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The binary intermetallic compound TiAu is distinguished by an extremely sharp and narrow den-
sity of states peak at the Fermi level that has been proposed, via scattering between mirrored van
Hove singularities, to be the mechanism for antiferromagnetic ordering versus the more fundamental
ferromagnetic, Stoner instability. Here we study, using density functional theory methods, magnetic
tendencies and effects of doping, the latter within the virtual crystal approximation (VCA). Ferro-
magnetic tendencies are quantified using the fixed spin moment approach, illustrating the strong
Stoner instability that does not however provide the ground state. Use of VCA results allows the
identification of the value of the Stoner exchange constant I = 0.74 eV for Ti. Magnetic fluctu-
ations not included with semilocal density functionals are quantified with the procedure provided
by Ortenzi and coauthors, with alloy concentrations corresponding to the quantum critical points
reduced by a factor of three to five. Our results provide useful guidelines for experimental doping
studies of TiAu.

PACS numbers:

I. INTRODUCTION

Among the variety of magnetic behaviors that have
been reported for itinerant metals, weak ferromagnetism
(wFM) is rare. Only a handful of itinerant magnetic com-
pounds have been reported in conventional compounds,
viz. ZrZn2

1, TiBe2
2,3 and off-stoichiometric Sr3In, all

comprised of non-magnetic elements. Weak magnetism
also occurs in heavy fermion and metallo-organic sys-
tems, where correlation effects are stronger and the mech-
anism may differ. The above mentioned small group of
wFMs also share another common origin: they arise from
accidental van Hove singularities (vHs) that make the
nonmagnetic state unstable to Stoner ferromagnetism4,
even though there is not enough spectral density to sup-
port a substantial ordered moment. The small moment
both reflects and encourages strong magnetic fluctuations
which conspire to keep the magnetic entropy small at the
transition.

The occurrence of small ordered moment, often deli-
cate, magnetism is beginning to become known as frag-
ile magnetism. The term was applied early on in this
manner by Gayathri et al. to some behavior in the
doped-manganite La0.7Ca0.3Mn1xCoxO3 system.5 Frag-
ile magnetism was also how the heavy fermion system
of doped-CeRu2Ge2 was characterized by Raymond and
coworkers.6 In more recent times fragile magnetism was
re-introduced as a description by Ueland et al.7 of heavy
fermion YbBiPt. This characterization is becoming more
common, with nearly all cases being tuned by viz. dop-
ing, pressure or strain, or magnetic field, and an overview
has been provided by Canfield and Bud’ko.8

A yet rarer magnetic phenomenon than wFM is weak
antiferromagnetism (wAFM), which involves the same

issues plus ordering at a non-zero wavevector ~QAFM .
TiAu is a recently revisited system for which Svanidze
et al. discovered that the orthorhombic form orders
antiferromagnetically9 below the Neel temperature TN

FIG. 1: Structure of Pmma TiAu with two f.u. per prim-
itive cell, three primitive cells are shown. Antiferromagnet
ordering with modulation vector ~Q = (0, π

b
, 0) is shown. The

positions of Ti and Au are at 2e (0.25, 0, 0.3110) and 2f (0.25,
0.5, 0.8176) sites, respectively.

= 36 K. TiAu displays a Curie-Weiss (CW) moment of
0.8µB . This size is about half that of a spin-half local mo-
ment (1.73µB), though there is no reason for Ti to have a
spin-half moment in TiAu since (as we show within) its 3d
band is roughly 1/3 filled. It was one success of Moriya’s
self-consistent renormalized theory of itinerant spin fluc-
tuations that it predicts a Curie-Weiss-like susceptibility
over a wide temperature range.10,11 Neutron diffraction
reveals an ordered local moment of only 0.15 µB/Ti, iden-
tifying TiAu as a weak moment system. Ordering is at

a commensurate wavevector ~QAFM = (0, πb , 0), i.e. a

simple doubling of the cell along the ~b axis, see Fig. 1.

These properties identify TiAu as an itinerant but
commensurate wAFM, whereas small itinerant moments
are more often associated with incommensurate spin-
density wave states. These observations open several
questions: is the small ordered moment indicative of rem-
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nant fluctuations well below TN? is the itinerant wAFM
phase the result of Fermi surface nesting, and if so, why
is it commensurate? is the CW moment actually a Ti lo-
cal moment as is needed for the standard spin fluctuation
(Curie-Weiss) picture, or does it arise from interaction of
longer range magnetic fluctuations as suggested initially
by Moriya and collaborators and elaborated on occasion-
ally since, such as to multiorbital models by Konno.12

The small moment places the system near a quantum
critical point (QCP). As for all weak magnets, it is antic-
ipated that the magnetic ground state is strongly affected
by spin fluctuations.

The theory of the unusual properties of a wAFM
near the QCP has a substantial history, reviewed by
Löhneysen et al.13 Moriya’s self-consistent renormaliza-
tion (SCR) theory of spin fluctuations14 provides a use-
ful guide for our purposes, as it ties the small |~q| (for

wavevectors ~Q+~q near the ordering wavevector ~Q), small
ω behavior to averages of various band structure and
Fermi surface (FS) quantities, thus bringing the focus to
the geometry, topology, and velocity field of the FS. Near
the Neèl point, the interaction of temporal and spatial
fluctuations around the non-magnetic state are treated
in a self-consistent random phase approximation man-
ner, renormalizing the FS averages that characterize the
fluctuations.

TiAu presents one distinctive feature in its nonmag-
netic electronic structure: an extremely sharp peak in
the density of states N(E) at the Fermi level,9,15 arising
from two closely spaced van Hove singularities.15 Taken
together with the exchange interaction, this large value
of N(EF ) at the Fermi level EF ensures a (Stoner) mag-
netic instability, usually manifest as a FM or wFM phase.
The wAFM ground state requires a mechanism for se-
lecting the AFM wavevector as well as avoiding the FM
state. Such wavevectors in metals are almost invariably
linked to the topology of the FS, in terms of a nest-
ing wavevector that corresponds to a spin density wave
(SDW) wavevector. Svanidze et al. suggested that the

FS favors ordering at 2
3
~QAFM versus the observed order-

ing at ~QAFM .

In previous work15 it was pointed out that “mirrored

van Hove singularities” separated by ~Q lead to a small |~q|,
small ω behavior of the antiferromagnetic susceptibility

χ( ~Q+ ~q, ω) that is identical in form to that of the ferro-

magnetic ~Q = 0 case. Without mirroring, e.g. with vHs
rotated with respect to each other, the AFM susceptibil-
ity near criticality has the form obtained by Moriya (see
the Appendix). The Fermi surface nesting function ξ(q),
which measures the phase space for scattering through
wavevector q from the FS to a copy of the FS displaced
by q, is given by (EF=0)

ξq =
∑
k

δ(εk)δ(εk+q)

=
Ω

(2π)3

∫
L

dLk

|~vk × ~vk+q|
(1)

The second form enables the interpretation as the inte-
gral over the line of intersection of the undisplaced FS
and another FS displaced by q, weighted by the recip-
rocal of the cross product of the two velocities. Large
contributions arise from (i) regions of phase space with
aligned or antialigned velocities, the classic FS nesting,
or (ii) regions where one, or even better both, velocities
are small, as at vHs. This latter case becomes relevant
at the vHs of TiAu, where the large masses result in
larger regions of small velocities than if the masses were
small. Evaluation of this function for TiAu led to max-
ima only around the vHs spanning wavevectors, not at
any Fermi surface nesting vectors.15 The critical fluctua-
tions arise from scattering between small vHs regions of
the FS rather than large regions of FS nesting.

In this paper we present first principles studies, with
methods described in Sec. II, of the electronic structure
and magnetic tendencies of TiAu, with the goal of il-
luminating behavior associated with its weak itinerant
antiferromagnetism. Svanidze et al.9 provided several
characteristics of the electronic structure and magnetic
energies of TiAu. In Sec. III the electronic structure
and especially the van Hove singularities near the Fermi
level are studied, along with the tendencies for FM versus
AFM ordering in the stoichiometric compound. These re-
sults, and previous work, are expanded on by considering
in Sec. IV electron and hole doping with a virtual crys-
tal approximation, and also fixed spin moment study to
quantify the ferromagnetic instability. A method of ac-
counting for spin fluctuations is applied in Sec. V, and a
Discussion and Summary in Sec. VI completes the paper.

II. CRYSTALLOGRAPHIC STRUCTURE;
THEORETICAL METHODS

Orthorhombic TiAu crystallizes in space group Pmma
(#51), pictured in Fig. 1. At 5 K, neutron diffraction
provides lattice parameters9 a = 4.622 Å, b = 2.915 Å, c
= 4.897 Å. The atom positions are given in the caption
to Fig. 1 The shortest distance between two Ti atoms is

2.91 Å along the ~b axis. However, the distance between
Ti atoms in the ~a−~c plane is less that 2% larger, at 2.96
Å, so a Ti-chain picture is not appropriate. For the hcp
structure of elemental Ti the nearest neighbor distance
is similar, 2.95 Å, indicating that direct 3d Ti-Ti ex-
change coupling from orbital overlap between near neigh-
bors is expected in addition to the conventional RKKY
(Ruderman-Kittel-Kasuya-Yoshida) coupling of Ti mo-
ments to more distant neighbors through the itinerant
electronic system.

Using the full-potential local-orbital minimum-basis
code (FPLO16), we have carried out density functional
theory (DFT) calculations on nonmagnetic TiAu and to
situations that illuminate magnetism-related behavior.
Due to the fine electronic structure, we have compared
results obtained using the local density approximation
(LDA) of Perdew and Wang17 to those obtained from the
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generalized gradient approximation (GGA) of Perdew,
Burke, Ernzerhof,18 both in the scalar relativistic limit.
Au 5d, 6s, 6p states and Ti 3d, 4s, 4p states were treated
as the valence states, orthogonalized to the tightly bound
core states. Density convergence to an accuracy of 10−6

was the conservative choice for the convergence condi-
tion, since in most cases the energy converges faster than
the density. Most of the self-consistency calculations in
this work were performed on a 20× 20× 20 k-mesh. The
density of states in Fig. 2 was obtained from a 60×60×60
k-mesh, corresponding to 29,791 points in the irreducible
wedge.

In weak magnets but also in select other cases, such
as the ferro-pnictides and -chalcogenides that become
high temperature superconductors when doped, it has
been found that the commonly used semilocal exchange-
correlation functionals overestimate the ordered moment.
Moreover, one of the differences between GGA and LDA
is that GGA enhances the exchange and usually gives
larger moments than does LDA. Since the overestimate
of exchange effects is less for LDA than for GGA, we
present mostly results based on LDA, commenting in
places on what would be obtained with GGA. As already
reported9 and as will be discussed here, these functionals
do overestimate the ordered moment in TiAu, GGA by
considerably more than LDA. For this reason, we try to
account for this overestimate by applying the procedure
suggested by Ortenzi et al.,19 as discussed in Sec. V.

III. ANALYSIS OF RESULTS

A. Band dispersion and density of states

The non-magnetic band structure and atom-projected
density of states (pDOS) and total DOS N(E) of TiAu
are displayed in Fig. 2. The DOS was presented ear-
lier by Svanidze et al.9 and is consistent with our result
(which we have converged more highly due to the extreme
fine structure). The bands along symmetry lines seem
conventional for a metal, with several Fermi level (EF )
crossings. Near-degeneracy of four bands very near EF at
R is uncommon but has no apparent impact. The bands
below and at EF have low (0.1-0.3 eV) dispersion along
Γ−Z, reflecting some degree of quasi-two-dimensionality

in the ~a −~b plane. However, there is enough dispersion
across EF that the Fermi surfaces (FSs) are three dimen-
sional.

The DOS is prosaic for the most part, with expected
features being present. The Au 5d bands are completely
filled, centered 5 eV below EF and 3 eV wide, so they
are inert for magnetic and low energy behavior. It might
therefore be concluded that Au simply provides only its
single s electron to the itinerant bands much as an alkali
atom would do. We checked this simple picture by re-
placing Au with K, keeping the structure fixed. The Ti
3d bands (see below) remain at the same filling but the
dispersion and FSs are substantially different. Therefore

FIG. 2: Upper panel: The non-magnetic band structure
shows low dispersion along Γ − Z. The vHs does not lie on
a high symmetry line. Lower panel: The total and atom-
projected density of states (DOS), showing that the states
s from -7 eV to -2 eV arise from Au 5d orbitals, whereas
the bands from -2 eV to 3 eV have Ti 3d character. In-
sert: the narrow and high peak in the DOS, with its lower
edge lying 4 meV above the Fermi level. Notation: Γ, X,
Y, and Z have their conventional meanings. S=(π/a, π/b, 0)
U=(π/a, 0, π/c), R=(π/a, π/b, π/c), and T=(0, π/b, π/c).

Au does play a specific role in determining the properties
of TiAu.

The Fermi level lies within the 3 eV wide Ti 3d bands,
which are separated from the Au 5d bands by a pseu-
dogap centered 2.5 eV below the Fermi level. The pseu-
dogap region -3 eV to -1.5 eV contains roughly 0.3 elec-
trons/f.u. At the broadest level, Au provides an itinerant
electron gas, within which Ti with its open 3d shell re-
sides.

The one remarkable aspect of this electronic structure
is an extremely sharp and narrow DOS peak that is cen-
tered a few meV above the Fermi energy. Such a narrow
peak requires two vHs lying nearby in energy, very sim-
ilar to what occurs in the new highest temperature su-
perconductor H3S.20 There are in fact several vHs within
35 meV of EF , as discussed in the next subsection. The
Fermi level DOS is N(EF )=2.41 states/eV per spin and



4

per f.u. (These units will be used for N(E) throughout,
for reasons to be explained in Sec. IV.B.) Thus the to-
tal DOS for both spins is 9.8 states/eV. This large value
of N(EF ) is very similar to the per-Ti value in TiBe2,
which also has a strong and narrow peak21 in N(E) at
EF and is also shows weak magnetic order. Various types
of electronic-driven instabilities are suggested by such
peaks.

Possible broken symmetries include (i) a Peierls insta-
bility, in which a lattice distortion splits the DOS peak
and stabilizes the system by lowering N(EF ), (ii) a su-
perconducting instability, which is strongly encouraged
by large N(EF ) and gaps the Fermi surface in the super-
conducting state, (iii) a ferromagnetic instability, which
provides an exchange splitting of majority and minority
states and moves the DOS peak in each spin channel away
from the Fermi level, and (iv) an excitonic state involv-
ing pairing across two or more vHs. Instabilities such as
charge or orbital order might also be considered. Experi-
mental data indicates9 that it is the magnetic instability
that “wins” this competition to stabilize the system by
splitting the DOS peak away from EF . It is however an
AFM phase rather than the FM state that is observed.
The underlying mechanism, critical scattering at very low
energy and for the wavevector spanning the participating
vHs, has been proposed and supported elsewhere.15

B. van Hove singularities

The DOS peak results from two nearby vHs: vHs1 at
4 meV and vHs2 at 6 meV, relative to EF . There are
four more nearby vHs, at 15, 22, 28, and 34 meV. Most
of these are evident in the inset of Fig. 2, where N(E) is
shown in the region near EF . All lie where Ti 3d orbitals
dominate, and the orbital characters of the vHs are a sim-
ilar admixture. vHs1, nearest to EF and most responsible
for the large value of N(EF ), is discussed in detail below,
since it has been proposed that scattering between these
mirrored vHs drive the AFM ordering.15 The vHs at 15
meV lies at (±0.22π/a, 0, 0), giving only a pair of sym-
metry related points. At 32 meV the vHs lies in a sym-
metry plane giving four points (0,±0.16π/b,±0.36π/c).
The corresponding constant energy surfaces are pictured
in Fig. 3. These surfaces, like the Fermi surface which is
much like that for vHs1, are large and multisheeted, with
substantial areas of the largest sheets comprised of states
with small velocity, less than 107 cm/s and extending to
vanishingly small values at the vHs singularities. The
maximum velocity on these sheets is 7.5×107 cm/s.

The vHs1 point nearest EF is of the M1 type with two
positive and one negative mass, with energy dispersion
relative to the vHs

εk =
k2x

2mx
−

k2y
2my

+
k2z

2mz
. (2)

M1 and M2 vHs display two-touching-cone constant
energy surfaces at the vHs energies. These diaboli-

cal points, so named by Berry22 in a somewhat differ-
ent context, are visible in the constant energy surface
plots pictured in Fig. 3. The position of this vHs1 is
~k0 = (0, 0.45πb , 0.49πc ) and symmetry related points, be-
ing consistent with the Fermi level crossings in Fig. 2
that occur near (0, b

∗

2 , 0) and (0, 0, c
∗

2 ). The narrow band
along Y-Γ-Z in Fig. 2 provides part of the low velocity
surfaces but does not in itself give any hint of such a
sharp and narrow peak in N(E).

Due to the eight symmetry operations of space group
Pmma, there are four vHs in the Brillouin zone, var-
ious of which are connected by the spanning vectors
~QvHs = (0,±0.9πb ,±0.98πc ). The effective masses at
vHs1 are surprisingly heavy for an intermetallic Ti-Au
compound of this type, mx = 21me, my = −4.5me,
mz = 4.9me, thus are consistent with a high DOS peak.
The value of N(EvHs) and thermodynamic properties are
related to the thermal mass mth ≡ |mxmymz|1/3 = 7.7
me, a remarkably large value for an itinerant, presum-
ably weakly correlated, intermetallic compound. The
peak height arises from the heavy masses and the fact
that the band remains relatively flat in the vHs region,
providing a large phase space at that energy. Scattering
between these regions are responsible for the maxima15

in the nesting function ξ~q, though the maxima are not
nearly as impressive as FS nesting can produce, some-
times leading to a superconducting instability.23

C. Magnetic instability

We have studied both FM and AFM phases, the lat-

ter with AFM wavevector ~QAFM = (0, πb , 0). The FM
moment on Ti is calculated to be 0.84 µB within GGA,
consistent with previous findings.9 Within LDA, the mo-
ment is 0.39µB , reflecting the delicacy of the moment in
TiAu to the exchange correlation functional. As men-
tioned in Sec. II, a known feature of GGA versus LDA is
to enhance and often overestimate magnetic tendencies.
For this reason we focus on the LDA results, from which
we also consider further downward renormalization of the
ordered moment in Sec. V.

We find (using LDA) that AFM alignment at ~QAFM is
energetically favored over FM alignment by 3 meV, and
over the nonmagnetic state by 11 meV, per Ti atom. The
AFM moment is calculated to be 0.40 µB/Ti within the
Ti sphere similar to that for FM alignment, and not really
consistent with an S= 1

2 moment even considering reduc-
tion by the environment. Magnetism in TiAu is better
pictured as itinerant rather than localized. The experi-
mental value of the ordered moment is however only 0.15
µB/Ti, a factor of almost three smaller. As mentioned
earlier, for other weak magnets DFT predictions using
a semi-local exchange functional have overestimated the
magnetic moment. We return to these questions in Sec.
V.
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FIG. 3: The constant energy surfaces at the three M1 or
M2 vHs discussed in the text. The energies relative to EF
are: top, 4 meV; middle, 15 meV, and bottom, 34 meV. The
coordinate system has been rotated in the middle panel so
the double-cone surfaces can be seen, and the Γ point lies in
the center of each figure. The velocities range from zero to
∼7.5×107 cm/s, with large (blue) sections having very low
velocities, finally extending to zero at the singularities.

IV. VCA AND FSM CALCULATIONS

A. Virtual Crystal Approximation

Near QCPs, little understood processes arise that im-
pact properties in peculiar ways.13 We consider in this
section changes with doping level x, confined to the mean
field level. We apply the virtual crystal approximation
(VCA) for the alloy electronic structure. In this treat-
ment, for hole doping an average Ti-Sc nucleus with
charge 22 − x is considered, for electron doping an av-
erage Ti-V nucleus with charge 22 + x is chosen. Disor-
der is neglected but its effects are often small for doping
with neighboring elements in intermetallic alloys, because
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FIG. 4: Ferromagnetic tendency versus doping (x) by holes
(Sc) and electrons (V), from the energy difference ∆E(x) =
Enm −EFM between nonmagnetic and FM states. Blue dots
(from LDA) do not account for spin fluctuations, while red
dots take spin fluctuations into account by the Ortenzi pro-
cedure (see text). The peak corresponds to the peak in the
density of states.

the quantum behavior of electrons tends also to aver-
age over small local differences. Importantly, in VCA
self-consistency of the addition (or depletion) of charge
is taken into account, unlike the simpler rigid band ap-
proximation in which the Fermi level is simply moved to
simulate the alloy’s band structure.

The variation of ferromagnetic moment versus doping
is summarized by the round (blue) symbols in Fig. 4.
The moment decreases with hole doping, disappearing at
a hole doping near 0.25. For electron doping, the LDA
ordered moment increases initially as EF (x) moves across
the vHs peak in N(E) at x = 0.06. Surprisingly, it contin-
ues to increase beyond the DOS peak to x=0.25, where-
upon it dives rapidly to zero near x=0.40.

Some asymmetry around EF is expected because the
Fermi level is situated somewhat below the peak inN(E).
The states in and around both vHs giving the peak are
Ti d states, and the DOS is not so far from symmetric
around the midpoint of the N(E) peak to a distance of a
few tenths of eV. However, the moment versus chemical
potential is asymmetric. The other noteworthy aspect is
the rapid drop of moment at each end (especially the elec-
tron doping end), seemingly approximating a first-order
phase boundary versus the expected second-order (con-
tinuous) behavior in a mean field treatment. In these
regions achieving self-consistency becomes increasingly
problematic, so we have not attempted to resolve the
first- versus second-order issue. For x=0.35, for example,
the Fermi level lies at a sharp peak for one spin direction
and a valley for the other spin direction; such a situation
may complicate self-consistency. Also, the sharp drop in
N(E) on either side of the peak may be responsible.

The predictions from VCA then are that the dop-
ing concentrations corresponding to the quantum critical
points, supposing FM order, are given in Fig. 4: 25%
for hole doping, 40% for electron doping. The electronic
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structure and therefore the critical doping concentrations
may be different for AFM order. The effect of spin fluc-
tuations on these critical concentrations is the topic of
Sec. V.

B. Fixed Spin Moment Study

The DFT-based theory of the spin susceptibility24

and of the ferromagnetic instability25,27,28 formalizes the
Stoner model, where an interelectron exchange inter-
action I encourages FM splitting of bands resisted by
the increase in band (“kinetic”) energy entailed by the
splitting. The DFT prescription24 for I was studied by
Janak25 and calculated for elemental transition metals.

Fixed spin moment calculations (FSM), wherein the
electronic system is relaxed within DFT subject to the
constraint of a chosen moment M , not only provides con-
firmation of the FM tendencies but conventionally en-
ables identification of the DFT spin interaction (Stoner)
constant I(~q = 0) = I for the functional being used. See
the Appendix for the definition of I(~q). FSM calcula-
tions were carried out to obtain the energy as a function
of magnetic moment

E(M) = E(0) +
1

2
χ−1M2 +

1

4
βM4 + ... (3)

From the relation d2E/dM2 = χ−1 the Stoner enhance-
ment of susceptibility S due to the exchange interaction
is conventionally obtained according to

χ =
χ0

1− IN(EF )
≡ Sχ0, (4)

where the bare susceptibility per f.u. is χ0 = 2µ2
BN(EF )

in terms of the unpolarized N(E). We remind that N(E)
always refers to the DOS per spin and per f.u. (i.e per
Ti atom). In this form I has the interpretation as the
Ti atomic value. Various conventions have been used in
the literature. Vosko and Perdew24 and Janak25 used the
DOS for both spins multiplying I in Eq. 4, so their values
of I must be doubled when comparing with values for the
convention used here, which was also used by Andersen
et al.28 and Krasko29.

The LDA FSM results are shown in Fig. 5. For un-
doped TiAu, the LDA value of magnetic moment at the
minimum of energy is equal to the moment from the FM
calculation (M = 0.39µB) as it must be. However, for
such strong structure in N(E) near EF the small M limit
of various quantities, including the expansions of E(M),
requires calculating and fitting at very small values of
M , less than 0.02µB , as we show below. Such calcula-
tions are challenging and, as we argue below, unneces-
sary. Another consequence of the vHs-induced energy
variation is that the constant (or slowly varying) N(E)
expression27 for the Ti moment M = N(EF )∆ex is re-
placed by M = N̄(M)∆ex, where ∆ex = EF,↑ − EF,↓
is the band exchange splitting and N̄(M) is the average
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FIG. 5: Fixed spin moment energy of TiAu as a function of
moment M at various hole dopings x (legend is at the right),
using the LDA functional.

FIG. 6: The density of states N̄(M) averaged over the range
EF,↓ to EF,↑ contributing to moment M , versus Ti moment
M . The inset shows the fine structure at small M arising
from the vHs.

DOS over this range of splitting. Note that the Fermi
energies for up and down spins, EF,↑ and EF,↓, are no
longer equally displaced from the M=0 Fermi level.

In Fig. 6 this average DOS N̄(M) is displayed, showing
a peak rise by 2% at M=0.03µB due to the DOS peak
above EF , followed by a precipitous drop to half its orig-
inal value for M=0.6µB and larger. Since the slope of
E[M ] must be negative28,29 as well as the Stoner crite-
rion (above) being satisfied, to promote a FM instability,
this curve indicates an instability for any value of I in the
range 0.4 eV ≤ I ≤ 0.8 eV, corresponding to (imposed)
moments of 0.03≤ M ≤ 0.9. The energy minimum de-
termines the most favored moment.

As mentioned, the curvature obtained from the cus-
tomary FSM plot for TiAu, the x=0 curve on the scale
of Fig. 5, does not allow a reliable estimate of χ−1 and
hence the Stoner enhancement in the small M limit, and
thus not of I itself, without a challenging calculation for
tiny moments. However, I is determined by derivatives
of the exchange-correlation functional and wavefunction
character at the Fermi level,25 and should be slowly vary-
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ing within energy regions dominated by Ti 3d character,
as is the case we are exploring.

As the hole doping x increases the corresponding Fermi
level moves away from the DOS peak, making the fine
structure progressively less relevant. We calculate the
FM instability to disappear at x = xcr=0.25, where
the Fermi level is 73 meV lower than for TiAu (x=0),
well away from the vHs. At this Stoner critical point,
I = 1/N(EF , xcr) without any need for curve fitting.
Here N(EF , xcr)=1.35 states/(eV spin f.u.) gives I=0.74
eV, similar to Janak’s value for elemental Ti after ac-
counting for his factor of two convention. This value
then gives the Stoner product for TiAu of IN(EF , x = 0)
=1.8, reflecting a very strong FM instability. Nonethe-
less, experiment shows that AFM alignment wins the
competition for the ground state, as also confirmed by
our LDA calculations.

V. ACCOUNTING FOR SPIN FLUCTUATIONS

The overestimation of magnetic moment by DFT func-
tionals is understood from the viewpoint that they do not
take account of the type of spin fluctuations that must be
occurring in weak magnets such as TiAu. Effects of spin
fluctuations can be modeled from a Landau viewpoint,
leading to a suppression of ordering tendency and of the
ordered moment in DFT.

Moriya’s self-consistent renormalization (SCR)
theory10,11 of spin fluctuations provides the modern
theory of weak magnetism due largely to the fact that
(i) the C-W behavior of χ(q = 0) is not explained by
Stoner theory, and (ii) RPA theory requires modification
at higher temperatures. Moriya’s SCR theory not only
resolved these difficulties, but it also predicted some
observed quantum critical behavior of wFMs as well,
for example, 1/χQ → T 3/2 and Cm/T →∝ T 1/2 for a
3D AFM system.14 In a wAFM system, since the most
important effect of the spin fluctuations comes from the

small q (relative to the ordering ~Q vector) and small

ω region, the dynamical susceptibility χ( ~Q + ~q, ω) is
expanded as described in the Appendix. The coefficients
depend on the particular band structure, and unfortu-
nately Moriya’s theory30 is only semi-quantitative as it
depends on ill-defined cutoffs.

Ortenzi et al. suggested19 that a simple magnetic
renormalization procedure can account for the fluctua-
tions, appearing as a scaling factor s, 0 < s < 1, of
the spin-dependent part of the exchange correlation func-
tional. The scaling factor s is not easy to determine from
first principles, but it can be fixed by tuning it to repro-
duce the experimental moment. This method is imple-
mented in the WIEN2k code.31 We find that with a scale
factor s = 0.55, the LDA magnetic moment is reduced to
the experimental value of 0.15µB/Ti. The corresponding
AFM electronic structure can be found in Ref. 15.

With the Ortenzi spin fluctuation scaling, the mag-
netic tendency is comparably reduced. Figure 4 provides

a comparison of the FM moment when alloying of this
exchange scaled theory within LDA. For s=0.55, mag-
netism disappears at a hole doping of 0.05 and an elec-
tron doping of 0.13, factors of five and three, respectively,
smaller than the LDA results. It will be revealing to
learn how accurate these predictions for FM TiAu com-
pare with the critical doping levels for the observed AFM
phase, if alloying to the critical points can be achieved.

VI. DISCUSSION AND SUMMARY

The electronic structure and magnetic tendencies of
the weak antiferromagnet TiAu have been studied using
ab initio methods. The dominant feature of the paramag-
netic phase is a very sharp and narrow peak in the DOS
at the Fermi level, arising from a van Hove singularity
involving unexpectedly large masses for an intermetallic
Ti-Au compound. This peak provides a strong Stoner
instability to ferromagnetism, yet the observed magnetic
order is simple commensurate antiferromagnetic order,
~QAFM = (0, πb , 0), a result that is upheld by DFT calcu-
lations.

Both FM and AFM magnetically ordered states were
obtained and studied, with the AFM state lying lower
in energy consistent with observation. Within LDA the
ordered magnetic moment is calculated to be 2.7 times
larger than found in neutron diffraction, so the phe-
nomenological spin fluctuation reduction of Ortenzi et
al. was applied. Why is AFM order favored over FM?
Our previous work15 provided evidence that mirrored
vHs provide enhanced low q, small ω fluctuations that
make AFM more favorable than otherwise, and that the
AFM phase is further stabilized by the exchange splitting
of flat bands above and below the Fermi level along two
symmetry lines in the AFM Brillouin zone.

The response of the nonmagnetic system to both hole
and electron doping was studied within the virtual crystal
approximation for the FM phase, using both LDA and
the Ortenzi renormalization. Analysis of the VCA re-
sults allow identification of the Stoner exchange constant
I=0.74 eV. Fixed spin moment studies were provided to
provide a better understanding of the interplay between
the van Hove peak and the stoner instability. The Ortenzi
rescaling by 45% to account phenomenologically for spin
fluctuations reduces the predicted FM quantum critical
points (critical doping concentrations in Fig. 4) severely,
by a factor of 3-5. The critical dopings for the observed
AFM order may differ, so experimental doping studies
will be of interest. This system could provide an impor-
tant platform for further exploration of AFM quantum
critical points.
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VIII. APPENDIX

Here we review some of the formalism underlying spin
fluctuation theory that is Fermi surface related. As we
quantify below, nonmagnetic TiAu has a very strong fer-
romagnetic (FM) instability at q=0 and a few possible
nesting wavevectors for spin density wave order,9 yet the
observed magnetic order is simple AFM with wavevec-

tor ~QAFM = ~b∗/2 at a zone boundary. The likelihood of
competing instabilities leads us to review some of the for-
malism of the treatment of spin fluctuations in the neigh-
borhood of the transition temperature, for low frequen-
cies ω and for wavelengths near the ordering wavevector.

The quantity of interest is the magnetic susceptibility
χ, with the objective of connecting to material-specific in-
formation from density functional theory (DFT). Follow-
ing the formulation of Janak25 for the interacting static,
macroscopic susceptibility within DFT and the extension
by Gross et al.26 to the dynamic, microscopic counter-
part χ(q, ω), the expression appearing in random phase
approximation form but valid more generally, is

χ(q, ω) =
χo(q, ω)

1− I(q)χo(q, ω)
,

I(q) =
1

2
F.T.

〈
δ2Exc[n,m]

δm(r)δm(r′)

〉
q

χ−1(q, ω) = χ−1o (q, ω)− I(q), (5)

here F.T. indicates the Fourier transform. The vector
notation on vectors will be dropped here for simplicity
except when needed for emphasis, and we take h̄=1. The
q=0 expression can be found in Janak’s paper.25 A for-
mally exact expression is similar, but requires quanti-
ties to be matrix elements in reciprocal lattice vectors
and a frequency ω dependent exchange-correlation “in-
teraction” I(q, ω). For the small ω of interest in this
paper, the frequency dependence of I(q, ω) can be omit-
ted. Here Exc[n,m] is the exchange-correlation energy
function of charge density n(r) and magnetization den-
sity m(r), and χo is the non-interacting Kohn-Sham (viz.
Lindhard form) susceptibility.

The Kohn-Sham susceptibility is (h̄=1)

χo(q, ω) =
∑
k,m,n

|Mk,m;k+q,n|2
fk,n − fk+q,m

εk,n − εk+q,m − ω − iη
,(6)

in terms of the Kohn-Sham eigenvalues εkn, and η is a
positive infinitesimal. Mk,m;k+q,n is the matrix element

of exp(iq · r) between Bloch states. For crystals the sus-
ceptibilities become matrices in reciprocal lattice vectors
and the resulting “local field effects” can be important
for quantitative detail, but our treatment will not extend
to that level.
FM case. The small q, ω expansion (for orthorhombic

symmetry) is

χo(q, ω) = χo +
∑
j

Ajq
2
j + i

〈
1

q̂ · v

〉
FS

ω

q
, (7)

the last expression being appropriate for ω < vF q. The
expressions for the coefficients have been presented in the
literature10,21

Aj = − 1

12

d

dε
[N(ε)〈∂vk,j

∂kj
〉]

=
1

48πe2
(
2π

aj
)2
d2Ω2

p,j(EF )

dE2
F

, (8)

where ~vk = ∇kεk is the band velocity. The second ex-
pression for Aj incorporates the Drude plasma energy

Ω2
p,j(EF ) = 4πe2N(EF )v2j (EF ) (9)

in terms of the mean square Fermi surface velocity
v2j (EF ).

The first expression for Aj is instructive when EF is
near the van Hove singularity EvHs. In that case the
second derivatives are just the vHs effective masses, and
for the positioning of EF in TiAu (see Sec. IV), N(ε) ∝
−m3/2

th (EvHs−ε)1/2. Then the contribution from the vHs
region is

AvHsj ∝ − 1

24

m
3/2
th

mj

1√
EvHs − EF

, (10)

which becomes divergent at the vHs.

AFM case, ~Q > 0. With spatial fluctuations at q +Q
around nonzero Q not being long wavelength, the expres-
sions for the low energy, small q coefficients are not all
tied to the Fermi surface, so they are not as intuitive as
for the FM Q=0 case. At ω=0 the susceptibility is real
and given for small q by (for ease in interpretation, the
matrix elements are omitted)

χo(Q+ q, ω = 0) = χo(Q)

+
∑
k

[
δ(εk+Q)

εkn − εk+Q,m
+

fkn − fk+Q,m
(εkn − εk+Q,m)2

]
~vk · ~q. (11)

The first term is due to the change in band occupation
with q, being a sum over over the FS of the inverse of

occupied eigenvalues ~Q away from the FS, and is likely
to vary slowly with Q unless it is small. The second term
arises from the change with q in the energy denomina-
tor. Since it involves the energy difference squared, it is

more likely to have strong Q dependence when ~Q is near
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a nesting wavevector. Expressions for the second order
terms in q2, qω, and ω2 are involved and unenlightening.

For small ω the imaginary part becomes

χ′′o(Q+ q, ω) = πωξ(Q)− π
∑
k

δ(εk)δ(εk+Q)vk+Q · q

ξ(Q) =
∑
k

δ(εk)δ(εk+Q). (12)

ξ(Q) is the FS nesting function that measures the phase
space available for scattering from the FS at k to the
FS at k + Q, most often discussed in phonon scattering
processes. Evidently small ω processes are focused into
regions of nesting. ξ(q) is evaluated and discussed in
Ref. 15.
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