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The exotic normal state of iron chalcogenide superconductor FeSe, which exhibits vanishing magnetic order
and possesses an electronic nematic order, triggered extensive explorations of its magnetic ground state. To
understand its novel properties, we study the ground state of a highly frustrated spin-1 system with bilinear-
biquadratic interactions using unbiased large-scale density matrix renormalization group. Remarkably, with
increasing biquadratic interactions, we find a paramagnetic phase between Néel and stripe magnetic ordered
phases. We identify this phase as a candidate of nematic quantum spin liquid by the compelling evidences,
including vanished spin and quadrupolar orders, absence of lattice translational symmetry breaking, and a per-
sistent non-zero lattice nematic order in the thermodynamic limit. The established quantum phase diagram
natually explains the observations of enhanced spin fluctuations of FeSe in neutron scattering measurement and
the phase transition with increasing pressure. This identified paramagnetic phase provides a new possibility to
understand the novel properties of FeSe.

PACS numbers: 74.25.-q, 74.70.Xa, 75.10.Kt

I. INTRODUCTION

In spin-1/2 antiferromagnets, the interplay between quan-
tum fluctuations and geometric frustration may generate ex-
otic paramagnetic states such as quantum spin liquid1,2. With
rapidly suppressed quantum fluctuations, it is usually believed
that the higher spin system such as spin-1 would favor mag-
netic order. Interestingly, some spin-1 systems may have ad-
ditional biquadratic interaction, and the competing interac-
tions can also lead to unusual paramagnetic states such as the
Affleck-Kennedy-Lieb-Tasaki (AKLT) state3,4 and quadrupo-
lar state5,6. While these states have been found in both theoret-
ical models and realistic systems, the studies on spin liquid are
limited in contrived models7 and effective field theories8–11.
The exotic spin liquid has not been found in any realistic
microscopic model. Recent exploration of this question8–11

is further stimulated by spin-1 triangular antiferromagnets
NiGa2S4

12 and Ba3NiSb2O9
13, which behave like gapless

spin liquids in experiments.

In recent studies on iron-based superconductors14–16, the
iron chalgogenide FeSe17 is attracting much attention because
of its paramagnetic normal state, which differs from the con-
ventional magnetic ordered normal states of cuprates18 and
iron pnictides14–16. Besides, FeSe possesses an electronic
nematic order after a tetragonal-to-orthorhombic structural
transition at Ts ' 90K19–22. Although the primary origin
of this nematic order is still unclear23–34, neutron scattering
measurements indicate the important role of spin degree of
freedom24,25. These novel properties have triggered wide in-
terests in the magnetic ground state of FeSe35–45. Neutron
experiment finds a large effective spin of S ' 0.7425, which
strongly supports the relevance of the spin-1 model as a start-
ing point for understanding the magnetism of FeSe. Along
this line, first principles calculations36,37,44,46 find that in FeSe
the magnetic interactions are highly frustrated and biquadratic
interaction plays an important role36,37,44. This naturally leads

us to the spin model

H = Ji,j
∑
(i,j)

~Si · ~Sj +Ki,j

∑
(i,j)

(~Si · ~Sj)2, (1)

which contains further-neighbor interactions and is also con-
sidered to be relevant to other iron superconductors47–50.
Semiclassical calculations for this model find various mag-
netic ordered phases to interpret the observed magnetic orders
in iron pnictides and FeTe36,42,47–52. Recent mean-field stud-
ies propose an antiferroquadrupolar (AFQ) state for FeSe39,40,
which exhibits a nematic order accompanied by the quadrupo-
lar fluctuations at wave vector ~q = (0, π)/(π, 0). While mean-
field approach can efficiently detect magnetic and quadrupolar
ordered phases, it may not accurately predict the paramagnetic
states generated from the frustrated competing interactions in
Hamiltonian (1). Such possibilities for FeSe may include the
paramagnetic state that might be continuously connected to
decoupled spin-1 chains38,53 and nematic spin liquid54–56. To
accurately determine the phase diagram of such a strongly
frustrated system and uncover new quantum phases, unbiased
studies are highly desired.

In this article, we study the ground state of the frustrated
spin-1 model (1) on the square lattice with first- (J1,K1) and
second-neighbor (J2,K2) interactions using unbiased density
matrix renormalization group (DMRG)57. We set J1 = 1.0 as
energy scale. Considering stripe spin fluctuations in FeSe23–25

and the first principles simulation results36,37, we fix J2 = 0.7
and set K1 < 0. For such a parameter setup, K2 < 0
only enhances ferroquadrupolar (FQ) order41; thus, we con-
sider K2 > 0. In the semiclassical phase diagram obtained
from the site-factorized wavefunction calculation58, this sys-
tem possesses a stripe antiferromagnetic (AFM) and a Néel
AFM phase separated by the dash-dot line in Fig. 1(a). In
DMRG calculations, through finite-size scaling of magnetic
order parameters, we find a paramagnetic regime sandwiched
by the magnetic ordered phases as shown in Fig. 1(a). We
identify this phase as a candidate of nematic quantum spin
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FIG. 1: (Color online) Different quantum phases in the spin-1 J1-
J2-K1-K2 model on the square lattice. (a) Quantum phase diagram
for J2 = 0.7 in the K1-K2 plane. With varying K1 and K2, the sys-
tem has a stripe and a Néel AFM phase. Between these two phases,
we find a paramagnetic (PM) phase with lattice rotational symmetry
breaking, which is between the red dash lines. The blue dash-dot
line is the semiclassical phase boundary between the stripe and Néel
AFM phase. (b)-(d) are the magnetic order parameter m2(~q) in mo-
mentum space for the different phases. In the stripe (b) and Néel
phase (c), m2 has a peak at ~q = (0, π) and (π, π), respectively. In
the paramagnetic phase, m2 is featureless as shown in (d).

liquid by observing vanished spin and quadrupolar orders, no
lattice translational symmetry breaking, and non-zero lattice
nematic order in the thermodynamic limit. The neighboring
stripe phase can naturally explain the enhanced stripe spin
fluctuations in neutron scattering measurement of FeSe24,25.
This identified paramagnetic phase not only provides a new
possibility to understand the exotic normal state of FeSe, but
also sheds more light on quantum spin liquid in spin-1 mag-
netic systems.

In our DMRG calculations, we study the rectangular cylin-
der (RC) system with periodic boundary in the y direction and
open boundaries in the x direction. We denote the cylinder as
RCLy-Lx, where Ly and Lx are the number of sites in the
y and x directions; the width of the cylinder is L = Ly (see
the inset of the RC4-4 cylinder in Fig. 1(a)). By implement-
ing spin rotational SU(2) symmetry59, we study cylinder sys-
tem with L up to 10 by keeping up to 20000 U(1)-equivalent
states with truncation error below 1 × 10−5 in most calcula-
tions. Our simulations allow us to obtain accurate quantum
phase diagram based on different measurements.
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FIG. 2: (Color online) K1 and K2 dependence of magnetic order
parameters for the J1-J2-K1-K2 square model with J2 = 0.7 on the
RC6-12 cylinder. (a) and (b) are Néel order parameter m2(π, π) and
stripe order parameter m2(0, π), respectively.
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FIG. 3: (Color online) Finite-size scaling of magnetic order parame-
ters. (a) and (b) are the size extrapolations of stripe order m2(0, π)
and Néel order m2(π, π) versus 1/L, respectively. We have the
system with J2 = 0.7,K1 = 0.0 on the RCL-2L cylinders with
L = 4− 10. Dashed lines are polynomial fits up to fourth order. (c)
and (d) are log-log plots of the two magnetic orders versus width L.

II. MAGNETIC AND QUADRUPOLAR ORDERS

First of all, we show the biquadratic coupling dependence
of magnetic order parameters on the RC6-12 cylinder in
Fig. 2. For this system, we have J2 = 0.7. With growing
K2, the stripe AFM order at small |K1| side is suppressed and
Néel order develops. In the large |K1| regime, the Néel or-
der persists with increased K2. The global picture of Fig. 2 is
consistent with the quantum phase diagram Fig. 1(a).

To further study magnetic order, we calculate spin struc-
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FIG. 4: (Color online) The absence of stripe AFQ order. (a) Stripe
(π, 0) AFQ correlation 〈Qi · Qj〉 for J2 = 0.7,K1 = 0.0,K2 =
0.36 on the RC8-16 cylinder. The solid green circle in the middle de-
notes the reference site. The solid blue and shaded red circles denote
the positive and negative AFQ correlations, respectively. (b) K1,K2

dependence of stripe AFQ order parameter Q2(π, 0) on the RC6-12
cylinder. (c) Finite-size scaling of Q2(π, 0) up to width L = 10.

ture factor m2(~q) = 1
N2

∑
i,j〈~Si · ~Sj〉ei~q·(~ri−~rj) (N is the

total numer of sites) from the spin correlations 〈~Si · ~Sj〉 of the
L×L sites in the middle of the RCL-2L cylinder, which effi-
ciently reduces edge effects of open cylinder60–62. In the stripe
and Néel AFM states, m2(~q) has the characteristic peak at
~q = (0, π)/(π, 0) and (π, π), respectively; these are shown in
Figs. 1(b) (the stripe state selects the peak at (0, π) because of
the cylinder geometry) and 1(c) . In the intermediate regime,
m2(~q) is featureless as shown in Fig. 1(d). Compared with the
semiclassical phase boundary, one finds that our DMRG phase
boundaries shift dramatically to the small K2 side, where the
semiclassical calculations may overestimate the stripe order.
In Figs. 3(a-b), we showm2(0, π) andm2(π, π) forK1 = 0.0
with growing K2 and L = 4− 10. The appropriate finite-size
scaling suggests that the stripe order vanishes at K2 ' 0.34,
and the Néel order develops at K2 ' 0.4, leaving an inter-
mediate regime with no magnetic order. The log-log plots of
magnetic orders versus system width are shown in Figs. 3(c-
d), where both orders appear to vanish in a power-law man-
ner in the intermediate regime. Thus, we establish a param-
agnetic phase in this regime, possibly with critical magnetic
fluctuations. To demonstrate the stability of the intermedi-
ate phase, we examine the extended parameter regime with
J2 = 0.75, 0.8 and we also identify the intermediate phase
by tuning biquadratic coupling (see Appendix), which sup-
ports a stable non-magnetic phase. Next, we will demonstrate
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FIG. 5: (Color online) Lattice symmetry breaking in the intermediate
phase. (a) J1 bond energy 〈~Si · ~Sj〉 for K1 = 0.0,K2 = 0.36 on
the RC8-16 cylinder. Here, we only show the middle 8× 8 sites. (b)
Finite-size scaling of bond nematic order σ1. The inset shows the
cylinder length dependence of σ1 for K2 = 0.36 and different Ly .

various measurement results to characterize the physics in the
intermediate phase.

Since biquadratic interaction is present in the system,
we investigate the quadrupolar order Qi

5,6, where Qi =

(Q3z2−r2
i , Qx

2−y2
i , Qxyi , Q

yz
i , Q

zx
i ) is a rank-two tensor op-

erator with five components Q3z2−r2
i = [2(Szi )

2 − (Sxi )
2 −

(Syi )
2]/
√
3, Qx

2−y2
i = (Sxi )

2 − (Syi )
2, Qxyi = Sxi S

y
i +

Syi S
x
i , Qyzi = Syi S

z
i + Szi S

y
i , Qzxi = Szi S

x
i + Sxi S

z
i . In

Fig. 4(a), we show that the quadrupolar correlation in the in-
termediate regime exhibits a stripe AFQ pattern. To detect
stripe AFQ order, we calculate quadrupolar structure factor
Q2(~q) = 1

N2

∑
i,j〈Qi ·Qj〉ei~q·(~ri−~rj) defined in a way simi-

lar to m2(~q). In Fig. 4(b), we show the stripe AFQ order pa-
rameterQ2(π, 0) on the RC6-12 cylinder in theK1-K2 plane,
where the finite-size Q2(π, 0) is enhanced in the intermedi-
ate regime. However, the size extrapolation in Fig. 4(c) shows
thatQ2(π, 0) approaches zero for L→∞, indicating the van-
ishing AFQ order in the thermodynamic limit.
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III. NEMATIC ORDER

Next, we study lattice symmetry breaking by measuring
the nearest-neighbor J1 bond energy 〈~Si · ~Sj〉. In Fig. 5(a),
we show the bond energy for K1 = 0.0,K2 = 0.36 on
the RC8-16 cylinder, which is quite tranlationally uniform
in the bulk of cylinder. Note that the open boundary condi-
tions in the x direction of cylinder system usually induce a
bond translational symmetry breaking, and the corresponding
dimer order (the bond energy difference along the x direction
〈~Si · ~Si+1〉 − 〈~Si+1 · ~Si+2〉) decays from the edge to the bulk.
For a valence-bond crystal (VBC) phase, the dimer order de-
cay length would increase fast while in a non-VBC phase the
decay length is finite in the thermodynamic limit63. In our
DMRG calculations, we find that the bond dimer order always
decay quite fast with a very short decay length on our studied
system size, indicating the preserved lattice translational sym-
metry.

Importantly, one can see a strong nematicity between hor-
izontal and vertical bond energy. We define a bond nematic
order as σ1 ≡ 〈~Si · ~Si+x̂〉 − 〈~Si · ~Si+ŷ〉 with the bond en-
ergy in the bulk of cylinder. Note that here the bond energy
is not translationally invariant only for few columns on the
edge. σ1 versus 1/L is presented in Fig. 5(b) for different
K2. We show the cylinder length dependence of σ1 in the
inset of Fig. 5(b), which indicates the extremely small finite-
size effects of σ1 versus Lx. In the stripe AFM phase for
K2 . 0.34, σ1 scales to finite value with 1/L, supporting
the rotational symmetry breaking of stripe magnetic ordered
phase. For K2 > 0.4, σ1 decreases fast and tends to van-
ish, which strongly indicates a transition to a phase without
lattice rotational symmetry breaking. This transition is com-
patible with the developing Néel order at K2 ' 0.4 found
in Fig. 3(b). Interestingly, in the intermediate phase, we find
that the nematic order also decreases slowly and approaches
finite value for L→∞, indicating lattice rotational symmetry
breaking in this intermediate phase.

We remark that the finite nematic order observed in the in-
termediate phase is not induced by cylinder geometry but in-
trinsic. For the geometry induced nematic order such as the
order in the neighboring Néel phase without a C4 symme-
try breaking, one can see that the order decays very fast to
vanish with growing cylinder width, in contrast to the scaling
behavior in the intermediate phase. As a numerical method,
we would like to point out that for detecting lattice symme-
try breaking, edge bond pinning has been shown effective in
quantum Monte Carlo63 and DMRG simulations61,62,64. In the
recent DMRG calculations for the spin-1/2 J1−J2 triangular
Heisenberg model65–67, a strong nematic order is also found,
which is considered as an evidence of a spontaneous rotational
symmetry breaking of the identified spin liquid phase.

IV. SPIN GAP

The vanishing magnetic order and spontaneous lattice ro-
tational symmetry breaking suggest the intermediate phase as
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FIG. 6: (Color online) Spin gap ∆T in the different phases. (a) ∆T

versus K2 for J1 = 0.7,K1 = 0.0 on different cylinders. (b) Finite-
size scaling of spin gap ∆T in different phases. To avoid edge ex-
citations, spin gap is obtained by sweeping the middle L × L sites
with total spin S = 1 based on the ground state of the long RCL-Lx

cylinders with Lx = 24 and L = 4, 6, 8.

a possible AKLT state38 or a nematic spin liquid. To futher
characterize this phase, we calculate the finite-size spin-1 ex-
citation gap, defined as the energy difference between the low-
est energy states in total spin-1 and spin-0 sectors for a given
system size62,68,69. We demonstrate spin gap with increasing
K2 in Fig. 6(a), where it exhibits a kink at K2 = 0.34. While
the ground-state energy varies smoothly with growingK2 (see
Appendix), the kink of spin gap indicates an energy level
crossing in spin-1 sector, which could be compatible with the
phase transition found in Fig. 3(a). AtK2 = 0.4, both ground-
state energy and spin gap exhibit no singularity on our studied
system size, which suggest a possible continuous phase tran-
sition. The vanishing nematic order forK2 & 0.4 and the spin
gap singularity at K2 = 0.34 support the intermediate phase
found in the finite-size scaling of magnetic orders.

In Fig. 6(b), we show finite-size scaling of the spin gap in
different phases. In both stripe and Néel phases, spin gap is
smoothly scaled to zero, which agrees with the gapless spin
excitations from continuous spin rotational symmetry break-
ing. In the paramagnetic phase, the spin gap also approaches
zero appropriately, which seems to be inconsistent with a spin
gapped AKLT-like state38 but leaves a possibility of a gapless
nematic spin liquid.

V. DMRG RESULTS ON THE TILT CYLINDER

As a supplementary of our finite-size calculations, we also
test the tilted cylinder (TC) that is obtained by a π/4 rotation
of the rectangular lattice. A schematic figure of the TC cylin-
der is shown in Fig. 7. The cylinder width for TC cylinder is
Wy =

√
2Ly . It should be noticed that different from RC, the

bond π/2 rotational symmetry is not broken by geometry on
TC cylinder.

First of all, we calculate the spin order on the TC cylinder.
We find the consistent (0, π) and (π, π) magnetic orders in
the small K2 and large K2 regimes, respectively. However,
in the intermediate K2 regime where we find a non-magnetic
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TC4-12 cylinder

FIG. 7: (Color online) A schematic figure for the 45-degree tilted
cylinder (TC) on the square lattice. Here, the cylinder width is Ly =
4 and the length is Lx = 12, which is denoted as TC4-12. For TC
cylinder, the cylinder width is

√
2Ly .
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FIG. 8: (Color online) Log-linear plots of the spin correlations in the
intermediate K2 regime for J2 = 0.7,K1 = 0.0 on the RC6 and
TC4 cylinders. The red squares denote the RC6 cylinder, and the
blue circles denote the TC4 cylinder.

state on the RC cylinder, DMRG calculations obtain a state
with strong spin correlations on TC cylinder. As shown in
Fig. 8, while the spin correlations on the RC cylinder decay
exponentially to vanish, those on the TC cylinder decay quite
slowly, which does not support a non-magnetic state.

To understand the different results on the two geometries,
we compare the bulk energy on both systems. As shown in
Fig. 9, in the two magnetic order phases, the bulk energies on
both geometries approach to each other with increasing cylin-
der width, indicating the consistent energy in large size limit.
However, in the intermediate regime, the TC cylinder appears
to have the higher energy than the RC cylinder. The close
energies of the two states may imply the gapless nature of
the low-lying excitations, which is consistent with the vanish-
ing gap in the intermediate phase. The lower energy of the
non-magnetic state supports it as the stronger candidate of the
true ground state. We also remark that in our DMRG calcula-
tions on TC cylinder, convergence is very challenging and the
DMRG truncation error is much bigger than the RC cylinder
with the similar Wy , which suggests that TC cylinder may not
be a proper geometry for studying the intermediate phase.
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FIG. 9: (Color online) Bulk energy versus cylinder width Wy on the
RC and TC cylinders. The system has J2 = 0.7,K1 = 0.0 and
different K2. For (a) K2 = 0.0, the system is in the (0, π) magnetic
order phase. For (b) K2 = 0.36, the system is in the intermediate
regime. For (c) K2 = 0.5, the system is in the (π, π) magnetic
order phase. The blue circles are the bulk energy for the RC6, RC8,
and RC10 cylinders. The red squares denote the energy for the TC4
and TC6 cylinders. For RC cylinder, cylinder width Wy = Ly; for
TC cylinder, Wy =

√
2Ly . In the two magnetic order phases, the

energies on the two geometries approach each other. However, in
the intermeidate regime, the TC cylinder appears to have the higher
energy than the RC cylinder on our studied system size.

VI. DISCUSSION AND SUMMARY

Motivated by the exotic nematic paramagnetic normal state
of iron chalcogenide superconductor FeSe, we study a spin-1
J1-J2-K1-K2 system on the square lattice using density ma-
trix renormalization group. By implementing spin rotational
SU(2) symmetry, we study cylinder geometry with system
width up to 10 legs, which significantly reduces finite-size ef-
fects of order parameter scaling. With increased biquadratic
interactions K1,K2, we find a paramagnetic phase between
stripe and Néel magnetic ordered phases, which preserves all
spin rotational and lattice translational symmetries but breaks
lattice rotational symmetry.

The nematic paramagnetic state in this J1-J2-K1-K2 sys-
tem provides a new possibility to understand the magnetic
ground state of FeSe. The current findings naturally match the
observations of FeSe in neutron scattering24,25 and high pres-
sure experiments31–33, where the paramagnetic state of FeSe
with substantial stripe spin fluctuations is identified to sit close
to the stripe magnetic phase and may undergo a phase tran-
sition to the stripe magnetic ordered phase at high pressure.
As FeSe is a bad metal that is in proximity of a Mott insu-
lator, it would be interesting to consider the effects of itin-
erant electrons on the nematicity of the localized moments
in further study. Our DMRG results suggest this paramag-
netic state may be a nematic quantum spin liquid. Spin liquid
states in spin-1 system have been discussed for the triangu-
lar antiferromagnets8–11 related with materials NiGa2S4

12 and
Ba3NiSb2O9

13, but have not been found in unbiased calcula-
tions besides our work. Our work provides insight for the in-
terplay between spin Heisenberg and biquadratic interactions,
and sheds more light on interesting phases in spin-1 system.
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FIG. 10: (Color online) K2 coupling dependence of (a) ground-state
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different long cylinders with Lx = 24.
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Appendix A: J1-J2-K1-K2 square model

In Fig. 10, we show the K2 coupling dependence of the
ground-state energy and entanglement entropy in the bulk of
cylinder for J2 = 0.7,K1 = 0.0 on different cylinders. In
the main text, we show that the system has an intermediate
phase for 0.34 . K2 . 0.4. Here, we find that both the
ground-state energy and the entropy appear smooth near the
phase boundaries, which indicates possible continuous transi-
tions. Generally, a direct phase transition from Néel to stripe
AFM phase would be first order in Landau’s paradigm. The
smooth transition behaviors could be compatible with an in-
termediate paramagnetic phase between the two magnetic or-
dered phases.

To demonstrate the stability of the intermediate phase, we
also extend the studied parameter regime to J2 = 0.75 and
0.8. Following the setup for J2 = 0.7, we fix K1 = 0.0
and tune K2. In Figs. 11 and 12, we show the magnetic spin
dipole structure factor S(q) = 1

N

∑
i,j e

iq·(ri−rj)〈Si · Sj〉 on
the RC8-16 cylinder. For J2 = 0.75, one can find that the
spin structure factor is featureless for 0.48 . K2 . 0.6;
and for J2 = 0.8, the structure factor is featureless for
0.6 . K2 . 0.75. In the non-magnetic intermediate regime
for J2 = 0.75, 0.8, we also examine the quadrupolar order
(not shown here), which exhits the same (π, 0) AFQ fluctua-
tions as we find for J2 = 0.7 in the intermediate phase. In
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FIG. 11: (Color online) Spin structure factor S(~q) for J2 =
0.75,K1 = 0.0 and different K2 on the RC8-16 cylinder. The struc-
ture factor is obtained by the Fourier transform from the spin corre-
lations of the middle 8 × 8 sites. For K2 = 0.4, S(~q) has the stripe
characteristic peak at ~q = (0, π). For 0.48 . K2 . 0.6, S(~q) is
featureless, consistent with the non-magnetic intermediate phase.

Fig. 13, we also show the finite-size scaling of the nematic or-
der σ1 ≡ 〈~Si · ~Si+x̂〉 − 〈~Si · ~Si+ŷ〉 in the intermediate regime
for J2 = 0.75 and 0.8. Consistently, the size scaling also indi-
cates the finite nematic order. Therefore, our results indicate
that the non-magnetic nematic intermediate phase is stable by
tuning J2.

Appendix B: J1-J2-K1 square model

Magnetic orders.— We show the magnetic order parameters
on the RC6-12 cylinder for 0.5 ≤ J2 ≤ 1.0, 0.5 ≤ |K1| ≤ 1.0
in Fig. 14. We find that the stripe AFM order develops very
fast above a critical J2. This phase transition is denoted by the
red dash line in Fig. 14. For the Néel phase, we can find that
the blue regime with weak Néel order before the transition
to stripe phase in Fig. 14(a) is enlarged with increasing |K1|,
which may indicate an intermediate regime.

To determine whether there is an intermediate phase, we
make finite-size scaling of magnetic order parameters. In
Fig. 15, we show the size scaling of Néel and stripe order
parameters for K1 = −0.8 with increased J2. Here, as the
convergence challenge in DMRG calculations in the interme-
diate regime, we only show the data up to L = 8. Through
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FIG. 12: (Color online) Spin structure factor S(~q) for J2 =
0.8,K1 = 0.0 and different K2 on the RC8-16 cylinder. We obtain
the data following the way described in the caption of Fig. 11. Here,
for J2 = 0.8, we also find the featureless S(~q) for 0.6 . K2 . 0.75.
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FIG. 13: (Color online) Size dependence of lattice nematic order σ1

for the parameter points in the intermediate phase regime for J2 =
0.75, 0.8,K1 = 0.0.

the appropriate extrapolation, we find that the Néel order van-
ishes at J2 ' 0.75 and the stripe order develops at J2 ' 0.88,
which give us the transition points shown in Fig. 14(a) and
identify an intermediate paramagnetic phase.

Ferroquadrupolar phase.— Next, we study ferroquadrupo-
lar (FQ) order in the intermediate phase. In Fig. 16(a), we
show the J2,K1 coupling dependence of the FQ order pa-
rameter Q2(0, 0) on the RC6-12 cylinder. We can find the
strong enhancement of Q2(0, 0) in the large J2, |K1| regime,
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FIG. 14: (Color online) Néel AFM order parameterm2(π, π) (a) and
stripe AFM order parameter m2(0, π) (b) versus J2 and K1 interac-
tions for the J1-J2-K1 square model on the RC6-12 cylinder. In both
figures, the red dash line denotes the phase transition to the stripe
AFM order. The red dots in subfigure (a) denote the phase transition
from Néel to the intermediate ferroquadrupolar phase, which are de-
termined from the finite-size scaling of magnetic order parameters as
shown in Fig. 15.
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FIG. 15: (Color online) Finite-size scaling of magnetic order param-
eters for the J1-J2-K1 square model on the RCL-2L cylinders with
L = 4, 6, 8. (a) and (b) are the Néel and stripe magnetic order pa-
rametersm2(π, π) andm2(0, π) versus 1/L, respectively. Lines are
polynomial fits.
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FIG. 16: (Color online) FQ phase in the J1-J2-K1 model. (a) J2,K1

dependence of FQ order parameterQ2(0, 0) on RC6-12 cylinder. (b)
Finite-size scaling of Q2(0, 0) in different phases. (c) Finite-size
scaling of lattice nematic order σ1 for K1 = −0.8 and different J2.

which is consistent with the intermediate regime identified by
studying magnetic orders in Fig. 14. In Fig. 16(b), we show
the finite-size scaling of the FQ order, which unambiguously
shows the finite FQ order in the thermodynamic limit. Thus,
the vanished magnetic order and finite FQ order identify this
intermediate regime as a FQ phase.

Preserved lattice symmetry.— We also calcuate the nearest-
neighbor bond energy 〈~Si · ~Sj〉 to detect lattice symmetry
breaking. We find that the bond energy is quite uniform in
the bulk of cylinder, indicating the translational invariance. In
Fig. 16(c), we demonstrate the size scaling of the bond ne-
matic order σ1 for K1 = −0.8. Similar to the main text, the
nematic order σ1 is defined as the difference between the hor-
izontal and vertical bond energy as σ1 = 〈~Si · ~Si+x̂〉 − 〈~Si ·
~Si+ŷ〉. While σ1 is strong and scales to finite value in the
stripe AFM phase for J2 & 0.88, it decays very fast to vanish
in both the Néel and FQ phases.

Appendix C: Origin of biquadratic interaction

We briefly discuss the origin of biquadratic coupling in our
model. Generally speaking, there are two different mecha-
nisms to generate biquadratic interaction. One is spin-phonon
coupling or lattice distortion effect. The other one is micro-
scopic description of the isotropic non-Heisenberg Hamilto-
nian extracted at the fourth order of perturbation from a Hub-
bard Hamiltonian.

a. Phonon coupling

As a phenomenological origin, one might think of the cou-
pling between spin and lattice degrees of freedom that results
from the exchange integrals on the atomic positions in a crys-
tal. Since the exchange integrals are linear functions of the
displacement coordinates, while the elastic energy of the de-
formation shows quadratic behaviour, a frustrated system may
gain energy by distorting the lattice. Alternatively, the compe-
tition between the lattice distortion and the associated energy
gain may lead to a quadratic coupling. This effect is discussed
in detail for the case of a single tetrahedral molecule with four
spins71. If we assume that the exchange integral for a pair of
nearborhood spins Si and Sj depends only on the inter-atomic
distance rij (a reasonable assumption for direct exchange), the
elastic energy associated with a bond distortion can be written
as κδr2ij/2, where δrij is the variation of the bond length and
κ is the elastic constant. Thus we reach the so-called bond-
phonon model:

Hbp = J
∑
ij

(1− αδrij)Si · Sj + κδr2ij/2 (C1)

where α is the spin-lattice coupling constant. Considering
δrij as independent parameters, we may integrate them out
and find an effective spin Hamiltonian:

H = J
∑
〈i,j〉

Si · Sj +K
∑
〈i,j〉

(Si · Sj)2, (C2)

where K = −Jα/2κ is a dimensionless constant. Here,
based on the bond-phonon model, we get a quadratic in-
teraction in addition to the original Heisenberg spin ex-
change coupling, despite that this derivation is a semi-classic
description72.

b. Microscopic origin from Hubbard model

We will derive an effective Hamiltonian for iron-based su-
perconductor based on simple arguments. Since iron-based
superconductors have six electrons occupying the nearly de-
generate 3d Fe orbitals, the system is intrinsically multi-
orbital in microscopic Hamiltonian. Band structure calcula-
tions on iron-based superconductors have shown the primary
Fe orbitals are dxz , dyz and dxy . Based the further approxi-
mation that the role of the dxy can be replaced by a next-near-
neighbor hybridization between dxz and dyz orbtials, we get a
two-dimensional square lattice with two degenerated dxz and
dyz orbitals per site, which is proposed as minimal two-band
model for iron-based superconductor73. The itinerant elec-
trons of the degenerated dxz and dyz orbitals are described by
a tight-binding Hamiltonian

H = Ht +Hintra +Hinter +HHund, (C3)

The itinerant electrons of the degenerate dxz and dyz orbitals
are described by a tight-binding Hamiltonian,

Ht =
∑

(ij),(αβ),σ

tij,αβc
†
i,α,σcj,β,σ + h.c. (C4)
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where c†i,α,σ creates an electron with spin σ at site i on orbital
α = dxz(yz). For simplicity, we first assume tij,αα = t for
nearest neighbors. We define the intraband Hubbard interac-
tion HU and interband Hubbard interaction HV as

Hintra = U
∑
i,α

ni,α,↑ni,α,↓, (C5)

Hinter = V
∑
i,σ,σ′

ni,α,σni,β,σ′ (C6)

and the Hund’s rule coupling as

HHund = −JH
∑
i,α,β

[
c†i,α,↑ci,α,↓c

†
i,β,↓ci,β,↑ + h.c.

]
, (C7)

where the Hund coupling ensures that two electrons forming
a spin triplet if they occupying different orbitals on the same
site.

To derive an effective Hamilitonan, let us first consider the
limit of strong interaction defined by U 6= 0, JH 6= 0 and
t = 0. For one-site, the ground-state manifold is spanned by
configurations with two electrons on each site, one in each or-
bital, and the two electrons of a given site forming a triplet.
Thus, the spin-1 model is likely suitable to describe the iron-
based superconductor, which also matches the very recent
neutral scattering measurements on FeSe samples25. Next we
consider two-sites. Two S = 1 spins can be combined into a
total S = 2, 1, 0 with the corresponding levels 5−, and 3−fold
degenerate, and non-degenerated, where we labeled as |S, Sz〉
and the total spin S and its a-component Sz are good quantum
numbers. When a small hopping t is added, the fluctuations
will lift the groundstate degeneracy and favor the spin singlet
state. Here, the discussion is parallel to the case of the simple
eg molecule with two orbitals in each site74. We just quote the
results, up to fourth-order perturbation ∝ t4:

Heff =

(
2t2

U + JH
− 8t4

(U + JH)3

)
Si · Sj +

12t4

(U + JH)3

(
1

U + JH
− 2

2(U + V ) + JH
− 2

2(U − V ) + JH

)
PS=0, (C8)

where Si is spin-1 operator and PS=0 projects to the spin sin-
gle state:

PS=0 =
1

3
((Si · Sj)2 − 1). (C9)

Finally, we get the bilinear-biquadratic exchange Hamiltonian
as

Heff = J
∑
〈i,j〉

Si · Sj +K
∑
〈i,j〉

(Si · Sj)2. (C10)

For an isolated Fe atom, the intraband interaction U and inter-

band interaction V are similar in magnitude, while Hund cou-
pling JH is an order smaller. Thus, a reasonable estimate is
J > 0 and K < 0 for iron-based superconductor. This model
can be also extended to the next-nearest-neighbors, thus we
have the J1-J2-K1-K2 model as the start point,

Heff = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj

+ K1

∑
〈i,j〉

(Si · Sj)2 +K2

∑
〈〈i,j〉〉

(Si · Sj)2.(C11)
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