of the form Ha
ασ

a

also cancel out with their Hermitian conjugates for the same reason. Therefore, we are left with

two kinds of terms, both of which fall off as |Hi|−2. The contribution to the current from this

particular triangular plaquette can be written as:

J4jlm ∼ i

[(
Ha
m Tr(Ujmσ

aUmlUlj) +Ha
l Tr(UjmUmlσ

aUlj) +Ha
j Tr(UjmUmlUljσ

a)
)
f(|H|) +

Ha
mH

b
lH

c
j Tr(Ujmσ

aUmlσ
bUljσ

c)g(|H|)− H.c.

]
, (C9)

where f(|H|) and g(|H|) are scalar functions of the Higgs fields (invariant under all symmetry
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operations), given by:

f(|H|) =
1

2(|Hm|+ |Hl|)(|Hm|+ |Hj|)(|Hm|+ |Hl|)

g(|H|) = − |Hm|+ |Hl|+ |Hj|
2|Hm||Hl||Hj|(|Hm|+ |Hl|)(|Hm|+ |Hj|)(|Hm|+ |Hl|)

. (C10)

We chose a particular set of terms, coming from 4jlm and the three other triangles related to

it by reflection symmetries, as our order parameter Ojm in Fig. 4. The other three contributions

to the current on the link 〈j,m〉 in Eq. (C7) may be obtained by replacing the third vertex l of

the triangle by that of the triangle under consideration (i, k and n). The net result for the current

therefore contains the expressions presented in Fig. 4, along with three other expressions which

can also serve as valid representations of O.
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