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Motivated by the direct observation of electronic phase separation in first-order Mott transitions,
we model the interface between the thermodynamically coexisting metal and Mott insulator. We
show how to model the required slab geometry and extract the electronic spectra. We construct an
effective Landau free energy and compute the variation of its parameters across the phase diagram.
Finally, using a linear mixture of the density and double-occupancy, we identify a natural Ising order
parameter which unifies the treatment of the bandwidth and filling controlled Mott transitions.

I. INTRODUCTION

The Mott transition is one of the fundamental orga-
nizing principles for understanding phases of matter in
interacting solid state systems. In these materials, tem-
perature, pressure or chemical doping drives a transition
between a metal and a Mott insulator, a state where elec-
trons cannot conduct due to the large ratio of the local
Coulomb repulsion relative to the kinetic energy. The
Mott transition has overwhelmingly been observed to be
first-order in large classes of materials1 and its under-
standing is key to eventual device applications2. First-
order transitions exhibit phase separation, and the thick-
ness of the interface between the two thermodynamic
phases contains information about the free energy func-
tional3. Specifically, the thickness of the interface allows
direct access to the ratio of the potential to kinetic energy
terms in the free energy, which is related to the barrier
height between the two minima of the double-well.

Phase separation at the Mott transition is theoretically
well-studied4–9, establishing the coexistence between the
undoped Mott insulator and a doped phase, either a nor-
mal metal or pseudogapped state. Extensive work has
also examined Mott systems in inhomogeneous geome-
tries, exploring correlated surfaces and heterostructures,
where the Coulomb repulsion or hopping is varied spa-
tially10–12. Enhanced correlations are found at vacuum-
facing surfaces of Mott insulators due to reduced coor-
dination and consequent decrease in kinetic energy13,14.
Power law decay of the metallic quasiparticle weight as
a function of distance from the interface occurs in het-
erostructures between metals and Mott insulators tuned
to criticality15,16. In contrast to electronic interfaces
pinned to underlying structural inhomogeneity, the in-
terface arising from the coexistence of metallic and Mott
insulating regions in a homogeneous bulk has received
little attention. The recent development of experimental
probes with nanometer-scale spatial resolution17–19 has
allowed the direct observation of the real-space structure
of the metal-Mott insulator interface. Additionally, fu-
ture device applications based on control of the Mott
transition will also encounter these interfaces.

To characterize the metal-Mott interface, we propose a
double-well form for the Landau free energy, selecting a
two-component field to treat the bandwidth and doping

driven transitions simultaneously. We adapt the tech-
niques used above for inhomogeneous correlated systems
to model the real-space structure of the interface. In this
work, we focus on the metallic and paramagnetic Mott
insulating states in the canonical model of a correlated
system, the single-band Hubbard model. The two-phase
coexistence between these states is chosen because it is
observed in experiment and avoids complications aris-
ing from multi-phase coexistence from the inclusion of
magnetic and superconducting states. We extract the
evolution of the density, double-occupancy and spectral
features across the interface, allowing us to determine the
parameters of the underlying Landau free energy across
the phase diagram.

II. LANDAU FREE ENERGY

The Mott transition can be tuned by two parame-
ters besides temperature: the chemical potential µ and
correlation strength U . At half-filling, extensive work
has shown the first-order transition is analogous to the
liquid-gas transition, placing the Mott transition within
the Ising universality class20–27. In this work, we ex-
tend the construction away from half-filling into the µ-U
plane28. Since we are interested in the metal-Mott inter-
face, we work at temperatures below the critical point to
construct the Landau functional.

We choose our fields to be the quantities conjugate
to the external parameters (µ,U), namely the density
n = 〈n〉 and double occupancy d = 〈n↑n↓〉, a construc-
tion hinted at in29. In first-order transitions without an
organizing symmetry, any number of fields can be cho-
sen to construct the free energy21,22,27. The choice of
the quantities conjugate to the physical tuning param-
eters µ and U allow for a transparent construction of
the order parameter which can uniformly treat both the
bandwidth and filling controlled transitions. Since the
transition between the metal and paramagnetic Mott in-
sulator does not break any symmetries1,30, the terms in
the free energy functional F [n, d] are unconstrained. The
free energy generically will have one global minimum, and
should a transition exist, it will occur via the switching
between two discrete minima as no symmetry forces a lo-
cus of states to simultaneously lower in energy. We will
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FIG. 1. Generic Mott phase diagram, as realized by the single-
band Hubbard model on a cubic lattice at T = 0.005D, where
D = 6t is the half-bandwidth. Dots label values of (µ,U)
lying on first-order Mott transition line used for interface cal-
culations. Lines mark the spinodals Uc1 and Uc2 where the
insulating and metallic solutions respectively vanish. The di-
agram is symmetric about µ/(U/2) = 1.

explicitly construct the scalar order parameter in the fol-
lowing.

Along the Mott transition line in the µ-U plane, the
two minima will have the same energy. To facilitate ana-
lytic calculation, we take the two minima to be symmet-
ric, an assumption certainly not justified by symmetry,
but which will prove to be a good approximation. Writ-

ing the fields as ~φ = (n, d), the free energy functional
takes a double-well form,

F [~φ] =
1

2
D(∇~φ)2 + λ(~φ− ~φi)2(~φ− ~φm)2, (1)

where ~φi = (ni, di) and ~φm = (nm, dm) are the insulat-
ing and metallic minima. Terms beyond the quartic are
certainly present and will affect the geometric shape of
the potential wells. The additional parameters will im-
prove the fit of the phenomenological free energy to the
microscopic model at the expense of model complexity.
We find the double well form fits sufficiently well (see
Fig. 3). A note on units: we work on a discrete lattice
to easily connect with computation and set the lattice
spacing a = 1. Thus the gradient is understood to be

discrete ∇~φj ∼ ~φj+1 − ~φj , where j is the lattice site, the

free energy F =
∑
j F [~φj ], and both λ and D have units

of energy. We choose D to be the half-bandwidth and
omit an overall (dimensionless) normalization to the free
energy.

A domain wall is given by the standard solution used,
e.g. in the theory of instantons31,

~φ(xj) =
~φm + ~φi

2
+
~φm − ~φi

2
tanh

(
xj − x0

2l

)
(2)

where xj is the coordinate of the jth site and the wall

thickness is l−2 = 2(λ/D)(~φm− ~φi)2. The fields ~φ do not

x
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FIG. 2. Geometry used to model the metal-Mott inter-
face. The transition region, described by site-dependent self-
energies Σi, is sandwiched between a semi-infinite bulk Fermi
liquid and Mott insulator by fixing the bulk self-energies to
Σmetal and Σins on the left and right. We assume translational
invariance in the y and z directions.

transform as a vector and the notation is for convenience.
Determining the dependence of ~φi, ~φm and λ/D on (U, T )
requires microscopic modeling.

III. MODELING THE INTERFACE

The Hubbard hamiltonian is the “standard model” of
correlated electrons. Its two terms describe the competi-
tion between kinetic energy, which delocalizes electrons
to promote metallic behavior, and mutual electron re-
pulsion, which tends to localize electrons onto sites and
drive the transition to a Mott insulator. We work with
the simplest one-band case on a cubic lattice,

H =
∑
kσ

(εk − µ)nkσ + U
∑
j

nj↑nj↓, (3)

where we take εk = −2t(cos kx + cos ky + cos kz) and use
the half bandwidth D = 6t as the unit of energy in all
the following. We will index the sites by j = (n1, n2, n3)
in the following. Ignoring ordered phases, which is a rea-
sonable assumption at intermediate temperatures or in
the presence of frustration, the phase diagram generi-
cally consists of a Mott insulating region for large U and
a range of µ corresponding to half-filling, and a Fermi
liquid everywhere else. To find the first-order transition
line, we use standard single-site dynamical mean-field
theory (DMFT) 32–34 with a continuous-time quantum
monte carlo (CTQMC) hybridization expansion impurity
solver35–37. The phase diagram at T = 0.005D is plot-
ted in Fig. 1, along with the two spinodals Uc1 and Uc2

between which both solutions exist.

To model the interface in the coexistence regime, we
fix our parameters to a point on the first-order line (dots
in Fig. 1), then partition the lattice into three regions
along the x-axis (see Fig. 2): metal (n1 ≤ 0), insulator
(n1 ≥ N+1), and a transition region (1 ≤ n1 ≤ N). Here
n1 is the site index along the x-axis and we take N =
20 large enough to capture the interface. We perform
an inhomogenous DMFT calculation by setting the self-
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energy of the lattice Σn1n′1
= δn1n′1

Σn1
to

Σn1 =


Σmetal n1 ≤ 0

Σn1 1 ≤ n1 ≤ N
Σins n1 ≥ N + 1

. (4)

Only the self-energies Σn1
in the transition region are

updated, while Σmetal and Σins are fixed boundary con-
ditions taken from the single-site DMFT solution. Our
setup assumes the interface is perpendicular to one of
the crystal directions (x) and the system is translation-
ally invariant in the other two (y and z) so self-energies
are independent of n2 and n3.

To render the equations soluble in the transition re-
gion, we compute the lattice Green’s function and use its
local component Gn1n1 to map the system to a chain of
N auxiliary impurity problems12,

Gn1n1
(iωn) =

1

iωn − Eimp −∆n1
(iωn)− Σn1

(iωn)
. (5)

Using the extracted impurity levels Eimp and hybridiza-
tion functions ∆n1

, we obtain the new local self-energies
Σn1

and iterate to convergence. The procedure for com-
puting the local Green’s function is provided in the ap-
pendix.

IV. RESULTS

The evolution of the density n and double occupancy d
across the interface as we progress along the Mott transi-
tion line is displayed in Fig. 3. The temperature is fixed
to T = 0.005D. The position along the transition line
(see Fig. 1) is parameterized by µ, as labeled in the fig-
ure, and the corresponding U is tabulated in the right
side of Table I. The fact that the system equilibrates to a
finite interface width, rather than linearly interpolating
between the endpoints, implies there exists an intrinsic
scale, which is controlled by the double well height. The
results remain unchanged with transition regions up to
60 sites in width, demonstrating convergence of the in-
terface (see appendix). The lack of finite size effects can
also be visually seen by the flat plateaus in n and d on
either side of the interface. As expected, the insulator is
more “rigid” compared to the metal: both n and d shift
less on the insulating (right) side of the figure as µ is
varied.

Appealing to intuitively expected properties of the
metal and insulator, the variations of n and d across the
interface can be rationalized. In the upper plot of density,
at the particle-hole symmetric point of µ = 1.0(U/2),
there is no jump in density between the metal and Mott
insulator as they both lie at half filling. As mu is de-
creased, the metallic density drops due to the finite com-
pressibility of the phase. At zero temperature, the insu-
lating density would be exactly pinned at unity regardless
of variations in µ. However, the simulations were per-
formed at finite temperature, the insulator has a small
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FIG. 3. Variation of the density (top) and double occupancy
(bottom) across the interface at several points along the Mott
transition line at T = 0.01D. Thin lines are fits to the
standard solution for a double-well potential a+ b tanh((xi −
x0)/2l), allowing extraction of the parameters for the under-
lying free energy. Curves are shifted horizontally by varying
amounts to align the center of the domain wall for clarity (0,
1, 1, 2, 2 sites respectively). The chemical potential is in units
of U/2, as detailed in the right-hand table of Table I

but finite compressibility, resulting in a small drop in
density below unity. As a result, the density difference
between the metal and insulator increases as we progress
along the transition line.

In the lower plot of the double occupancy, we find the
jump is maximal at the particle-hole symmetric point.
Since stepping along the Mott transition line away from
the µ = 1.0(U/2) point involves increasing U , the double
occupancy is reduced in both the metal and insulator by
the enhanced correlations. Again, the metal is more com-
pressible, exhibiting a larger drop in d. As a result, the
difference in double occupancy decreases as we progress
along the transition line.

The variation of both quantities fit well to Eq. 2 for the
double well potential, albeit with slightly different length
scales, and we use the average of the two wall widths l̄ to
compute λ. The small difference in length scales implies
the potential is not perfectly symmetric, and that the
path in (n, d) space between the two minima is close to,
but not exactly, a straight line (see Fig. 4). The extracted
parameters for the Landau free energy are presented in
Table I. The width of the domain wall increases as we
move away from the particle-hole symmetric point. We
hypothesize this is due to the lowering in temperature of
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FIG. 4. Trajectory in (n, d) space as the system evolves across
the interface from the insulating to the metallic minima at µ =
0.95(U/2), U = 2.05D, T = 0.005D. The extracted Landau
parameters are used to plot the contours of the double-well
potential. The dotted lines trace the shift of the minima along
the Mott transition line at T = 0.005D.

the Mott critical end point with increasing U , and length
scales are expected to diverge as our parameters move the
system closer to the critical point.

We also analytically continue the Matsubara self-
energies produced by the impurity solver to the real axis
using the maximum entropy method38 to compute the
variation of the spectral density across the interface. We
plot in Fig. 5 the spectra for parameters µ = 0.95(U/2),
U = 1.97D and T = 0.01D, which is slightly on the hole-
doped side. Starting from the metallic solution, we find
that the quasiparticle peak shifts slightly downwards and
disappears into the lower Hubbard band as we progress
to the Mott insulator. The gap between the Hubbard
bands slightly narrows. The shift in the quasiparticle
peak is challenging to see, so also plotted in the appendix
is a comparison between the line spectra of the first and
last sites in the transition region. Additionally, we use
G(β/2) to independently check the quasiparticle weight
at the Fermi level (see appendix). In corroboration with
the analytically continued results, we find the weight to
be finite on the metallic side, decreases as the interface
is traversed, and approaches zero on the insulating side.

The extracted parameters combined with our ansatz
(Eq. 1) allow us to reconstruct the free energy. A rep-
resentative case for µ = 0.95, U = 2.05, T = 0.005D is
shown in Fig. 4. We have plotted the trajectory in (n, d)
space as the system evolves from the metallic to insulat-
ing minima, superimposed with contour lines of the po-
tential constructed using the extracted parameters. The
movement of the two minima as we step along the Mott
transition line is shown in the dotted lines.

As promised, we explicitly construct the order param-
eter field ∆ as a linear combination of n and d, owing to
the fact that the trajectory is almost straight. The con-
struction is essentially geometric: we take the line seg-
ment joining the two minima and parameterize it with
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FIG. 5. Evolution of the local spectra (top panel), density
(middle) and double occupancy (bottom) across the interface
between a correlated metal (left edge) and a Mott insulator
(right edge). Visible is the transfer of spectral weight from
the low-energy quasiparticles to the Hubbard bands as we
spatially traverse the interface (light color corresponds to high
spectral density, and dark to low density). We have chosen
parameters of the Hubbard model where the transition from
the insulator is to a hole-doped metal: µ = 0.95(U/2), U =
1.97D and T = 0.01D, where D = 6t is the half-bandwidth.

an angle α:

∆ = (n− n̄) sinα+ (d− d̄) cosα (6)

where n̄ = (ni + nm)/2 and d̄ = (di + dm)/2. The angles
are tabulated in Table I. At particle-hole symmetry, the
angle is zero and the variation of the order parameter is
entirely driven by the double occupancy. Increasing an-
gles imply that the density becomes a larger component
of the order parameter, which occurs as we progress to
larger correlation strengths.

V. SUMMARY

In this work, we have taken a preliminary step towards
characterizing the metal-Mott interface by modeling its
spatial properties, constructing a Landau free energy and
identifying an Ising order parameter. The key parameter
of the free energy which could not be obtained by previ-
ous solutions in uniform systems is the interface width l,
which is directly related to the double-well barrier height
via λ/D.
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µ/(U/2) U/D ni di nm dm l̄ λ/D α

1.00 2.04 1.0000 0.0241 1.0000 0.0357 0.72 2410 0◦

0.95 2.05 1.0000 0.0238 0.9978 0.0330 0.75 3170 13◦

0.90 2.08 0.9999 0.0229 0.9960 0.0297 0.80 2510 30◦

0.85 2.13 0.9998 0.0216 0.9947 0.0262 1.04 1780 48◦

µ/(U/2) U/D ni di nm dm l̄ λ/D α

1.000 1.962 1.0000 0.0261 1.0000 0.0353 1.02 1420 0◦

0.975 1.965 1.0000 0.0259 0.9997 0.0341 1.09 1590 2◦

0.950 1.970 1.0000 0.0258 0.9994 0.0330 1.12 1890 5◦

0.925 1.985 0.9999 0.0253 0.9992 0.0306 1.33 2480 8◦

0.900 2.005 0.9998 0.0248 0.9991 0.0283 1.74 3190 12◦

TABLE I. Extracted parameters of Landau free energy for T = 0.005D (left) and T = 0.01D (right), where D = 6t is the
half-bandwidth. The position along the Mott transition line is parameterized by the chemical potential µ, or equivalently, the
electron repulsion. The shifts in the density and double-occupancy for the Mott insulator (ni, di) and metal (nm, dm) are quite
small for the one-band model, which when combined with fact that the interface widths l̄ ∼ O(1), produces large values of
λ/D. The angle α specifies how much of n is admixed into the d to form the Ising order parameter (see Eq. 6).

We want to point out the simplifying assumptions
used: (1) we took the interface to be perpendicular to
a crystallographic axis, (2) we only included nearest-
neighbor hopping to simplify the formulae, (3) we made
the slow-varying approximation, assuming each site was
an independent impurity affecting the others only via the
hybridization, and (4) we have ignored the long-range
Coulomb interaction. Relaxing these assumptions to cap-
ture more realistic scenarios warrants further investiga-
tion. In particular, while the long-range Coulomb inter-
action primarily controls the domain sizes of the metallic
and Mott insulating puddles via the competition between
the surface tension and bulk Coulomb energy9, its effects
on the interface width are likely more subtle and require
detailed modeling. Additionally, since this was a first
study, we believe it is appropriate to examine the phe-
nomenon in the Hubbard model before progressing to
chemically realistic models, where the essential physics
would be complicated by effects such as Glazer rotations
in perovskites, multi-band physics, and Hunds coupling.

Additionally, while forbidding ordered phases (espe-
cially magnetism) in the calculations is roughly valid for
modeling the Mott transition at finite temperatures, a
more detailed study would include order parameter fluc-
tuations. For example, including magnetic correlations
would lower the entropy of the paramagnetic Mott insu-
lator relative to the metal. This shift in relative entropy
changes the slope of the Mott transition surface to in-
creasingly favor the metal at higher temperatures39, and
will affect the extracted free energy parameters.

We expect that future calculations on realistic systems
will provide quantitative results for comparision with
near-field optics and STM observations. More specula-
tively, these calculations could provide a new constraint
on the value of U in Mott compounds such as the rare
earth titanates, vanadium oxides and organics. Finally,
while we have made an ansatz for the form of the Landau
free energy and numerically determined its parameters,
especially satisfying for future work would be a micro-
scopic derivation from the appropriate mean-field theory.
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Appendix A: Calculation of local Green’s function

The Green’s function of the lattice is given by

GRR′ = [(iω + µ)δRR′ − tRR′ − ΣRR′ ]
−1 (A1)

where R is a lattice vector R = (n1, n2, n3) with the
cubic primitive lattice vector and tRR′ denotes the near-
est neighbor hopping. To see the spatial variation across
the two different phases, we divide the lattice into three
regions: metallic (M : −∞ < n1 ≤ 0), insulating
(I : N + 1 ≤ n1 < ∞) and transition (T : 1 ≤ n1 ≤ N)
region. So T is sandwiched byM and I. Then we assign
to each site the localized self-energy Σn1n′1

= δn1n′1
Σn1

with

Σn1 =


Σmetal (n1 ∈M)

Σn1 (n1 ∈ T )

Σins (n1 ∈ I)

(A2)

Note that in the metallic and insulating regimes, the self-
energy is fixed to Σmetal and Σins respectively, while we
allow the local self-energy in the transition regime to vary
across the sites.

The Fourier transformation of Eq. (A1) along y and
z directions gives the following matrix form of Green’s
function in the mixed representation (n1; ky, kz) (n1 is
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the site index of x):

[
G(ky, kz; iω)

]
n1n′1

=

[[
(iω + µ− ε(ky, kz)

− Σn1
(iω))Î − t̂

]−1]
n1n′1

(A3)

where t̂ = −t(δn1,n′1+1 + δn1,n′1−1) and ε(ky, kz) =
−2t(cos(kya) + cos(kza)). To apply DMFT to the tran-
sition regime, we must calculate the local component of
the Green’s function at each site and map each onto an
auxiliary impurity.

We can rewrite Eq. (A3) in a block matrix divided into
the three regimes M, T and I, that is,

[G(ky, kz; iω)]n1n′1
=



FM
t

t

FT
t

t

FI



−1

(A4)

where we define the three block matrices by

[FM]n1n′1
= (iω + µ− ε(ky, kz)− ΣM(iω))︸ ︷︷ ︸

≡zM

δn1n′1
− tn1n′1

[FT ]n1n′1
= (iω + µ− ε(ky, kz)− Σn1

(iω))︸ ︷︷ ︸
≡zn1

δn1n′1
− tn1n′1

[FI ]n1n′1
= (iω + µ− ε(ky, kz)− Σins(iω))︸ ︷︷ ︸

≡zI

δn1n′1
− tn1n′1

.

Note that zM and zI are fixed while zn1 varies across the
sites.

Using block matrix inversion[
A B

C D

]−1∣∣∣∣∣∣
∈A

= [A−BD−1C]−1 (A5)

we obtain the complete form of Green’s function in the
transition regime T (a N ×N matrix) into which all the
degrees of freedom of metallic and insulating regions are
incorporated:

[G(ky, kz)]|n1,n′1∈T =
[

[FT ]︸︷︷︸
A

−(t̂TM[FM]−1t̂MT + t̂T I [FI ]−1t̂IT︸ ︷︷ ︸
BD−1C

]−1

=



z11 − t2RM t 0

t z22 t

t
. . .

. . .

. . .
. . . t

t zN−1,N−1 t

0 t zNN − t2RI



−1

(A6)

where RM ≡ [F−1M ]00, RI ≡ [F−1I ]N+1,N+1 and t̂TM(I) is
the overlap between T andM(I). The effect of integrat-
ing out the degrees of freedom in M and I is captured
by t2RM and t2RI at the (1, 1) and (N,N) components
respectively.

To compute RM and RI , we again rely on Eq. (A5).
Since [FM] takes a symmetric tridiagonal matrix form
equal to

FM =


zM t

t zM t

t zM
. . .

. . .
. . .

 =


zM t

t

FM

 (A7)

we see the matrix repeats itself inside. As a direct conse-
quence of (A5), we obtain the following recursive equa-

tion:

[F−1M ]00 = RM =
1

zM − t2RM
(A8)

where the solution is

RM =
zM −

√
(zM)2 − 1

t
. (A9)

RI is obtained by the same procedure.
Finally, we need to convert the mixed representation

form (A4) into the pure real-space representation. Per-
forming the inverse Fourier transformation with respect
to ky and kz, we can obtain the local Green’s function at
the site n1

[G]n1n1
=

∫
d2k

(2π)2
[G(ky, kz)]n1n1

=

∫
dε[G(ε)]n1n1

D2D(ε) (A10)
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FIG. 6. Plot of the local spectra Gn(ω) for n equal to the
first and last sites in the transition region (nearest the metal
and insulating bulks, respectively). The quasiparticle peak is
seen to shift downwards in the lower Hubbard band, and the
gap between the Hubbard bands have narrowed.

where the ε dependence of G comes from ε = ε(ky, kz).
Here, D2D(ε) is the density of states of non-interacting
2D square lattice whose analytic expression is known and
the integration (A10) is performed numerically.

Appendix B: Supplementary Plots

To show the narrowing of the Hubbard bands and shift
of the quasiparticle peak downwards as the interface is
traversed, we plot the local spectra of the first and last
sites in the transition region in Fig. 6

As a check on the analytic continuation results, we
have plotted G(β/2) in Fig. 7, which is approximately
proportional to the Fermi level density of states. The
density is finite on the metallic side, and drops to zero
on the insulating side of the interface.

Finally, we check for finite size effects by performing
calculations for transitions regions up to width N = 60.
In Fig. 8, we show a comparison of the computed double
occupancy across the interface for transition regions of
size N = 20 and N = 60, at T = 0.01D, µ = 0.95(U/2)
and U = 1.97D. The interface is well-captured for simu-
lation systems of width N = 20.

FIG. 7. Plot of G(β/2) vs. site, showing the decrease in Fermi
level density as we cross the interface from the metallic (left)
to insulating (right) side.
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FIG. 8. Comparison of double-occupancy across the interface
for transition regions of width N = 20 and N = 60.
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