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Many model quantum spin systems have been proposed to realize critical points or phases de-
scribed by 2+1 dimensional conformal gauge theories. On a torus of size L and modular parameter
τ , the energy levels of such gauge theories equal (1/L) times universal functions of τ . We com-
pute the universal spectrum of QED3, a U(1) gauge theory with Nf two-component massless Dirac
fermions, in the large Nf limit. We also allow for a Chern-Simons term at level k, and show how the
topological k-fold ground state degeneracy in the absence of fermions transforms into the universal
spectrum in the presence of fermions; these computations are performed at fixed Nf/k in the large
Nf limit.
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I. INTRODUCTION

While many fractionalized states of matter have been proposed, verifying their existence is a formidable task. Not
only are experimental measurements of fractional degrees of freedom difficult, but even establishing the existence
of these phases in simplified lattice models can be challenging. Numerical techniques have made a great deal of
progress and now provide support for some of these states of matter.

In the context of quantum spin systems, the simplest fractionalized state with an energy gap and time-reversal
symmetry is the Z2 spin liquid. Recent work described the universal spectrum of a spin system on a torus1,2 across
a transition between a Z2 spin liquid and a conventional antiferromagnetically ordered state.2 Such a spectrum is
a unique signature of the transition between these states and goes well beyond the 4-fold topological degeneracy of
the gapped Z2 state that is usually examined in numerical studies.

In this paper, we turn our attention to critical spin liquids with an emergent photon and gapless fractionalized
excitations. Commonly referred to as an ‘algebraic spin liquid’ (ASL) or a ‘Dirac spin liquid’, it is a critical phase
of matter characterized by algebraically decaying correlators, and whose long-distance properties are described
by an interacting conformal field theory (CFT) called 3d quantum electrodynamics (QED3).3–7 For the kagome
antiferromagnet, and also for the J1-J2 antiferromagnet on the triangular lattice, there is an ongoing debate as to
whether the ground state is a gapped Z2 spin liquid8–13 or a U(1) Dirac spin liquid,14,15 and we hope our results
here can serve as a useful diagnostic of numerical data.

In addition, although certain systems may not allow for an extended ASL phase, related CFTs could describe
their phase transitions.16,17 These ‘deconfined critical points’18,19 require a description beyond the standard Landau-
Ginzburg paradigm and are often expressed in terms of fractionalized quasiparticles interacting through a gauge
field. Our methods can be easily generalized20 to critical points of theories with bosonic scalars coupled to gauge
fields,18,19 but we will limit our attention here to the fermionic matter cases.

A close cousin of QED3 can be obtained by adding an abelian Chern-Simons (CS) term to the action. When a
fermion mass is also present, the excitations of the resulting theory are no longer fermions, but instead obey anyonic
statistics set by the coefficient, or ‘level’, of the CS term. The critical ‘Dirac-CS’ theory (with massless fermions)
has been used to describe phase transitions between fractional quantum Hall plateaus in certain limits21,22 and
transitions out of a chiral spin liquid state17,23,24

In this paper, we study the finite size spectrum of the QED3 and Dirac-CS theories on the torus. While the state-
operator correspondence often motivates theorists to put CFT’s on spheres, the torus is the most practical surface
to study on a computer. The energy spectrum on the torus does not give any quantitative information regarding the
operator spectrum of the theory, but it is a universal function of the torus circumference L and modular parameter τ
and, therefore, can be used to compare with numerically generated data. The torus has the additional distinction of
being the simplest topologically non-trivial manifold. A defining characteristic of topological order is the degeneracy
of the groundstate when the theory is placed on a higher genus surface. On the torus, the pure abelian CS theory
at level k has k ground states25,26 whose degeneracy is only split by terms which are exponentially small in L.
Here, we will couple Nf massless Dirac fermions to the CS theory and find a rich spectrum of low energy states
with energies which are of order 1/L. In the limit of large Nf and k, we will present a computation which gives
the k degenerate levels in the absence of Dirac fermions and a universal spectrum with energies of order 1/L in the
presence of Dirac fermions.

Proposals for ASL phases typically begin with a parton construction of the spin-1/2 Heisenberg antiferromagnet

H =
∑
〈ij〉

JijSi · Sj , (1)

where Si represent the physical spin operators of the theory and i, j label points on the lattice. Slave fermions are

introduced by expressing the spin operators as Si = 1
2f
†
iασαβfiβ , where fiα is the fermion annihilation operator

and σ = (σx, σy, σz) are the Pauli matrices. This is a faithful representation of the Hilbert space provided it is
accompanied by the local constraint ∑

α

f†iαfiα = 1. (2)

Since the physical spin Si is invariant under the transformation fiα → eiφifiα, the slave fermions necessarily carry
an emergent gauge charge. Replacing spins with slave fermions, decoupling the resulting quartic term, and enforcing〈
f†iαfiα

〉
= 1 on average returns an ostensibly innocuous mean field Hamiltonian HMF = −

∑
〈ij〉 tijf

†
iαfjα + H.c.
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The mean field theory is a typical tight-binding model, but with electrons replaced by slave fermions. However, the
stability of HMF is by no means guaranteed, and gauge fluctuations must be taken into account. This is achieved
by supplementing the mean field hopping parameter with a lattice gauge connection aij : tij → tije

iaij . Under
the renormalization group, kinetic terms for the gauge field are generated. Since the connection aij parametrizes
the phase redundancy of the fiα’s, it is a 2π-periodic quantity, and the resulting lattice gauge theory is compact.
Determining the true fate of these theories is where numerics provide such great insight.

The mean field Hamiltonians of the models we are concerned with possess gapless Dirac cones. In the continuum
they can be expressed

SD[ψ,A] = −
∫
d3r ψ̄αiγ

µ (∂µ − iAµ)ψα, (3)

where r = (τ,x) is the Euclidean spacetime coordinate, ψα is a two-component complex spinor whose flavour index
α is summed from 1 to Nf , and Aµ is a U(1) gauge field that is obtained from the continuum limit of the aij . The
gamma matrices are taken to be γµ = (σz, σy,−σx), and ψ̄α = iψ†ασ

z. On the the kagome lattice, the mean field
ansatz with a π-flux through the kagome hexagons and zero flux through the triangular plaquettes has a particularly
low energy.27–29 Its dispersion has two Dirac cones, which, accounting for spin, gives Nf = 4.

By writing the theory in the continuum limit in the form of Eq. 3, we are implicitly assuming that monopoles
(singular gauge field configurations with non-zero flux) in the lattice compact U(1) gauge theory can be neglected.
In their absence, the usual Maxwell action can be added to the theory

SM[A] =
1

4e2

∫
d3r FµνF

µν , Fµν = ∂µAν − ∂νAµ, (4)

resulting in the full QED3 action, Sqed[ψ,A] = SD[ψ,A] + SM[A]. Importantly, when Nf is smaller than some
critical value, these manipulations are no longer valid. SM[A] is never an appropriate low-energy description of a
lattice gauge theory with Nf = 0: for all values of e2, monopoles will proliferate and confine the theory.30,31 In
the confined phase, the slave fermions cease to be true excitations, and remain bound within the physical spins
Si. However, matter content suppresses the fluctuations of the gauge field. For Nf large enough, monopoles are
irrelevant operators,5,32–34 and Sqed[ψ,A] is a stable fixed point of the lattice theory.5 In this limit, QED3 is believed
to flow to a non-trivial CFT in the infrared, and this has been shown perturbatively to all orders in 1/Nf .35–38

The critical theory is obtained by näıvely taking the limit e2 →∞, and, for this reason, the Maxwell term will be
largely ignored in what follows.

The Dirac fermions ψα represent particle or hole-like fluctuations about the Fermi level. Consequently, any single-
particle state violates the local gauge constraint in Eq. 2 and is prohibited. Since fluctuations in Aµ are suppressed
at Nf =∞, we might expect this neutrality to be the only signature of the gauge field in the large Nf limit, and so
the spectrum on the torus is given by the charge neutral multi-particle states of the free field theory. It is important
to note that all of these multi-particle states are built out of single fermions ψα which obey anti-periodic boundary
conditions around the torus: such boundary conditions (or equivalently, a background gauge flux of π and periodic
boundary conditions for the fermions) minimize the ground state energy, as we show in Appendix C. Some of these
energy levels are given in Table II.

Even among the charge neutral multiparticle states, there are certain states of the free field theory which are
strongly renormalized even at Nf = ∞. These are the SU(Nf ) singlet states which couple to the Aµ gauge field.
Computation of these renormalizations is one of the main purposes of the present paper. We show that the energies
of these states are instead given by the zeros of the gauge field effective action. A similar conclusion was reached
in Ref. 2 for the O(N) model, where the O(N) singlet levels were given by the zeros of the effective action of a
Lagrange multiplier.

In Table I, we list some of the lowest frequency modes of the photon in QED3 on a square torus, obtained in the
large Nf computation just described. Because the theory on the torus is translationally invariant, we can distinguish
states by their total external momentum. For each momentum considered, the left-most column gives the photon
frequency with its degeneracy is shown on the right. By including multi-photon states, the actual energy levels of
the photon are shown in Table III for the same set of momenta. The origin of the photon shift will be apparent
when we find the free energy in Sec. II C and explicitly calculate the energy levels in Sec. III.

A similar story applies to the Dirac-CS theory with finite CS coupling k:

SCS[A] =
ik

4π

∫
d3r εµνρAµ∂νAρ. (5)
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q̄ = (0, 0) q̄ = (1, 0) q̄ = (1, 1)
ω̄γ dγ ω̄γ dγ ω̄γ dγ

0.584130 2
1.437980 1

1.682078 1
1.739074 1

1.976292 1
2.311525 2

2.527606 1
2.658092 1

2.813224 1
3.156341 1
3.407832 1

3.517617 1
3.626671 1

3.814432 1
3.855225 2

4.092996 1
4.259784 1
4.330137 1

4.425387 1
4.523167 1

4.586816 2
4.657172 1

4.685590 1

TABLE I. Photon modes in QED3 (CS level k = 0) on a square torus of size L. Frequencies are shown for q = 0,
q1 = 2π(1, 0)/L, and q2 = 2π(1, 1)/L. The 1st, 3rd, and 5th columns list the frequencies, ωγ , while the column immediately
to the right provides the degeneracy, dγ . The actual photon energy levels are given by these frequencies as well as integer
multiples. (q̄ = Lq/2π, Ē = LE/2π.)

The addition of this term gives the photon a mass and attaches flux to the Dirac fermions so that they become anyons
with statistical angle θ = 2π(1 − 1/k). The Dirac-CS theory applies to the chiral spin liquid which spontaneously
breaks time reversal, generating a Chern-Simons term at level k = 2.39 Similarly, a CS term with odd level can
be used to impose anyonic statistics on the quasiparticles of a fractional quantum Hall fluid. The Dirac-CS CFT
we consider can describe the continuous transitions into and between such topological phases.17,23,24 It is given
by SDCS[ψ,A] = SD[ψ,A] + SCS[A] (after taking e2 → ∞). As k becomes very large, the anyons become more
fermion-like, making an expansion in 2π/k possible at large Nf .21,22

Once again, keeping λ = Nf/k fixed, the critical Dirac-CS theory is both stable and tractable in the large-Nf
limit. The qualitative features of the spectrum are very similar to QED3. Again ψα is not a gauge invariant quantity
and cannot exist by itself in the spectrum. The Gauss law mandates that it be accompanied by k units of flux. In
the large-k limit, these states have very high energies and can be neglected: only charge-neutral excitations need
be considered. Likewise, the energy levels of the SU(Nf ) singlet states coupling to the gauge field are strongly
renormalized even at large Nf , while the mixed-flavor two-particle excitations behave as free particles. As k/Nf
becomes large, the Chern-Simons term will dominate and the topological degeneracy which was lost upon coupling
to matter will reassert itself. The photon modes of the zero external momentum sector are shown in Table IV for
several values of λ.

We will calculate the energy spectrum using a path integral approach similar to that of Ref. 20. In order to
ensure that the gauge redundancy is fully accounted for, it is useful to first calculate the free energy. This is done in
Sec. II, starting with two exactly solvable theories, pure Chern-Simons and Maxwell-Chern-Simons, before moving
on to QED3 and the Dirac-CS theory in the large-Nf limit. The structure of the free energy will allow us to identify
the multi-fermion states, along with their bound states which appear in the photon contribution. In Sec. III we
determine the energy levels and we conclude in Sec. IV.

II. PATH INTEGRAL AND FREE ENERGY

To understand the spectrum of the large-Nf QED3 and Dirac-CS theory, we evaluate its path integral.20 The
path integral is

Z =
1

Vol(G)

∫
DADψ e−S[A,ψ] (6)

where Vol(G) is the volume of the gauge group. For simplicity, we work on the square torus: the modular parameter
τ = i and the x- and y-cycles are equal in length: x ∼ x + L, y ∼ y + L. Eventually, we will specify to the zero-
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temperature limit, 1/T = β →∞, but for now we leave β finite.
The gauge field A can be split into zero and finite momentum pieces,

Aµ = aµ +A′µ, A′µ =
1√
βL2

′∑
p

Aµ(p)eipr, (7)

where p sums over pµ = 2πnµ/Lµ, Lµ = (β, L, L) where nµ ∈ Z and the prime on the summation indicates that
the nµ = (0, 0, 0) mode is not included. We note that while this representation is completely sufficient for the
theories we consider in the paper, it does allow for non-trivial flux sectors, and this is discussed in more detail in
Appendix F. Overlooking this technicality, the measure of integration is DA = DaDA′. Unlike on R3, the zero
modes a are not pure gauge configurations. Instead, the gauge transformation which shifts a,

U = exp

[
2πi

∑
µ

nµrµ
Lµ

]
, (8)

is only well-defined provided nµ ∈ Z. Under the action of U , the zero modes transform as aµ → aµ + 2πnµ/Lµ,
and so they are periodic variables and should be integrated only over the intervals [0, 2π/Lµ). Including a Jacobian

factor of
√
βL2 for each component, we have∫

Da =
(
βL2

)3/2 ∫ 2π/β

0

da0

∫ 2π/L

0

d2a. (9)

The spatially varying portion of the gauge field can be decomposed further into A′ = B+dφ where φ parametrizes
the gauge transformations of A′, and B may be viewed as the gauge-fixed representative of A′. Naturally, gauge
invariance implies that the action is independent of φ: S[ψ,A] = S[ψ, a+B]. Here, we work in the Lorentz gauge,
∂µBµ = 0. The full measure of integration is then

DA = DaDBD(dφ). (10)

We begin by expressing D(dφ) directly in terms of the phases φ. They can be related through the distance function

D(ω, ω + δω) =
(∫
|δω|2

)1/2

:

D (φ, φ+ δφ) =

(∫
|δφ|2

)1/2

D(dφ, dφ+ dδφ) =

(∫
|dδφ|2

)1/2

=

(∫
δφ
(
−∇2

)
δφ

)1/2

. (11)

Changing variables, the measure becomes

D(dφ) = D′φ
√

det′ (−∇2) (12)

where the primes indicate that constant configurations of φ are not included and that the zero eigenvalue of the
Laplacian is omitted. This functional determinant is the familiar Faddeev-Popov (FP) contribution to the path
integral. As expected for abelian gauge theories, both of these factors are independent of the gauge field B.

The volume of the gauge group can be divided in a similar fashion

Vol(G) = Vol(H)

∫
D′φ, (13)

where H is the group of constant gauge transformations.
∫
D′φ will cancel the identical factor present in the

numerator from the gauge field measure in Eq. 12, and Vol(H) can be determined using the distance function
defined above. A constant gauge transform has φ = c, a constant, where c ∈ [0, 2π). We find

Vol(H) =

∫ 2π

0

dc
D(c, c+ δc)

δc
=

∫ 2π

0

dc
δc

δc

(∫
1

)1/2

= 2π
√

Vol (T2 × S1) = 2π
√
βL2. (14)



6

Putting these facts together, we are left with

Z =
βL2

2π

√
det′ (−∇2)

∫
d3aDBDψ e−S[a,B,ψ]. (15)

In the following two sections, we calculate the free energies and partition functions of the pure Chern-Simons and
the Maxwell-Chern-Simons theories. These serve as simple examples (and verifications) of the normalization and
regularization procedure, before we move on to the third section and primary purpose of this paper, large-Nf QED3

and Dirac-Chern-Simons.

A. Pure Chern-Simons theory

It is well-known that pure abelian Chern-Simons theory should have ZCS = k.25 Since the action in Eq. 5 only
has linear time derivatives, the Hamiltonian vanishes and it may at first be surprising that ZCS is not simply unity:
〈0|0〉 = 1. One way to understand this is through canonical quantization. The observable operators of the theory
are the two Wilson loops winding around either cycle of the torus. Their commutations relations are determined
by the Chern-Simons term, and at level k, it can be shown that the resulting representation requires at least a

k-dimensional Hilbert space (see e.g.40). The partition function is therefore ZCS =
∑k
n=1 〈n |n〉 = k. Within the

general framework of topological field theories, the partition function on the torus should evaluate to the dimension
of the corresponding quantum mechanical Hilbert space.

The pure CS partition function is

ZCS =
βL2

2π

√
det′ (−∇2)

∫
daDB e−SCS[B]. (16)

We write the Chern-Simons action in momentum space as SCS[B] = 1
2

∑
q Bµ(−q)Πµν

CS(q)Bν(q) where

Πµν
CS(q) =

ik

2π
εµνρqρ, (17)

with qµ = 2πnµ/Lµ, nµ ∈ Z. Performing the Gaussian integral, we find

ZCS =
βL2

2π

√
det′ (−∇2)

√
det′

(
2π

Πµν
CS

)∫
da. (18)

It is simpler to work with the free energy and then return to the partition function at the end of the calculation:

FCS = − 1

β
logZCS = Fa + Fπ + FFP −

1

β
log

[
βL2

2π

]
. (19)

We proceed to treat each contribution individually. The integral over the zero modes gives

Fa = − 1

β
log

[∫
da

]
= − 1

β
log

[
(2π)3

βL2

]
. (20)

This cancels the volume-dependent constant in the free energy, leaving FCS = − 1
β log(2π)2 + Fπ + FFP. The FP

determinant’s contribution is

FFP = − 1

β
log
√

det′ (−∇2) = − 1

2β

′∑
q

log q2 (21)

where qµ = 2πnµ/Lµ, nµ ∈ Z. As will be the convention throughout this paper, the prime on the summation
indicates that the zero momentum mode (nµ = (0, 0, 0)) is omitted. Finally, the piece from the Gaussian integral is

Fπ =
1

2β
log det′

[
Πµν
CS

2π

]
. (22)
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For each momentum qµ, the Chern-Simons kernel has three eigenvalues, 0 and ±ik |q| /2π, but only the non-zero
values should be included. In fact, it is easy to verify that the eigenvector corresponding to the 0 eigenvalue is
proportional to qµ and consequently arises from the pure gauge configurations ∼ ∂µφ which have already been
accounted for. Therefore,

Fπ =
1

2β

′∑
q

log

[
1

4π2

k2

4π2
q2

]
. (23)

Using the zeta-function regularization identity
∑′
p = −1, we have

Fπ =
1

2β

′∑
q

log q2 − 1

β
log

(
k

4π2

)
. (24)

The momentum sum in Fπ cancels exactly with the sum in FFP. This is a direct consequence of the fact that the
CS theory has no finite energy states and, notably, is only apparent when the Faddeev-Popov and gauge kernel
determinants are considered together. All together, the total free energy is

FCS = − 1

β
log k, (25)

which gives ZCS = k as claimed.

B. Maxwell-Chern-Simons theory

It is also useful to understand how the topological degeneracy emerges in the presence of finite-energy modes.
This is easily accomplished by adding a Maxwell term:

SMCS[A] = SM[A] + SCS[A], (26)

where SM[A] is given in Eq. 4. The procedure for calculating the free energy is identical to the pure CS case except
that the gauge kernel is now

ΠMCS(q) =
q2

e2

(
δµν − qµqν

q2

)
+
ik

2π
εµνρqρ. (27)

As above, this matrix has one vanishing eigenvalue in the pure gauge direction and two non-trivial ones in orthogonal
directions:

q2

e2
± ik

2π
|q| . (28)

Performing the functional integral and taking the logarithm, we find

Fπ =
1

2β

′∑
q

log

[
q4

e4
+
k2q2

4π2

]
. (29)

As in the pure CS case, the FP determinant cancels a factor of q2 from Fπ. Now, however, this does not completely
remove the momentum dependence of the sum. The total free energy is

FMCS = − 1

β
log 4π2 + Fπ + FFP =

1

β
log

(
e2

2π

)
+

1

2β

′∑
n,q

log

[
ε2n + q2 +

e4k2

4π2

]
, (30)

where we’ve written qµ = (εn,q) with εn = 2πn/β, n ∈ Z. Analytically continuing to real time, εn → −iω, the

argument of the logarithm is ω2 − γ2
q where γq =

√
q2 + (e2k/2π)

2
. We recognize the γq’s as the frequencies of a
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set of harmonic oscillators. As in the previous section, this is only manifest when the sum Fπ + FFP is considered:
by itself, Fπ seems to imply the existence of an extra set of oscillators whose frequencies are γ̃q = |q|.

The presence of the oscillators is even clearer upon performing the (imaginary) frequency sum. Adding and
subtracting the zero mode, we are left to evaluate an infinite sum

FMCS = − 1

β
log

(
2πγ0

e2

)
+

1

2β

∑
n,q

log

[
n2 +

(
βγq
2π

)2
]
. (31)

By using the known analytic properties of the zeta function for complex s, we can assign a value to the otherwise
obviously diverging sum. For the logarithm, this representation results in the identification

∑
n

log

[
n2 +

(
βγq
2π

)2
]

= − lim
s→0

d

ds

∑
n

[
n2 +

(
βγq
2π

)2
]−s

= − lim
s→0

d

ds
ζE

(
s;

(
βγq
2π

)2
)

(32)

where ζE(s; a
2) is the Epstein zeta function. After some standard manipulations (given in Appendix B), we arrive

at the expression

FMCS = − 1

β
log k − 1

β

∑
q

log

[
e−βγq/2

1− e−βγq

]
. (33)

Re-exponentiating, we find

ZMCS = k
∏
q

Zq, Zq =
e−βγq/2

1− e−βγq
= e−βγq/2

∞∑
n=0

e−βnγq . (34)

As observed, the partition function is a product over an infinite stack of harmonic oscillators with frequencies γq.
The topological degeneracy enters through the factor of k multiplying ZCS: there are k identical sets of oscillators.
We note that in the limit e2 →∞, the barrier to the first excited state becomes infinitely large, effectively projecting
onto the lowest Landau level. Ignoring some constants, we arrive back at the pure Chern-Simons described above.

C. QED3 and Dirac-Chern-Simons theory

When we couple the gauge field to fermions, the partition function is no longer exactly solvable. Nonetheless,
when the number of fermion flavours, Nf , is large, a saddle-point approximation is valid and allows a systematic
expansion in 1/Nf . As discussed in the introduction, the QED3 and Dirac-CS fixed points are obtained in the limit
e2 →∞, and so we will not explicitly include the Maxwell action SM[A] in our calculations. In order to avoid the
parity anomaly,41,42 we take Nf to be even in all that follows. The partition function is given in Eq. 15 with action

SDCS[ψ,A] = SD[A,ψ] + SCS[A]. (35)

where SD[A,ψ] and SCS[A] are given in Eqs. 3 and 5 respectively. The Chern-Simons level k is assumed to be of
the same order as Nf . We begin by integrating out the fermions,

Z =
βL2

2π

√
det′ (−∇2)

∫
daDB exp

(
−SCS[B] +Nf log det i /D

)
, (36)

where /D = σµ (∂µ − iaµ − iBµ). We subsequently expand the determinant in terms of B:

log det(i /D) = tr log
(
i/∂ + /a

)
+ tr

(
1

i/∂ + /a
/B

)
− 1

2
tr

(
1

i/∂ + /a
/B

1

i/∂ + /a
/B

)
+ · · · (37)

By rescaling B → B/
√
Nf , the subleading behaviour of the linear and quadratic terms, as well as the Chern-Simons

action, is clear.
On the plane, the saddle-point value of A vanishes by symmetry and gauge invariance. However, since A→ A+ c

for constant c is no longer a gauge transformation on the torus, the zero modes are distinct and could conceivably
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have a non-zero expectation value: 〈a〉 = ā 6= 0. In fact, neither the pure CS nor Maxwell-CS actions depended
on aµ. The matter lifts this degeneracy by creating an effective potential for the a’s, and ā can be determined by
minimizing the free fermion functional determinant

F0(a) = −tr log
(
i/∂ + /a

)
= −

∑
p

log (p+ a)
2
. (38)

The summation above is over spacetime momenta pµ = 2π (nµ + 1/2) /Lµ, nµ ∈ Z as is appropriate for our choice
of fermions with antiperiodic boundary conditions. This calculation is performed in Appendix C where it is shown
that the saddle-point value of the gauge field is āµ = 0: this is closely linked to the choice of anti-periodic boundary
conditions for the fermions, which we have established also minimize the total energy.

The linear term in B in Eq. 37 vanishes, so that the subleading term in the determinant expansion is

Sf [B] =
Nf
2

tr

(
1

i/∂
/B

1

i/∂
/B

)
=
Nf
2

∑
q

Bµ(−q)Πµν
f (q)Bν(q) (39)

where

Πµν
f (q) =

2

βL2

∑
p

pµ (pν + qν) + (pµ + qµ) pν − δµνp · (p+ q)

p2 (p+ q)
2 . (40)

On the plane, this expression evaluates to43

Πµν
∞ =

|q|
16

(
δµν − qµqν

q2

)
. (41)

On the torus, a simple analytic formula is no longer available and Πf must be calculated numerically. Expressions
for the components of Πµν

f on the symmetric torus are given in Appendix D.

Since k ∼ O(Nf ), the CS term will contribute at the same order as Πf . Rescaling Eq. 17 to bring out an overall
factor of Nf , we write the momentum space kernel of the Chern-Simons term as

Πµν
CS(q) =

i

2πλ
εµνρqρ, λ =

Nf
k
. (42)

All together, the full effective potential is

Seff[B] =
Nf
2

∑
q

Bµ(−q)Πµν(q)Bν(q), Πµν(q) = Πµν
CS(q) + Πµν

f (q), (43)

and the large-Nf partition function is

Z ∼=
βL2

2π

√
det′ (−∇2) e−βNfF0(ā)

∫
DB exp

[
−1

2

∑
q

Bµ(−q)Πµν(q)Bν(q)

]

=
βL2

2π

√
det′ (−∇2) e−βNfF0(ā)

√
det′

(
2π

Πµν

)
. (44)

The corresponding free energy is

F = − 1

β
logZ ∼= NfF0 + FG −

1

β
log

[
βL2

2π

]
(45)

where the full gauge field contribution is

FG = FFP + Fπ

Fπ = − 1

β
log

√
det′

(
2π

Πµν

)
FFP = − 1

β
log
√

det′ (−∇2). (46)
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1. Zero external momentum, q = 0

We begin by considering the zero (spatial) momentum portion of the free energy. Denoting the Euclidean
spacetime momenta qµ = (ε,q), we set q = 0. In this case, only Πij(ε, 0) 6= 0, for i, j = x, y:

Πij(ε, 0) =

(
Πxx
f ε/2πλ

−ε/2πλ Πyy
f

)
. (47)

Expressions for Πxx
f and Πyy

f are given in Eqs. D7 and D8 of Appendix D. Taking the determinant, the free energy
is

Fq=0
π =

1

β
log 2π +

1

2β

′∑
n

log

[
Πxx
f (εn, 0)

2
+

ε2n
4π2λ2

]
(48)

where εn = 2πn/β, n ∈ Z/{0}, and the symmetry of the torus has been used to set Πxx
f = Πyy

f . The FP piece is

Fq=0
FP = − 1

2β

′∑
n

log ε2n . (49)

Adding the two and taking the zero temperature limit, β →∞, the total gauge contribution is

Fq=0
G =

1

2

∫
dε

2π
log

[(
Πxx
f

ε

)2

+
1

4π2λ2

]
. (50)

For large ε, the integral does not converge. Instead, Πxx
f approaches its infinite volume limit in Eq. 41:(

Πxx
f

ε

)2

+
1

4π2λ2
→
(

1

16

)2

+
1

4π2λ2
. (51)

This is not a problem since an integral over a constant vanishes in the zeta regularization scheme. Adding and
subtracting the large frequency limit, the free energy is a finite function

Fq=0
G =

1

2

∫
dε

2π

{
log

[(
Πxx
f

ε

)2

+
1

4π2λ2

]
− log

[(
1

16

)2

+
1

4π2λ2

]}
. (52)

2. Finite external momentum, q 6= 0

For the finite momentum piece, we begin by restricting the polarization matrix Πµν(ε,q) to the physical subspace.
As required by gauge invariance, it has a vanishing eigenvalue along the qµ = (ε,q) direction: qµΠµν = 0. To
determine the remaining two modes, we project onto the orthogonal directions

vT =
1

|q|

 0
qy
−qx

 , vL =
1

|q|
√
ε2 + q2

−q2

εqx
εqy

 , (53)

and, after some simplifying, arrive at

Πproj =
1

q2

( (
ε2 + q2

)
Π00

√
ε2 + q2

(
qyΠ0x − qxΠ0y

)√
ε2 + q2

(
qyΠ0x − qxΠ0y

)
q2 (Πxx + Πyy)− ε2Π00

)
. (54)

Taking the determinant, the contribution to the free energy is

Fq 6=0
π = − 1

β
log

√
det′

(
2π

Πµν

)
= − 1

β

′∑
ε,q

log 2π +
1

2β

′∑
ε,q

log Πµν

=
1

2

∫
dε

2π

′∑
q

log

{(
ε2 + q2

)
q2

[
Π00

(
Πxx + Πyy − ε2

q2
Π00

)
− 1

q2

(
qyΠ0x − qxΠ0y

)2]}
(55)
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where the 1
β log 2π term has vanished in the zero temperature limit. The Faddeev-Popov portion of the free energy,

Fq 6=0
FP = −1

2

∫
dε

2π

∑
q

log
(
ε2 + q2

)
, (56)

perfectly cancels the ε2 + q2 prefactor inside the logarithm in Eq. 55. Had it not been included, we may have
erroneously assumed the existence of a state with energy E = |q| as there is on the plane when k = 0.

As ε2 + q2 becomes large, Πµν approaches its infinite volume limit (Eq. 41) like in the q = 0 case. Here as well,
the summand becomes a constant which vanishes in our regularization procedure. Putting this together, we have

Fq6=0
G =

1

2

∫
dε

2π

′∑
q

{
log

[
Π00

q2

(
Πxx + Πyy − ε2

q2
Π00

)
− 1

q4

(
qyΠ0x − qxΠ0y

)2]

− log

[(
1

16

)2

+
1

4π2λ2

]}
. (57)

The total contribution of the gauge field to the free energy is given by the sum of this expression with Fq=0
G in

Eq. 52.

III. SPECTRUM

In this section we explicitly calculate the universal spectrum on the finite torus using the path integral expansion
we just derived.

As the photon is the only element of the theory which differs from the free theory of Nf Dirac fermions, it is not
surprising that the free theory spectrum can account for most of the states. The free Hamiltonian is

HD = −i
∫
d2xψ†α(x)σi∂iψα(x), (58)

and can be diagonalized by first going to Fourier space,

ψα(x) =
1

L2

∑
p

eiq·x
(
c1α(p)
c2α(p)

)
, p =

2π

L

(
nx +

1

2
, ny +

1

2

)
, nx,y ∈ Z, (59)

and then changing basis to χ±α(p):(
c1α(p)
c2α(p)

)
=

1√
2

(
1 1

P/ |p| −P/ |p|

)(
χ+α(p)
χ−α(p)

)
, (60)

where P = px + ipy, |p| =
√
p2
x + p2

y. In this basis, the Hamiltonian is

HD =
∑
p

|p|
[
χ†+α(p)χ+α(p)− χ†−α(p)χ−α(p)

]
. (61)

We identify the vacuum as the state having all negative energy modes filled: χ+α(p) |0〉 = χ†−α(p) |0〉 = 0. Con-

sequently, χ†+α(p) is a particle creation operator carrying momentum p, and χ−α(p) is a hole creation operator
carrying momentum −p. Note that all the fermionic momenta correspond to anti-periodic boundary conditions
around the torus, because these minimize the ground state energy, as shown in Appendix C.

To determine the excitations relevant to QED3 and the Dirac-CS theory, we recall that once the theory is gauged,
neither χ+α(p) nor χ−α(p) is gauge invariant, and all single-particle states are prohibited. Similarly, only charge-
neutral two-particle states are allowed. We therefore expect the lowest fermion-like energy states to be of the
form

χ†+α(p + q)χ−β(p) |0〉 , χ†+α(−p)χ−β(−p− q) |0〉 . (62)
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q̄ = (0, 0) q̄ = (1, 0) q̄ = (1, 1)
Ēf df Ēf df Ēf df

1.414214 4N2
f − 2 1.414214 2N2

f − 1 1.414214 N2
f − 1

2.288246 4N2
f − 2 2.288246 4N2

f − 2
2.828427 2N2

f − 1
3.162278 8N2

f − 4 3.162278 2N2
f − 1 3.162278 2N2

f − 1
3.702459 4N2

f − 2
4.130649 4N2

f − 2 4.130649 4N2
f − 2

4.242640 4N2
f − 2

4.496615 4N2
f − 2

4.670830 4N2
f − 2

TABLE II. Energies of two-particle fermion states in QED3 (CS level k = 0) on a square torus of size L. Energies are
shown for q = 0, q1 = 2π(1, 0)/L and q2 = 2π(1, 1)/L. The 1st, 3rd, and 5th columns list the energy levels, Ef , while
the column to the right, labelled df , shows the degeneracy of the level. The energy levels with finite external momentum,
q1 = 2π(1, 0)/L and q2 = 2π(1, 1)/L, have an additional 4-fold degeneracy resulting from the symmetry of the lattice.
(q̄ = Lq/2π, Ē = LE/2π.)

Here, we have taken advantage of the translational invariance of the theory to distinguish states by their total
external momentum q, where q = 2π (nx, ny) /L, nx,y ∈ Z. Provided the internal momentum p is not such that
p + q = −p, these states are distinct for each α, β, and have energy

Ef (q,p) = |p + q|+ |p| . (63)

Näıvely counting, for every q and p, the flavour symmetry gives (at least) 2N2
f such states (additional degeneracies

may be present depending on the lattice and internal momentum, but this will not be important for the subsequent
discussion). When p + q = −p, the two states in Eq. 62 are identical, and there are only N2

f possible states.
This story no longer holds even at Nf =∞. The gauge field only couples to single trace operators, so it is natural

to expect that the corresponding states may be shifted like in the O(N) model.2 However, QED3 and the Dirac-CS
theory differ from this example by having four different single-trace fermion bilinear operators: the “mass” operator
M(x) = ψ̄αψα(x) and the global gauge currents, Jµ(x) = ψ̄αγ

µψα(x). It is apparent that the current operators
and the mass operator must be treated very differently when we consider the equations of motion:

Jµ =
k

4π
Jµtop +

i

e2
εµνρ∂νJtop,ρ, (64)

where Jµtop = εµνρ∂νAρ is the current of the topological U(1)top symmetry. This symmetry is equivalent to the
non-compactness of Aµ and the irrelevance of monopoles at the fixed point. At Nf = ∞, when k = 0, Jµ is more
correctly understood as a descendant of the topological current and not as a composite operator. In the e2 → ∞
limit, it vanishes altogether and should not be included in the spectrum: all states corresponding the poles of
〈Jµ(x)Jν(0)〉 in the free theory no longer exist in large-Nf QED3. The degeneracy is reduced so that for each total
momentum q and internal momentum p (where p+q 6= −q), QED3 has only 2N2

f − 1 free-fermion-like states with

energy Ef (q,p) (when p + q = −p, the degeneracy is further reduced to N2
f − 1). This is discussed in more detail

in Appendix E. For a small set of momenta, these energy levels are shown in Table II along with their respective
degeneracies.

For non-vanishing k, the situation is very similar. Eq. 64 indicates that the CS term attaches k units of charge
to each unit of magnetic flux so that the charged state with the lowest energy has k fermions accompanied by a
single unit of magnetic flux. In the limit k →∞, these states have very high energies and, as in the k = 0 case, will
not contribute to the low energy spectrum. The same free-fermion states whose energies are given in Table II also
appear in the Dirac-CS theory with the same degeneracy theory regardless of the level k.

For both QED3 and Dirac-CS, the removal of Jµ is counterbalanced by the addition of Aµ. The spectrum must
be supplemented by the poles of the photon propagator, ∆µν(x) = 〈Aµ(x)Aν(0)〉, and, unlike for the free-fermion
states, the energies of the photon states depend on the level k.

From the effective action in Eq. 43, the photon propagator is obtained by inverting the polarization matrix
Πµν(q). However, as discussed in the previous section, gauge invariance is only fully taken into account once the
FP determinant’s contribution is included as well. Analogous to our identification of γq as the frequencies in a set
of harmonic oscillators for the Maxwell-Chern-Simons theory in Eq. 30, the physical photon modes are actually
given by the zeros of the argument of the logarithms in FG. When Nf =∞, each mode represents an infinite tower
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q̄ = (0, 0) q̄ = (1, 0) q̄ = (1, 1)
Ēγ dEγ Ēγ dEγ Ēγ dEγ

0.58413 2
1.16826 4

1.43798 1
1.68208 1
1.73907 1

1.75239 8
1.97629 1
2.02211 2

2.26621 2
2.31153 2

2.3232 2
2.33652 16

2.52761 1
2.56042 2
2.60624 4
2.65809 1

2.81322 1
2.85034 4

2.87596 2
2.89566 4
2.89566 4

2.90733 4
2.92065 32

3.11174 2
3.14455 4
3.15634 1
3.19037 8
3.24222 2

3.36416 2
3.39735 2

TABLE III. Photon energy levels in QED3 (CS level k = 0) on a square torus of size L. Energies are shown for states with
total momentum q = 0, q1 = 2π(1, 0)/L and q2 = 2π(1, 1)/L. The 1st, 3rd, and 5th columns list the energy levels, Eγ ,
while the column immediately to the right provides their degeneracy, dEγ . (q̄ = Lq/2π, Ē = LE/2π.)

of states of a harmonic oscillator like in Maxwell-Chern-Simons: additional energy levels are present as integer
multiples of the modes determined from FG. Eqs. 52 and 57 indicate that these modes occur when the functions

K0(ω) = −
(

Πxx
f (ω, 0)

ω

)2

+
1

4π2λ2
(65)

Kq(ω) =
Π00(ω,q)

q2

(
Πxx(ω,q) + Πyy(ω,q) +

ω2

q2
Π00(ω,q)

)
− 1

q4

(
qyΠ0x(ω,q)− qxΠ0y(ω,q)

)2
vanish. Here, we have analytically continued to real frequencies, ω = iε. In what follows ε will always denote an
imaginary frequency, while ω will represent a real frequency; the same symbol for the polarization Πµν is used
for both. For k = 0, some modes levels are listed in Table I while Table III shows the lowest energy levels when
multi-photon states are included. Table IV gives the lowest ten modes with zero external momentum for several
values of λ = Nf/k.

To summarize, the Nf = ∞ theory does not have single-particle excitations. Instead, the lowest energy states
are of the form given in Eq. 62 or are created by the photon, Aµ. The free fermion 2-particle energies Ef (q,p)
occur with either a (2N2

f − 1) or a (N2
f − 1)-fold degeneracy depending on the internal momentum p (and before

additional lattice symmetries are taken into account). The frequency modes of the photon operator are given by
the gauge-fixed poles of ∆µν and correspond to the zeros of the expressions in Eq. 65. Each mode, ωγ , represents a
harmonic oscillator so that the energies 2ωγ , 3ωγ , ωγ +ωγ′ , . . . are present in the spectrum as well. We will examine
Eq. 65 in more detail in the subsequent sections.

A. Zero external momentum, q = 0

When the external momentum vanishes, the zeros of Eq. 65 occur when

Πxx
f (ω, 0) = ± |ω|

2πλ
. (66)
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0 1 2 3 4 5 6

ω̄

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

LΠxx(ω, 0)
±|ω̄|/λ

FIG. 1. Plot of Πxx
f (ω, 0) and |ω| /2πλ. When k = 0, the modes are two-fold degenerate and occur when Πxx

f = 0. For
k 6= 0, the degeneracy splits and the frequencies are given by the intersection points Πxx

f (ω, 0) = ± |ω| /(2πλ). For λ = 4,
this occurs when the solid blue and dashed magenta lines cross. The lowest and second-lowest energies are shown in black
with an asterisk and a circle respectively. The vertical dash-dotted lines in red mark the poles of Πxx

f at the two-particle
energies of the free theory. (ω̄ = Lω/2π.)

In Fig. 1, the left-hand side is shown with a solid blue line and the right-hand side is shown with a dashed magenta
line for λ = 4.

When k = 0 (λ → ∞), the energy modes are two-fold degenerate and are given by the point where Πxx
f

crosses the x-axis. This degeneracy may be surprising since in 2+1 dimensions we expect the photon to have a
single polarization. However, if we had approached the problem by gauge fixing in the Coulomb gauge, we would
immediately see that the constraint ∇ ·A = 0 does not affect the q = 0 modes, again resulting in a degeneracy. In
fact, the exact degeneracy is a result of the additional symmetry of our torus, which gives Πxx

f (ε, 0) = Πyy
f (ε, 0).

To understand the effect of the gauge field on the theory, it’s useful to explicitly write the form Πxx
f (ω, 0) takes:

Πxx
f (ω, 0) =

y2

4πL
− ω2

2L2

∑
p

1

|p|
1

4p2 − ω2
(67)

where y2 = −Y2(1/2) ∼= 1.6156 for the function Y2(s) defined in Eq. A1. Schematically, we see from Fig. 1 that we
could rewrite this as a rational function:

Πxx
f (ω, 0) ∼

∏
γ

(
ω2 − ω2

γ

)∏
p (ω2 − Ef (0,p)2)

(68)

where ωγ are the zeros of the polarization, Πxx
f (ωγ , 0) = 0, and Ef (0,p) = 2 |p| are its poles. Its contribution to

the partition function is therefore something like

Zq=0 ∼
∏
iεn


∏

p

[
(iεn)

2
+ 4p2

]
∏
γ

[
(iεn)

2
+ (ωγ)

2
]


2

. (69)
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1/λ

0

1

2

3

4

5

ω̄

FIG. 2. Plot of the modes of the Dirac-CS theory as a function of 1/λ. When 1/λ → 0, the CS term vanishes, and the
energies are two-fold degenerate, occurring when Πxx

f = 0. These are marked with the dashed purple line. As 1/λ becomes
large, the lowest mode approaches zero and all others approach the two-particle energies of the free theory, shown with a
dash-dotted red line. (ω̄ = Lω/2π, λ = Nf/k.)

Not only are the interacting theory’s energies present as poles, but the free theory’s two-particle energies are
accounted for as zeros in the numerator, thereby removing them from the spectral function. The fact that the
function is squared accounts for the square symmetry of the torus.

When k is non-zero, the degeneracy splits. The energies are depicted in Fig. 1 as the intersection points of Πxx
f

and ± |ω| /2πλ for λ = 4. Fig. 2 plots the first few modes in blue as a function of 1/λ, and for several values of
λ, the first ten modes are listed in Table IV. When λ is very large, these modes have only a small splitting and
are nearly the same as in QED3, shown with the purple dashed line in Fig. 2. Conversely, as λ → 0, the lowest
mode ω∗0 approaches zero while all other levels approach one of the free theory two-particle energies, depicted with
a dash-dotted red line in Fig. 2.

The lowest energy level, ω∗0 , can be identified as the splitting between the groundstates of the pure CS theory
induced by matter. In the limit of λ and ω∗0 very small, the topological degeneracy is restored (albeit in the k →∞
limit). This aligns with out expectation that gauge fluctuations are suppressed at large k even when Nf is small.21 In
a similar fashion, when the fermions have a large mass Mf , we find limω→0 Πxx

f (ω, 0) ∼ e−Mf , once again implying
an effective topological ground-state degeneracy.

B. Finite external momentum, q 6= 0

The situation for finite external momenta is very similar. Using Eq. 65, along with Eqs. D7 and D8, all levels
can be numerically evaluated for any value of λ.

The next-lowest energies occur when the total momentum is q1 = 2π (1, 0) /L, or any other of the momenta
related to it by a π/2 rotation: 2π(0, 1)/L, 2π(−1, 0)/L, and 2π(0,−1)/L. The C4 symmetry of the square torus
implies an additional four-fold degeneracy for all energy levels which would not generally be present. For these
particular momenta, it turns out that the second term of Kq1

(ω) in Eq. 65 vanishes for all ω when k = 0, and the
zeros of the determinant can be found by separately solving for the zeros of Π00

f and ΠT
f = Πxx

f + Πyy
f + ω2Π00

f /q
2.
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λ = Nf/k
0 1/10 1/4 1/2 1 4 10 ∞
0 0.012851 0.032056 0.063615 0.123519 0.347859 0.475391 0.584130

1.39173 1.358213 1.303479 1.201486 0.859690 0.700684
1.4142136 1.436722 1.470375 1.525588 1.629405 1.990723 2.171077 2.311525

3.142113 3.111848 3.061891 2.966946 2.626458 2.450844
3.162278 3.182355 3.212169 3.260552 3.349688 3.637930 3.765391 3.855225

4.235129 4.223855 4.205187 4.169170 4.025093 3.935641
4.242641 4.250129 4.261281 4.279522 4.313961 4.443737 4.761364 4.586816

5.086480 5.067543 5.036016 4.975471 4.519975 4.660037
5.099020 5.111437 5.129740 5.159072 5.211794 5.371116 5.439288 5.489309

5.820132 5.804317 5.779259 5.734850 5.599761 5.537818

TABLE IV. Dirac-Chern-Simons modes at Nf , k =∞ with zero external momentum, q = 0. (ω̄ = LE/2π.)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ω̄

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

LΠ00
f (ω,q1)

LΠT
f (ω,q1)

FIG. 3. Plot of Π00
f (ω,q1) and ΠT

f (ω,q1) for q1 = 2π(1, 0)/L, shown in solid blue and dashed magenta respectively. The
vertical dash-dotted lines in red denote the two-particle energies of the free theory, Ef (q1,p). (ω̄ = Lω/2π.)

These functions are plotted in Fig. 3 and the resulting modes are given in Table I along with the results for
q2 = 2π(1, 1)/L.

IV. CONCLUSION

This paper has described the structure of 2+1 dimensional conformal gauge theories on the two-torus T2. We
computed the partition function on T2×R in the limit of large fermion flavor number, Nf , using strategies similar
to those employed for the computation on the three-sphere S3 in Ref. 20. We also deduced the energies of the
low-lying states in the spectrum. For large Nf , most of the states are simply given by the sum of the free fermion
energies with anti-periodic boundary conditions, as established in Appendix C. However, singlet combinations of
pairs of fermions which couple to the current operator are strongly renormalized even at Nf = ∞: these states
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appear instead as bound states given by the zeros of the effective action for the gauge field. A similar phenomenon
appears2 in the O(N) Wilson-Fisher conformal theory.

These results should be useful in identifying possible realizations of non-trivial conformal field theories in exact
diagonalization studies of model quantum spin systems in a manner similar to the study in Ref. 1. For instance,
focusing on the q = (0, 0) sector, a comparison of Tables II and III indicates the existence of a two-fold degenerate
singlet state with significantly lower energy than the (N2

f − 1)-fold generate fermion states. Although higher order
effects from both the finite-N CFT and the numerics will undoubtedly split the energies of these fermion states, it
is reasonable to predict that a significant gap will remain. This and similar trends between numerics and analytics
could serve as a useful diagnostic tool for the state being simulated.

Acknowledgements

We thank S. Pufu and S. Whitsitt for useful discussions. The research was supported by the NSF under Grant
DMR-1360789. Research at Perimeter Institute is supported by the Government of Canada through Industry
Canada and by the Province of Ontario through the Ministry of Research and Innovation. SS also acknowledges
support from Cenovus Energy at Perimeter Institute. AT is supported by NSERC.

Appendix A: Generalized Epstein zeta function

We define the function Y2(s) to be

Y2(s) =

∞∑
n1,n2=−∞

[(
n1 +

1

2

)2

+

(
n2 +

1

2

)2
]−s

. (A1)

It is only convergent for Re s > 1/2, but can be defined by analytically continuing outside of this domain. Specifically,
it can be expressed in terms of the special functions λ and β:44

Y2(s) = 4 · 2s λ(s)β(s), (A2)

where

β(s) =

∞∑
n=0

(−1)
n

(2n+ 1)
−s
, λ(s) =

∞∑
n=0

(2n+ 1)−s = (1− 2−s)ζ(s) (A3)

with ζ(s) =
∑∞
n=1 n

−s, the Riemann zeta function.

Appendix B: Analytic continuation of Maxwell-Chern-Simons free energy

In Eq. 32 we expressed the summation over imaginary frequencies in terms of the Epstein zeta function

ζE(s; a
2) =

∞∑
n=−∞

[
n2 + a2

]−s
, (B1)

where a = βγq/2π. This expression is only valid for Re s > 1/2, but can be analytically continued onto the entire
complex plane. To see this, we use the identity

1

As
=

πs

Γ(s)

∫ ∞
0

dt ts−1e−πtA, (B2)

to write

ζE(s; a
2) =

∑
n

πs

Γ(s)

∫ ∞
0

dt ts−1e−πt(n
2+a2). (B3)
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For sufficiently large values of s, we can exchange the summation and the integral, and, subsequently, use the
Poisson summation formula:

ζE(s; a
2) =

πs

Γ(s)

∫ ∞
0

dt ts−1e−πta
2 ∑

n

e−πtn
2

=
πs

Γ(s)

∫ ∞
0

dt ts−1e−πta
2 1√

t

∑
`

e−π`
2/t. (B4)

We see that divergence for Re s ≤ 1/2 is due to the ` = 0 term in the sum. Separating this term out and evaluating
the integral, we have

ζE(s; a
2) = a1−2s

√
πΓ(s− 1/2)

Γ(s)
+

2πs

Γ(s)

∞∑
`=1

∫ ∞
0

dt ts−3/2e−πa
2te−π`

2/t. (B5)

We can now extend s all the way to zero. Taking the derivative and limit, we have

− lim
s→0

d

ds
ζE(s; a

2) = 2πa− 2

∞∑
`=1

e−2πa`

`
= 2πa+ 2 log

(
1− e−2πa

)
. (B6)

Plugging this result into Eq. 31, we obtain

FMCS = − 1

β
log k − 1

β

∑
q

log

[
e−βγq/2

1− e−βγq

]
. (B7)

Appendix C: Leading order contribution

The leading order contribution in the zero temperature limit is

F0(a) = − 1

β

∑
p

log (p+ a)
2

= −
∑
p

∫
dω

2π
log
(
ω2 + (p + a)

2
)

= −
∑
p

∫
dω

2π
logω2 −

∑
p

|p + a| , (C1)

where p = (ω,p), p = 2π(nx + 1/2, ny + 1/2)/L, (nx, ny) ∈ Z2. The first term vanishes using zeta-reg and the
second one can be evaluating by analytically continuing to arbitrary s:

F0(a) = −
∑
p

(p + a)
−2s

= −Nf
(

2π

L

)−2s∑
n

(
n +

1

2
+α

)−2s

(C2)

where

αµ =
L

2π
aµ. (C3)

We can write this as

F0(a) = −
(

2π

L

)−2s
πs

Γ(s)

[
1

s− 1
+

∫ ∞
1

dt ts−1Θ

[
α
0

]
(it) +

∫ ∞
1

dt t−s
(

Θ

[
0
α

]
(it)− 1

)]
(C4)

where Θ is shorthand for a product of Jacobi theta functions

Θ

[
α
0

]
(it) =

∏
j=1,2

ϑ

[
αj + 1/2

0

]
(0|it), Θ

[
0
α

]
(it) =

∏
j=1,2

ϑ

[
0

−αj − 1/2

]
(0|it). (C5)

and we’ve used the following definition for the Jacobi theta functions with characteristics:

ϑ

[
a
b

]
(ν|τ) = exp

[
πia2τ + 2πia(ν + b)

]
ϑ(ν + aτ + b|τ)

=

∞∑
n=−∞

exp
[
πi(n+ a)2τ + 2πi(n+ a)(ν + b)

]
. (C6)
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FIG. 4. Plot on the free energy of a free Dirac fermion on the torus as a function of its boundary conditions, ax, ay.

For s = −1/2, we have

F0(a) =
1

L

[
−2

3
+

∫ ∞
1

dt t−3/2Θ

[
α
0

]
(it) +

∫ ∞
1

dt
√
t

(
Θ

[
0
−α

]
(it)− 1

)]
. (C7)

This function is plotted in Fig. 4 and clearly has a minimum at α = (0, 0). In terms of the function Y2 defined in
Appendix A in Eq. A1, this

F0(0) = −2π

L
Y2

(
−1

2

)
. (C8)

Appendix D: Polarization diagram

Here we calculate the leading 1/Nf contribution to the gauge kernel from the fermions. It is given by the
polarization diagram:

Sf [B] =
1

2
tr

(
1

i/∂
/B

1

i/∂
/B

)
=

1

2

1

βV

∑
p,q

tr

(
/p

p2
/B(−q)

(
/p+ /q

)
(p+ q)

2
/B(q)

)

=
1

2

1

βV

∑
p,q

tr
(
σρσµσλσν

)
Bµ(−q)Bν(q)

pρ (p+ q)λ
p2 (p+ q)

2 (D1)

where we have dropped all explicit references to ā = 0. The internal momentum, p, corresponds to a fermionic field,
pµ = 2π(nµ + 1/2)/Lµ, nµ ∈ Z, whereas the external momentum is appropriate for a bosonic field, qµ = 2πnµ/Lµ,
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nµ ∈ Z. This can be written as

Sf [B] =
1

2

∑
q

Bν(−q)Πµν
f (q)Bν(q) (D2)

with

Πµν
f (q) =

1

βV

∑
p

tr
(
σρσµσλσν

) pρ (p+ q)λ
p2 (p+ q)

2

=
2

βL2

∑
p

pµ (pν + qν) + (pµ + qµ) pν − δµνp · (p+ q)

p2 (p+ q)
2 . (D3)

In what follows, we will consider the zero temperature limit, β →∞.
We begin by calculating the the xx component:

Πxx
f (ε,q) =

2

L2

∑
p

∫
dω

2π

px(px + qx)− py(py + qy)− ω(ω + ε)

(ω2 + p2)
(

(ω + ε)
2

+ (p + q)
2
)

=
1

L2

∑
p

[
px(px + qx)− py(py + qy)

(|p|+ |p + q|)2
+ ε2

(
1

|p|
+

1

|p + q|

)
− |p|+ |p + q|

(|p|+ |p + q|)2
+ ε2

]
(D4)

This is formally divergent but can be regulated by adding and subtracting the divergent piece and analytically
continuing using zeta functions:

Πxx
f (ε,q) = − 1

L2

{∑
p

px(px + qx)− py(py + qy)

(|p|+ |p + q|)2
+ ε2

(
1

|p|
+

1

|p + q|

)

−
∑
p

[
|p|+ |p + q|

(|p|+ |p + q|)2
+ ε2

− 1

2 |p|

]
+
∑
p

1

2 |p|

}
. (D5)

The divergent term is ∑
p

1

2 |p|
=

1

2

L

2π

∑
n

1√
(n + 1/2)

2
=

L

4π
Y2 (1/2) , (D6)

where Y2(s) is defined for all s in Appendix A. The finite expression is therefore

Πxx
f (ε,q) = − 1

4πL
Y2(1/2)− 1

L2

∑
p

[
|p|+ |p + q|

(|p|+ |p + q|)2
+ ε2

− 1

2 |p|

]

+
1

L2

{∑
p

px(px + qx)− py(py + qy)

(|p|+ |p + q|)2
+ ε2

(
1

|p|
+

1

|p + q|

)
. (D7)

Similarly, we find

Πyy
f (ε,q) = − 1

4πL
Y2(1/2)− 1

L2

∑
p

[
|p|+ |p + q|

(|p|+ |p + q|)2
+ ε2

− 1

2 |p|

]

− 1

L2

{∑
p

px(px + qx)− py(py + qy)

(|p|+ |p + q|)2
+ ε2

(
1

|p|
+

1

|p + q|

)
,

Πxy
f (ε,q) =

1

L2

∑
p

px(py + qy) + py(px + qx)

(|p|+ |p + q|)2
+ ε2

(
1

|p|
+

1

|p + q|

)
,

Π00
f (ε,q) =

1

L2

∑
p

|p| |p + q| − p · (p + q)

(|p|+ |p + q|)2
+ ε2

(
1

|p|
+

1

|p + q|

)
,

Π0i
f (ε,q) =

1

L2

∑
p

ε

(|p|+ |p + q|)2
+ ε2

(
pi
|p|
− pi + qi
|p + q|

)
. (D8)
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Appendix E: Operator contributions to the spectrum

In Sec. III we stated that in addition to imposing charge-neutrality, the gauge field alters the spectrum in two
ways at Nf = ∞. First, its presence enforces the constraint Jµ(x) = 0, removing one state from the spectrum
for every choice of external momentum q and internal momentum p, thereby decreasing the degeneracy of the
free theory spectrum. Further, the photon creates states which contribute to the spectrum as well; their energies
coincide with the poles of the photon propagator, ∆µν(x) = 〈Aµ(x)Aν(0)〉.

We can understand how this comes about by translating the field theoretic operators to the quantum mechanical
language of the free theory. We write

Jµ(x) =
1

L2

∑
q,E

e−ix·qJµE(q), JµE(q) =
∑
p

Ef (q,p)=E

ψ̄α(p + q)γµψα(p),

M(x) =
1

L2

∑
q,E

e−ix·qME(q), ME(q) =
∑
p

Ef (q,p)=E

ψ̄α(p + q)ψα(p). (E1)

For the moment, we specify to the case where p + q 6= −p. Eq. 62 shows the two distinct states which exist for
each energy Ef (q,p) (additional degeneracies may be present due to the symmetry of the lattice, but this does not
alter any of the following discussion). It follows that JµE(q) and ME(q) create states of the form

JµE(q) |0〉 =
[
vµ1 (p)χ†+α(p + q)χ−α(p) + vµ2 (p)χ†+α(−p)χ−α(−p− q)

]
|0〉 ,

ME(q) |0〉 =
[
vM1 (p)χ†+α(p + q)χ−α(p) + vM2 (p)χ†+α(−p)χ−α(−p− q)

]
|0〉 , (E2)

where the “E” subscript on vµi (p) and vMi (p) has been dropped for notational ease. These coefficients are easily
computed, and are found to be

v0 =
i

2

(
1− P

|p|
P+Q
|p+q|

1− P
|p|

P+Q
|p+q|

)
, vx =

1

2

(
− P
|p| + P+Q

|p+q|

− P
|p| + P+Q

|p+q|

)
, vy =

i

2

(
P
|p| + P+Q

|p+q|

− P
|p| −

P+Q
|p+q|

)
,

vM =
i

2

(
1 + P

|p|
P+Q
|p+q|

1 + P
|p|

P+Q
|p+q|

)
, (E3)

where P = px + ipy, Q = qx + iqy. While it may not be obvious, it can be verified that the state created by
the mass operator is orthogonal to the three states created by the current operators, and that these states are all
proportional to one another.

The linear dependence of the current states actually follows directly from the conservation law ∂µJ
µ = 0. In

terms of the states, this reads[
−i (|p + q|+ |p|) J0

E(q) + qxJ
x
E(q) + qyJ

y
E(q)

]
|0〉 = 0. (E4)

The space spanned by χ†+α(p+q)χ−α(p) |0〉 and χ†+α(−p)χ−α(−p−q) |0〉 is a 2-dimensional complex vector space,
equivalent to a 4d real vector space. Eq. E4 shows that the three JµE(q) |0〉 states actually only span a 2d real
subspace, ie. a 1d complex vector space. As claimed, the currents only create a single state. The orthogonality of
ME(q) |0〉 to this state is then obvious since Eq. (E3) implies that

(vµ)†vM = 0. (E5)

Returning to the large-Nf theory, the gauge current states cease to exist, but the mass state remains, resulting in
(at least) a 2N2

f − 1 degeneracy.

In the special case p + q = −p, there is only a single state for each α, β pair, and so only a N2
f degeneracy in

the free theory. Eq. E3 shows that only the current operators create states of this form, and, as above, this state
is removed at Nf =∞, resulting in a N2

f − 1 degeneracy.
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Appendix F: Flux sectors

In this appendix we review the role of non-trivial flux sectors in the theories we considered in Sec. II. When we
defined the gauge field in Eq. 7, we did not consider its ability to carry non-trivial flux. This is possible because
the photon is only defined modulo 2π/L and so can wind around either cycle of the torus so that

2πn =
1

β

∫
d3r (∂xAy − ∂xAy) 6= 0. (F1)

Gauge field configurations with non-zero flux cannot be defined on the entire space with a single function: multiple
functions defined on different patches are necessary. However, in regions intersecting one or more patches, the
descriptions of A must differ only by a gauge transformation. Analogous to the quantization of electric charge
through the existence of magnetic monopoles, this forces n to be an integer. Furthermore, at finite temperature,
the photon can also wind around the time direction, introducing the possibility of F0x or Fy0 integrating to a non-
zero value. For simplicity, we will only focus on the flux through the spatial torus though our arguments generalize
easily to this case.

One way to represent a non-trivial flux state is to write

Ax = ax +A′x +
2πny

L2
· (F2)

The Chern-Simons partition function in Eq. 16 is modified by replacing SCS with

S
(n)
CS,fl[A] = SCS[B] +

ik

2π

∫
d3r a0

2πn

L2
= SCS[A] + iβk n a0. (F3)

The path integral must sum over the flux sectors separately; it becomes

ZCS =
βL2

2π

√
det′(−∇2)

∞∑
n=−∞

∫
da e−iβk n a0

∫
dB e−SCS[B]. (F4)

Upon integrating over a0, n is restricted to be zero, and we get the partition function we determined in the main
body of the paper. Similarly, when a Maxwell term is present, the action in the presence of flux is modified to

S
(n)
MCS[A] = SMCS[B] + iβk n a0 +

β

4e2

(
2πn

L

)2

· (F5)

Integrating over a0 from 1 to 2π/β again sets n to zero.
In the presence of matter, the flux sector no longer completely vanishes. However, Dirac fermions in the presence

of flux have a higher energy than without. The saddle-point approximation we employ in Sec. II C only expands
about the ground state of free fermion theory; it does not take possible winding of A into account. Provided N is
large enough, this is a good approximation.

1 M. Schuler, S. Whitsitt, L.-P. Henry, S. Sachdev, and A. M. Läuchli, “Universal Signatures of Quantum Critical Points
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