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Various matrix representations are used to analyze the propagation of electromagnetic waves
through stratified (layered) media or cascaded circuit networks. These include ABCD matrices,
scattering matrices, impedance matrices and hybrid matrices. A less known network representation
is the wave matrix. In this work, a brief review of wave matrices is presented, and their relation
to other network representations derived. Wave matrices are found for common interfaces such as
boundaries between dielectric media, dielectric slabs, as well as electric, magnetic, and magneto-
electric sheet boundaries (generalized sheet transition conditions). These results are then used to
develop an analytical synthesis approach for cascaded metasurfaces: metasurfaces consisting of a
cascade of sheets separated by dielectric spacers. This is in contrast to earlier works which relied
on numerical solvers or optimization methods to design such structures. A few design examples are
presented to demonstrate the utility of the synthesis approach.

I. INTRODUCTION

In recent years, metasurfaces with electric and mag-
netic responses have gained significant attention [1, 2]. In
particular, their ability to manipulate the phase and po-
larization of wavefronts across subwavelength distances
has sparked strong interest in the engineering and physics
communities. It has been shown that by cascading
anisotropic sheets with electric responses one can realize
arbitrary (passive and reciprocal) bianisotropic metasur-
faces. A systematic design method was developed using
an ABCD matrix formalism in [3–5].

The propagation of electromagnetic waves along cas-
caded structures or in multilayered media has a rich his-
tory, and numerous methods have been proposed for
analytically and numerically calculating reflection and
transmission coefficients. In general, a linear medium
can exhibit a bianisotropic response: electric, magnetic,
and magneto-electric responses. This type of medium
has received considerable attention given its potential to
control polarization and phase. Various techniques have
been used to solve for the reflection and transmission co-
efficients of a bianisotropic medium [6–8].

In optics, a 2 × 2 matrix representation was devel-
oped by Abeles to describe light propagation in strati-
fied isotropic media. Later, this work was extended to
layered anisotropic media and a generalized 4 × 4 form
of Abeles 2 × 2 matrices was developed [9–11]. In this
formulation, reflections are taken into account. Simi-
larly, Jones calculus is a powerful tool which describes
the polarization state of light with a vector and the op-
eration of a device with a 2× 2 matrix. The total Jones
matrix of cascaded devices is found by multiplying the
matrices of the cascaded elements [12]. Alternatively,
the polarization properties of light can be described by
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Stokes parameters and the device transformation matrix
by Muller Matrices, which describes the depolarization of
the device. Muller matrices are 4× 4 extensions of Jones
matrices. As with Jones matrices, the Muller matrix of a
cascade of optical elements is a product of the matrices
representing the elements. The main goal of polarimetry
is to extract the 16 elements of the Muller matrix from
experimental data [13].

In microwave engineering, network parameters such as
Transfer matrices (ABCD matrices), Impedance matrices
(Z-matrices), Scattering matrices, and Hybrid matrices
are used by researchers to analyze cascaded electromag-
netic structures. S-matrices are appealing since they re-
late scattered and incident fields to network parameters.
The drawback of using S-matrices is that the scattering
matrices of cascaded networks cannot be simply multi-
plied to find the overall response. On the other hand,
ABCD matrices can be multiplied together to find the
overall ABCD matrix of a cascaded network. However,
ABCD matrices relate network parameters to total fields,
not scattered fields. Wave matrices (WMs) are yet an-
other approach to analyzing cascaded structures. These
matrices have been employed in the past to analyze mul-
tilayered dielectric media [14]. WMs relate the forward
and backward propagating fields in one region to those
of the next region, and are closely related to S-matrices.
WMs provide the best of both worlds: they relate net-
work parameters to scattered and incident fields, and can
be multiplied together to model cascaded structures. As
a result, they are ideally suited for the synthesis of cas-
caded metasurfaces that realize prescribed S-parameters.

In this work, a brief review of WMs is presented, and
their relation to other matrix representations is derived.
Their utility in the design of cascaded metasurfaces is ex-
plained. The cascaded metasurfaces that will be consid-
ered here consist of patterned metallic sheets separated
by dielectric spacers, as shown in Fig.1. Here, an analytic
technique is developed to design metasurfaces operating
at normal incidence [3–5, 15–18], which can be easily ex-
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tended to oblique incidence [19–21]. It is assumed that
the sheets are made of subwavelength metallic patterns.
Therefore, higher order Floquet modes are bound to the
sheets. As a result, evanescent wave interaction between
the sheets can be neglected if the thickness of the dielec-
tric spacers is larger than periodicity of metallic patterns.
Moreover, the subwavelength texturing of the sheets al-
lows the sheets to be modeled as homogenized impedance
boundary conditions [5].

First, wave matrices are found for elements comprising
typical metasurfaces [3–5, 15–18]. Once the WMs of the
constituent elements are determined, the cascaded meta-
surfaces can be analyzed. In the analysis, closed-form
expressions are derived for the electric sheet admittances
needed to realize a targeted scattering matrix. Previ-
ous works focused on deriving expressions for isotropic
admittances that realize a given phase delay, for normal
[3, 4] or oblique [20, 21] incidence. The WM formalism
presented here allows one to solve for the tensor sheet ad-
mittances that realize a given bianisotropic response. It
can be shown that the formulation reduces to previously
derived expressions for isotropic admittances [3, 4]. Using
WMs also results in compact expressions for the tensor
sheet admittances. This is in contrast to the impedance
matrix approach [17].

E
1

+ -

x

yz

E
1

-

E
n+1

-
E

n+1

+

FIG. 1: A metasurface made of cascaded patterned
metallic sheets. The periodic structures on the sheets
are subwavelength enough to treat the sheets as homoge-
nized boundary condition. The total structure is a four-
port network that can be excited by x and y polarized

waves from region 1 and n+ 1.

II. WAVE MATRICES AND THEIR RELATION
TO OTHER NETWORK REPRESENTATIONS

Let us consider the cascaded structure depicted in Fig.
2, consisting of sheet admittances (patterned metallic

FIG. 2: Side view of a cascaded structure consisting of
dielectric spacers and n sheet admittances. Total electric
field in each region is the sum of forward and backward
propagating fields. E+

i and E−i represent the fields at the
leftmost boundary of region i.

sheets) and dielectric spacers. It is representative of
many cascaded metasurfaces reported to date [4, 5]. Dif-
ferent matrix approaches have been employed to relate
surface parameters to transmission and reflection coeffi-
cients of such structures. In this work, we use WMs to
analyze the structure shown in Fig.2.

First, let us establish a relation between WMs and
other network representations. Once these relations are
found, any network representation can be converted to
its WM representation. The forward (incident) and back-
ward (reflected) traveling waves in region i is represented
by E+

i = [E+
ix ,E

+
iy]T and E−i = [E−ix ,E

−
iy]T. The ref-

erence plane for E+
i and E−i is located at the leftmost

boundary of region i, except for region 1 where E+
1 and

E−1 are evaluated at the rightmost boundary of region
1 (interface 1). E+

i and E+
i are only functions of the z

coordinate, since the structure has subwavelength peri-
odicity in x-y plane. The corresponding magnetic fields
are,

H+
i =

1

ηi
nE+

i , H−i = − 1

ηi
nE−i , (1)

where n is a 90◦ rotation matrix,

n =

(
0 −1
1 0

)
. (2)

Therefore, the total electric and magnetic fields in region
i are,

Ei = E+
i + E−i ,

Hi = H+
i + H−i =

1

ηi
n(E+

i −E−i ). (3)

The cascaded structure can be treated as a four-port
network terminated by regions 1 and n+1, given that
there are x and y polarizations. A microwave network
representation [22] of a four-port network is a 4× 4 ma-
trix that relates E+

1 , E−1 , E+
n+1, and E−n+1 (Fig.2). For
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example, S-matrices relate the incoming waves to outgo-
ing waves in regions 1 and n + 1 (note the convention
used for the incoming and outgoing waves),(

E−1
E+
n+1

)
=

(
S11 S12

S21 S22

)(
E+

1

E−n+1

)
. (4)

Transfer matrices (ABCD) relate the total electric and
magnetic fields in region 1 to those in region n+ 1,(

E+
1 + E−1

1
η1

n(E+
1 −E−1 )

)
=

(
A B
C D

)(
E+
n+1 + E−n+1

1
ηn+1

n(E+
n+1 −E−n+1)

)
.

(5)
Impedance matrices relate the total electric fields in re-
gions 1 and n+ 1 to the magnetic fields in those regions,(

E+
1 + E−1

E+
n+1 + E−n+1

)
=

(
Z11 Z12

Z21 Z22

)( 1
η1

n(E+
1 −E−1 )

1
ηn+1

n(E+
n+1 −E−n+1)

)
.

(6)
Hybrid matrices, again relate total fields, and are defined
as follows,(

E+
1 + E−1

1
ηn+1

n(E+
n+1 −E−n+1)

)
=

(
H11 H12

H21 H22

)(
1
η1

n(E+
1 −E−1 )

E+
n+1 + E−n+1

)
.

(7)
Finally, Wave matrices relate the forward and backward
propagating fields in region 1 to those in region n+ 1, in
the following manner,(

E+
1

E−1

)
=

(
M11 M12

M21 M22

)(
E+
n+1

E−n+1

)
. (8)

Relations between M and S matrices can be found
by considering two separate excitations from region 1:
E+

1 = Ix = [1 , 0]T and E+
1 = Iy = [0 , 1]T. Under an x

polarized excitation (Ix) from region 1, the electric field
of the reflected wave in region 1 (E−1 ) is equal to Sx11 and
the transmitted field in region n+1 (E+

n+1) is equal to
Sx21,

E−1 = Sx11 =

(
Sxx11
Syx11

)
, E+

n+1 = Sx21 =

(
Sxx21
Syx21

)
. (9)

Similarly, a y polarized excitation (Iy) yields,

E−1 = Sy11 =

(
Sxy11
Syy11

)
, E+

n+1 = Sy21 =

(
Sxy21
Syy21

)
. (10)

Refering to the definition of M in Eq.(8), we can write,(
Ix
Sx11

)
= M

(
Sx21
0

)
,

(
Iy
Sy11

)
= M

(
Sy21
0

)
. (11)

Using the x and y polarized excitations from region n+1
(E−n+1 = Ix and E−n+1 = Iy), we can write,(

0
Sx12

)
= M

(
Sx22
Ix

)
,

(
0

Sy12

)
= M

(
Sy22
Iy

)
. (12)

Combining Eq.(11) and Eq.(12) results in,(
I 0

S11 S12

)
= M

(
S21 S22

0 I

)
, (13)

where,

Sij =
(
Sxij Syij

)
, (14)

and I is the 2× 2 identity matrix. Eq.(13) gives the WM
in terms of the scattering parameters,

M =

(
I 0

S11 S12

)(
S21 S22

0 I

)−1
. (15)

By defining,

S1 =

(
I 0

S11 S12

)
, S2 =

(
S21 S22

0 I

)
, (16)

we can write,

M = S1S−12 . (17)

Conversely, to find the S-matrix in terms of WM,
Eq.(13) can be rearranged as follows,(

I 0
0 0

)
+

(
0 0
I 0

)
S =

(
M11 M12

M21 M22

)

×
((

0 0
0 I

)
+

(
0 I
0 0

)
S
)
, (18)

Solving for the S-matrix in Eq.(18) yields,(
S11 S12

S21 S22

)
=

(
0 M11

−I M21

)−1(
I −M12

0 −M22

)
. (19)

The transfer matrix (ABCD) relates the total electric
and magnetic fields in separate regions. To find M in
terms of the ABCD matrix, we use the following relation
between total fields and forward and backward propagat-
ing fields, (

E+
i

E−i

)
=

1

2

(
I −ηin
I ηin

)(
Ei

Hi

)
. (20)

Substituting Eq.(20) into Eq.(8), for regions 1 and n+ 1
yields,(

A B
C D

)
=

1

2

(
I I
1
η1

n − 1
η1

n

)
M
(

I −ηn+1n
I ηn+1n

)
, (21)

and,

M =
1

2

(
I −η1n
I η1n

)(
A B
C D

)(
I I
1

ηn+1
n − 1

ηn+1
n

)
. (22)

The relationships between WMs and Impedance and
Hybrid matrices are presented in appendix A.
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III. BUILDING BLOCKS

As noted, the cascaded structure in Fig.2 is composed
of sheet boundaries and dielectric spacers. The sheets
can possess electric, magnetic, and magneto-electric re-
sponses, while the spacers can be anisotropic. The ma-

trices M(i)
inter and M(i)

delay will denote WMs for the i-th
interface and dielectric spacer, respectively. According
to the definition of WMs, they relate the forward and
backward propagating fields in region i to those of region
i+ 1. The regions are, in general, separated by dielectric
spacer and interface. Therefore,(

E+
i

E−i

)
= M(i)

delayM
(i)
inter

(
E+
i+1

E−i+1

)
. (23)

The total WM for the cascaded structure shown in Fig.2,
consisting of n− 1 dielectric spacers and n sheet admit-
tances, can be written as,(

E+
1

E−1

)
= M(1)

interM
(2)
delayM

(2)
inter...M

(n)
delayM

(n)
inter

(
E+
n+1

E−n+1

)
.

(24)
Once the WMs of the constituent elements are found,

the WM of the total structure can be computed through

matrix multiplication. M(i)
inter is derived by writing the

boundary conditions at the interfaces. M(i)
delay is found

assuming plane wave propagation within the dielectric
spacers.

A. Interfaces

(a) (b)

FIG. 3: Interface between an isotropic dielectric and an
(a) isotropic dielectric (b) anisotropic dielectric.

Two types of interfaces are shown for the cascaded
metasurface depicted in Fig.2: a sheet and a dielectric
interface. The sheet interface, is represented by a sheet
impedance boundary condition, and the dielectric inter-
face results from the discontinuity in the spacer permit-
tivities.

Let us begin with an isotropic dielectric interface
(see Fig.3a). The medium on the left has an intrinsic
impedance η1, and the one on the right has an impedance

η2. Normal incidence onto the interface is assumed. Con-
tinuity of tangential electric and magnetic fields across
the dielectric interface mandates,

E+
1 + E−1 = E+

2 + E−2 ,

1

η1
nE+

1 −
1

η1
nE−1 =

1

η2
nE+

2 −
1

η2
nE−2 . (25)

Finding E+
1 and E−1 in terms of E+

2 and E−2 results in
(see appendix B for details),(

E+
1

E−1

)
= (t⊗ I)

(
E+

2

E−2

)
, (26)

where,

t =
1

T

(
1 R
R 1

)
, I =

(
1 0
0 1

)
, (27)

and R and T are the Fresnel reflection and transmission
coefficients,

R =
η2 − η1
η2 + η1

, T =
2 η2

η2 + η1
. (28)

The operator ⊗ denotes the Kronecker tensor product,
which is defined as,

An×m ⊗Bp×l =

a11B · · · a1mB
...

. . .
...

an1B · · · anmB


np×ml

. (29)

Similarly, the WM of an anisotropic dielectric interface
(Fig.3b) is given by,

Minter = tx ⊗
(

1 0
0 0

)
+ ty ⊗

(
0 0
0 1

)
, (30)

where,

tu =
1

Tu

(
1 Ru
Ru 1

)
, (31)

with,

Ru =
η2u − η1
η2u + η1

, Tu =
2 η2u

η2u + η1
. (32)

The variable u can be either x or y, depending on the
polarization of the wave.

Now, let’s consider the sheet interface. In general, the
sheet can possess a combination of electric, magnetic,
and magneto-electric responses. The surface parameters
relate electric and magnetic surface currents to the tan-
gential components of electric and magnetic fields [5],(

Jes
Jms

)
=

(
Y χ
Υ Z

)(
Eav

Hav

)
, (33)
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where,

Jes = n(H2 −H1) , Jms = −n(E2 −E1) ,

Eav =
1

2
(E1 + E2) , Hav =

1

2
(H1 + H2) . (34)

Jes and Jms result from the discontinuity in tangential
magnetic and electric fields, where Ei and Hi are the
total tangential fields in region i. We can write the total
fields (Ei, Hi) in Eq.(34) in terms of the forward and
backward traveling fields (E±i ,H±i ) using Eq.(3). Then,
we can find E±1 in terms of E±2 by substituting Eq.(34)
into Eq.(33),(

E+
1

E−1

)
= M

(
E+

2

E−2

)

=

Y
2 + χn

2η1
− I

η1
Y
2 −

χn
2η1

+ I
η1

Υ
2 + Zn

2η1
− n Υ

2 −
Zn
2η1
− n

−1

×

−Y
2 −

χn
2η2
− I

η2
−Y

2 + χn
2η2

+ I
η2

−Υ
2 −

Zn
2η2
− n −Υ

2 + Zn
2η2
− n

E+
2

E−2

 . (35)

Eq.(35) gives the WM for a bianisotropic sheet consist-
ing of electric (Y), magnetic (Z), and magneto-electric
(Υ,χ) responses.

Now let’s consider the simple case where the sheet only
has an electric response given by an admittance Y (Z =
χ = Υ = 0). The WM for such a sheet, placed between
two identical isotropic media of impedance η1 (Fig.4a),
is, (

E+
1

E−1

)
= (I⊗ I +

η1
2

e⊗Y)

(
E+

2

E−2

)
, (36)

where,

e =

(
1 1
−1 −1

)
, Y =

(
Y xx Y xy

Y yx Y yy

)
. (37)

Eq.(36) was derived by simplifying Eq.(35) (For details
see Eq.(108) of appendix B).

Next, let’s consider the case where the electric sheet is
placed between two different isotropic media with wave
impedances η1 and η2 (Fig.4b). Region 1 and 2 are sepa-
rated by both an electric sheet and a dielectric interface.
The total WM can be found by multiplying the WMs of
the electric sheet admittance and the dielectric interface,

Minter = (I⊗ I +
η1
2

e⊗Y)(t⊗ I), (38)

which can also be expressed as,

Minter = (t⊗ I +
η1
2

e⊗Y), (39)

by employing the identity,

(A⊗B)(C⊗D) = (AC)⊗ (BD), (40)

(a) (b)

FIG. 4: An electric sheet admittance placed between re-
gions that are (a) identical (b) different.

and the equality,

e t = e. (41)

If the sheet has a solely magnetic response Z (Y = χ =
Υ = 0), one can simplify Eq.(35) to (see appendix B),

Minter = (t⊗ I +
1

2η2
m⊗ (n Z n)), (42)

with,

m =

(
1 −1
1 −1

)
, Z =

(
Zxx Zxy

Zyx Zyy

)
. (43)

An isotropic sheet is simply a special case of an
anisotropic admittance: Y = YeI and Z = ZmI. One
can show that for an isotropic electric or magnetic sheet
at a dielectric interface, we have,

Me = t +
η1Ys

2
e , Mm = t +

Zm
2η2

m , (44)

where the term t corresponds to the dielectric interface.
When an isotropic sheet at a dielectric interface exhibits
both electric (Ys) and magnetic (Zs) responses, the WM
becomes,

Mem =
1

1− YsZs
4

(
(1 +

YsZs
4

)t +
η1Ys

2
e +

Zs
2η2

m
)
. (45)

The WM for an isotropic interface is a 2×2 matrix, since
the response is polarization independent.

B. A Phase Delay

The phases of the forward and backward propagating
waves vary inside the dielectric spacers. The field at the
left interface of a region is related to that at the right
interface by (see Fig. 5),

E+
L = E+

R ejϕ, E−L = E−R e−jϕ. (46)
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Therefore, a phase shift matrix representing the propa-
gation can be written as,

Mdelay =


ejϕ 0 0 0
0 ejϕ 0 0
0 0 e−jϕ 0
0 0 0 e−jϕ

 = Φ⊗ I, (47)

where,

Φ =

(
ejϕ 0
0 e−jϕ

)
. (48)

The phase shift matrices relate the forward and back-
ward propagating fields at the leftmost and rightmost
boundary of each region.

The WM of a dielectric spacer consists of matrices for
the left and right interfaces and a matrix representing
the phase delay within the spacer. The spacer considered
is surrounded by regions with identical wave impedance
(η3 = η1). Therefore, using Eq.(27) and Eq.(32), it can
be shown that the WM of the second interface is the
inverse of the first interface,

M(2)
inter = M(1)−1

inter , (49)

Using Eq.(49), the total WM for an isotropic dielectric
slab is,

Miso = M(1)
interMdelayM(2)

inter = M(1)
interMdelayM(1)−1

inter

= (t⊗ I)(Φ⊗ I)(t−1 ⊗ I) = (t Φ t−1)⊗ I . (50)

Identity Eq.(40) has been used to simplify Eq.(50).

FIG. 5: Anisotropic slab with intrinsic impedances of
(ηx, ηy) and phase shifts (ϕx, ϕy) for x and y polariza-

tions.

Now, let us consider the WM of an anisotropic dielec-
tric slab, as depicted in Fig.5. The slab’s permittivity
tensor is assumed to be ε̄, with eigenvectors along x, y,
and z, and intrinsic impedances ηx, ηy for x and y polar-
ized waves. As in Eq.(48), we can find the phase delay
WM for an anisotropic dielectric slab,

Mdelay =


ejϕx 0 0 0

0 ejϕy 0 0
0 0 e−jϕx 0
0 0 0 e−jϕy

 , (51)

which can be written in compact form,

Mdelay = Φx ⊗
(

1 0
0 0

)
+ Φy ⊗

(
0 0
0 1

)
, (52)

where,

Φu =

(
ejϕu 0

0 e−jϕu

)
. (53)

The WM for an anisotropic dielectric interface is given
by Eq.(30). The phase progression within the anisotropic
slab is given by Eq.(52). Therefore, the total WM of the
anisotropic slab is,

Maniso = (tx ⊗
(

1 0
0 0

)
+ ty ⊗

(
0 0
0 1

)
)

× (Φx ⊗
(

1 0
0 0

)
+ Φy ⊗

(
0 0
0 1

)
)

× (t−1x ⊗
(

1 0
0 0

)
+ t−1y ⊗

(
0 0
0 1

)
)

(54)

= (txΦxt
−1
x )⊗

(
1 0
0 0

)
+ (tyΦyt

−1
y )⊗

(
0 0
0 1

)
.

The variables tu, t−1u , and Φu refer to the slab interfaces
and the phase delay associated with u polarized incident
wave. They are given by Eq.(31) and Eq.(53), respec-
tively.

C. Rotation

x

y

θ

FIG. 6: Rotated sheet admittance by angle θ.

The WMs of the elements comprising the cascaded
structure (shown in the Fig. 2) have been derived in the
preceeding sections. The effect of rotation on the WMs
of the constituent elements is explained here. Once we
have the WM in a given coordinate system, we can find
the WM in a rotated system. The rotation operator for
a 4× 4 WM is,

R(θ) = I⊗R(θ), (55)

where θ is the rotation angle and R is 2 × 2 rotation
matrix,

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (56)
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Let us assume an element is rotated by an angle θ (Fig.6).
The corresponding WM of the element is transformed by
R as follows (See Ref. [16]),

Mrot = RMRT. (57)

For example, consider a homogeneous electric sheet ad-
mittance that is rotated by an angle θ within an isotropic
medium. The transformed WM is given by,

Mrot = (I⊗R)(I⊗ I +
η0
2

e⊗Y)(I⊗RT)

= I⊗ I +
η0
2

e⊗ (RYRT). (58)

The rotation amounts to replacing Y by RYRT. Simi-
larly, using Eq.(54), in conjunction with Eq.(40), gives
the following WM for a rotated anisotropic dielectric
slab,

Mrot = (txΦxt
−1
x )⊗

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
+ (tyΦyt

−1
y )⊗

(
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

)
. (59)

IV. ANALYSIS AND SYNTHESIS

Metasurfaces are textured surfaces designed to exhibit
tailored electromagnetic responses. Initially, metasur-
faces possessed electric responses [1]. In such metasur-
faces, the tangential electric field excites electric currents
resulting in a discontinuity in the tangential magnetic
field. Adding a magnetic response to metasurfaces has
provided additional degrees of freedom in terms of phase
coverage for wavefront manipulation, and reflection con-
trol [2]. Metasurfaces with magneto-electric coupling
have provided control over the reflections [5, 23]. A sim-
ple approach to realizing metasurfaces with electric, mag-
netic, and bianisotropic responses is to cascade electric
sheet admittances [3–5].

Cascaded homogeneous metasurfaces with bian-
isotropic responses (Fig.1) can be analyzed in a straight-
forward manner using WMs. The WMs of the con-
stituent anisotropic electric sheet admittances and dielec-
tric spacers are first computed. The overall WM is found
by multiplying the constituent WMs. The reflection and
transmission coefficients can then be found from the WM
(Eq.(19)).

The design of a homogeneous bianisotropic metasur-
face begins with stipulating the scattering parameters.
The synthesis problem involves finding the tensor sheets
that need to be cascaded to realize the stipulated re-
sponse. If one uses ABCD matrices, solving for the sheets
in terms of the given S-matrix results in a set of nonlin-
ear equations. Optimization techniques have been em-
ployed in the past to find the approximate values of the
tensor admittances [5]. Here, we show that the WM rep-
resentation yields a set of equations that can be analyti-
cally solved to yield the needed tensor admittances. The

tensor sheet admittances are then realized with metal-
lic patterns. The period of the patterns are assumed to
be subwavelength, and the spacer’s thickness larger than
the cell size. Thus, near-field coupling via high-order Flo-
quet modes can be neglected, and are not considered in
the design process.

z
x

y

FIG. 7: A metasurface consisting of three cascaded elec-
tric sheet admittances designed to realize a stipulated

S-matrix.

A. The Three Sheet Problem

A number of polarization controlling devices have been
implemented using cascaded metasurfaces consisting of
three electric sheet admittances (Y1, Y2, Y3) separated
by two dielectric spacers [5]. In the design of such meta-
surfaces, the S-parameters are stipulated and the neces-
sary sheet admittances solved for. To find the necessary
sheet admittances, a numerical solver was employed in
[5]. Here, we analytically solve for the sheets given an S-
matrix. The WM of a cascaded metasurface, consisting
of three electric sheet admittances (Fig.7), can be written
as,

Mcasc = (t1 ⊗ I +
η1
2

e⊗Y1)(Φ2 ⊗ I)(t2 ⊗ I +
η2
2

e⊗Y2)

× (Φ3 ⊗ I)(t3 ⊗ I +
η3
2

e⊗Y3). (60)

The first term in parentheses corresponds to the first
dielectric interface and sheet admittance. The second
term represents the phase delay of the first dielectric
spacer (Fig.7). Similarly, the other terms are related to
successive dielectric interfaces, sheets, and delays. The
total WM on the left side of Eq.(60) is then written in
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terms of the desired S-matrix using Eq.(17). If the paren-
theses on the right side of Eq.(60) are expanded, and
identity Eq.(40) is used, we can write,

S1S−12 = (t1Φ2t2Φ3t3)⊗ I +
η1
2

(eΦ2t2Φ3t3)⊗Y1 +

η2
2

(t1Φ2eΦ3t3)⊗Y2 +
η3
2

(t1Φ2t2Φ3e)⊗Y3 +

η1η2
4

(eΦ2eΦ3t3)⊗Y1Y2 +
η1η3

4
(eΦ2t2Φ3e)⊗Y1Y3 +

η2η3
4

(t1Φ2eΦ3e)⊗Y2Y3 +
η1η2η3

8
(eΦ2eΦ3e)⊗Y1Y2Y3 .

(61)
Multiplying both sides of Eq.(61) by e ⊗ I, from the
right, eliminates the terms containing Y3. This yields an
expression for Y1 in terms of Y2:

e⊗Y1 =
1

a1

(
S1S−12 (e⊗ I)− (t1Φ2t2Φ3t3e)⊗ I

− η2
2

(t1Φ2eΦ3t3e)⊗Y2

)(
I⊗ (I +

a12
a1

Y2)−1
)
, (62)

where a1 and a12 are given by,

η1
2

(eΦ2t2Φ3t3e) = a1e,
η1η2

4
(eΦ2eΦ3t3e) = a12e,

(63)
Multiplying Eq.(61) by e ⊗ I, from the left, cancels the
Y1 terms. This yields Y3 in terms of Y2,

e⊗Y3 =
1

a3

(
I⊗ (I +

a23
a3

Y2)−1
)(

(e⊗ I)S1S−12

− (et1Φ2t2Φ3t3)⊗ I− η2
2

(et1Φ2eΦ3t3)⊗Y2

)
, (64)

with,

η3
2

(et1Φ2t2Φ3e) = a3 e,
η2η3

4
(et1Φ2eΦ3e) = a23 e,

(65)
In Eq.(62) and Eq.(64) above, the fact that e2 = 0

(Eq.(37)) was used to eliminate the terms that contain
products of admittances. Now, Y2 can be isolated from
the outer sheet admittances by multiplying both sides of
Eq.(61), from the left and from the right, by e⊗ I. This
cancels the terms with Y1 and Y3, resulting in,

e ⊗Y2 =
1

a2

(
(e⊗I)S1S−12 (e⊗I)− (et1Φ2t2Φ3t3e)⊗I

)
,

(66)

where a2 satisfies,

η2
2

(et1Φ2eΦ3t3e) = a2 e. (67)

In summary, the middle sheet admittance Y2 can be
calculated using (66). The outer sheets, Y1 and Y3, can
then be found in terms of Y2 using Eq.(62) and Eq.(64).
Using this method, we have analytically solved for the
sheets in terms of the given scattering parameters. The
constants ai and aij can be computed from Eqs.(63),
(65), and (67) simply by noting that for any 2×2 matrix
M with components mij ,

e M e = (m11 +m21 −m12 −m22) e = a e. (68)

B. The Four Sheet Problem

Increasing the number of sheet admittances in a cas-
caded metasurface, adds degrees of design freedom. For
example, one can realize a bianisotropic response with
three sheets. However, adding a fourth sheet can pro-
vide a wider bandwidth, as has been shown in [5]. The
synthesis procedure described earlier for a metasurface
consisting of three sheets can be extended to a larger
number of sheets. Here, we present the design of a meta-
surface consisting of four sheets. Specifically, we ‘peel off’
the outer sheets and find a relation between the middle
sheets and the scattering parameters. The outer sheets
are then solved for once the middle sheets are known.
As in the case of the three sheet problem, first, the total
WM is written in terms of the WMs of the constituent
elements,

Mcasc = (t1 ⊗ I +
η1
2

e⊗Y1)(Φ2 ⊗ I)(t2 ⊗ I +
η2
2

e⊗Y2)

× (Φ3⊗I)(t3⊗I+
η3
2

e⊗Y3)(Φ4⊗I)(t4⊗I+
η4
2

e⊗Y4).

(69)
Expanding the parantheses, using Eq.(40), and multi-

plying Eq.(69) by e⊗ I, from the left and from the right,
eliminates the terms containing the outer sheets: Y1 and
Y4. This yields a relation between the middle sheets Y2

and Y3,

b2 e⊗Y2 + b3 e⊗Y3 + b23 e⊗Y2Y3 = F, (70)

The constants b2, b3, and b23 and matrix F are,

η2
2

(et1Φ2eΦ3t3Φ4t4e) = b2 e,

η3
2

(et1Φ2t2Φ3eΦ4t4e) = b3 e,

η2η3
4

(et1Φ2eΦ3eΦ4t4e) = b23 e,

F = (e⊗I)(S1S−12 )(e⊗I)−(et1Φ2t2Φ3t3Φ4t4e)⊗I . (71)

If Y2 is stipulated, then Y3 can be found using Eq.(70),

e⊗Y3 =
1

b3

(
I⊗ (I+

b23
b3

Y2)−1
) (

F − b2 e⊗Y2

)
. (72)

Now that the middle sheets are determined, we can
find the outer sheets in terms of Y2 and Y3. Multiplying
both sides of Eq.(69) by e⊗I, from the right, cancels the
Y4 terms. This gives Y1 in terms of middle sheets,

e⊗Y1 = G(Y2,Y3)
(
b1 I⊗ I + b12 I⊗Y2

+ b13 I⊗Y3 + b123 I⊗Y2Y3

)−1
, (73)

Multiplying both sides of Eq.(69) by e⊗ I, from the left,
cancels the Y1 terms. This gives Y4 in terms of the
middle sheets,
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e⊗Y4 =
(
b4 I⊗ I + b24 I⊗Y2 + b34 I⊗Y3

+ b234 I⊗Y2Y3

)−1 H(Y2,Y3). (74)

The constants bi, bij , and bijk and matrices G and H in
Eqs.(73) and (74) are given by,

η1
2

(eΦ2t2Φ3t3Φ4t4e) = b1 e,

η4
2

(et1Φ2t2Φ3t3Φ4e) = b4 e,

η1η2
4

(eΦ2eΦ3t3Φ4t4e) = b12 e,

η1η3
4

(eΦ2t2Φ3eΦ4t4e) = b13 e,

η2η4
4

(et1Φ2eΦ3t3Φ4e) = b24 e,

η3η4
4

(et1Φ2t2Φ3eΦ4e) = b34 e,

η1η2η3
8

(eΦ2eΦ3eΦ4t4e) = b123 e,

η2η3η4
8

(et1Φ2eΦ3eΦ4e) = b234 e, (75)

G(Y2,Y3) = (S1S−12 )(e⊗ I)− (t1Φ2t2Φ3t3Φ4t4e)⊗ I

−η2
2

(t1Φ2eΦ3t3Φ4t4e)⊗Y2−
η3
2

(t1Φ2t2Φ3eΦ4t4e)⊗Y3

− η2η3
4

(t1Φ2eΦ3eΦ4t4e)⊗Y2Y3, (76)

H(Y2,Y3) = (e⊗ I)(S1S−12 )− (et1Φ2t2Φ3t3Φ4t4)⊗ I

−η2
2

(et1Φ2eΦ3t3Φ4t4)⊗Y2−
η3
2

(et1Φ2t2Φ3eΦ4t4)⊗Y3

− η2η3
4

(eΦ2eΦ3eΦ4t4)⊗Y2Y3. (77)

Here, we have shown realization of bianisotropic meta-
surfaces with a cascaded of four electric sheet admit-
tances. In contrast to three sheets problem, additional
degrees of freedom requires us to stipulate one of the mid-
dle sheets, for example Y2, then, using Eqs.(72), (73),
and (74) we can find all of necessary sheet admittances
(Y3, Y1, Y4) that realize a given S-matrix.

V. EXAMPLES

The synthesis procedure presented earlier allows us to
find, in closed form, the tensor sheet admittances needed
to realize a given scattering performance. Next, a few
designs examples are shown to verify the synthesis app-
proach, and show its utility:

FIG. 8: Asymmetric transmission of light through the
metasurface: the incident RHCP is fully transmitted and
converted to LHCP, and the incident LHCP is reflected.

FIG. 9: The frequency response of cascaded sheet admit-
tances that realize an asymmetric circular polarizer. Sub-
scripts R and L denote the right-handed and left-handed
circularly polarized waves. For example, TLR indicates
the transmission coefficient from an RHCP to an LHCP

wave.

A. Asymmetric Circular Polarizer

Let’s begin with the design of an asymmetric circular
polarizer. The device converts an incident right-handed
circularly polarized wave to a left-handed circularly po-
larized wave, upon transmission. On the other hand, it
reflects a left-handed circularly polarized incident wave
(Fig.8). The asymmetric polarizer of interest has the fol-
lowing Jones matrix,

S21 =
ejφ

2

(
1 j
j −1

)
, (78)

where the variable φ represents the average phase delay
of the response. The device is assumed to be reciprocal,
lossless, and symmetric, which requires S12, S11 and S22

to be,

S12 = ST
21 =

ejφ

2

(
1 j
j −1

)
,

S11 = S22 =
ejφ

2

(
1 −j
−j −1

)
. (79)
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Now that the scattering parameters of the device have
been defined, the next step is to find the overall WM of
the device. According to Eq.(17), we can find the WM
representation of the given S-matrix if,

det(S2) 6= 0 , (80)

which is equivalent to,

det(S21) 6= 0 . (81)

Since Eq.(81) is not satisfied for this device, we can sim-
ply perturb its S-matrix such that its determinant is non-
zero. The perturbed S-matrix should still closely resem-
ble the ideal Jones matrix. Here, we choose the following
matrix,

S21 = ST
12 =

1

2

(
1 j

j −ej1◦
)
. (82)

The average phase delay, φ, is assumed to be zero. The
next step in the design is to stipulate the dielectric spacer
properties. The isotropic dielectric constant of the spac-
ers is assumed ε2 = ε3 = 5, and the corresponding elec-
trical thicknesses: ϕ2 = ϕ3 = 2π/5. Using Eq.(27), the
WMs of the dielectric interfaces are computed to be,

t1 =

(
1.62 −0.62
−0.62 1.62

)
, t2 =

(
1 0
0 1

)
,

t3 =

(
0.72 0.28
0.28 0.72

)
. (83)

From Eq.(48), the phase delay WMs are,

Φ2 = Φ3 =

(
e j

2π
5 0

0 e−j
2π
5

)
. (84)

Substituting the S-matrix, dielectric interface WMs and
phase delay WMs into Eq.(66) provides the middle sheet
admittance,

Y2 =
j

η0

(
1268.31 5.52

5.52 1.43

)
. (85)

Eqs.(62) and (64) yield the outer sheet admittances,

Y1 = Y3 =
j

η0

(
0.73 1.00
1.00 0.72

)
. (86)

It should be emphasized that the sheet admittances
were analytically found.

The device performance versus frequency is shown in
Fig.9. It shows that an RHCP incident wave is fully
transmitted and converted to an LHCP (TLR = 0 dB)
and an LHCP incident wave is reflected. The frequency
has been normalized with respect to the frequency of op-
eration. In this plot, the sheet admittances are assumed

to obey Foster’s reactance theorem. The positive suscep-
tance has capacitive frequency response,

Bc(ω) = j
ω

ω0
Bc , (87)

while the negative susceptance shows an inductive fre-
quency response,

Bl(ω) = j
Bl
ω
ω0

. (88)

B. Polarization Rotator

FIG. 10: A metasurface that rotates the polarization of
the incident wave by 90◦.

FIG. 11: Frequency response of the polarization rotator,
realized by cascading of four electric sheet admittances.
Tij indicates the transmission coefficient from an incident

j polarized wave to an i polarized wave.

The next device that is considered is a polarization
rotator. This device rotates the polarization of an inci-
dent, linearly polarized wave by 90◦ (Fig.10). The Jones
matrix for this device is,

S21 = ejφ
(

0 −1
1 0

)
. (89)

The variable φ represents the average transmitted phase
delay. Having a lossless and reciprocal device requires
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that,

S11 = S22 = 0 , S12 = ST
21 . (90)

Here, we realize this response with a cascade of four
electric sheet admittances. First, the overall phase de-
lay of the response is stipulated: φ = π/4.5. Dielectric
spacers with dielectric constants ε2 = ε3 = ε4 = 3.5
are assumed. The electrical thickness of the spacers are
ϕ2 = ϕ3 = ϕ4 = 2π/10. The interface and phase delay
WMs are given by Eq.(27) and Eq.(48),

t1 = t−14 =

(
1.43 −0.43
−0.43 1.43

)
, t2 = t3 = I ,

Φ2 = Φ3 = Φ4 =

(
e j

2π
10 0

0 e−j
2π
10

)
, (91)

The sheet admittance Y2 is assumed to be,

Y2 =
j

η0

(
9.30 0

0 1.00

)
, (92)

Using Eq.(72) Y3 is found,

Y3 =
j

η0

(
7.59 −7.77
−7.77 2.71

)
, (93)

Eqs.(73) and (74) provide the outer electric sheet admit-
tances (Y1 and Y4),

Y1 =
j

η0

(
5.01 0.77
0.77 0.13

)
, Y4 =

j

η0

(
2.57 −1.30
−1.30 2.57

)
.

(94)
The frequency response for this device is shown in

Fig.11. The frequency response of sheet admittances is
assumed to obey the Foster’s reactance theorem. The
plot indicates that an incident x polarized wave is fully
transmitted and converted to a y polarized wave (Tyx =
0 dB). Similarly, an incident y polarized wave is fully
transmitted and converted to an x polarized wave (Txy =
0 dB).

VI. CONCLUSION

In this work, wave matrices were reviewed and ex-
panded upon. Their advantages in the design of cas-
caded metasurfaces were outlined, and their relation to
other network parameters derived. Wave matrices of in-
terfaces, sheet admittances, and dielectric spacers were
reported. The wave matrix formalism was applied to the
synthesis of cascaded metasurfaces in order to develop
an analytic design approach. The approach allows the
sheet admittances of cascaded metasurfaces to be found
in terms of a stipulated scattering matrix. The synthesis
approach will find broad application in the design of flat
optical devices.

VII. ACKNOWLEDGEMENT

This work was supported by the Office of Naval Re-
search under grant N00014-15-1-2390, and the Air Force
Office of Scientific Research (AFOSR) under grant No.
FA9550-15-1-0101.

VIII. APPENDICES

A. Impedance and Hybrid Matrices

Here, we derive the relationships between WMs,
impedance matrices as well as Hybrid matrices. First,
Impedance and Hybrid matrices are found in terms of
the WM. This is achieved by considering two separate
cases. In the first case, we set the forward propagating
electric field to unity and the backward propagating field
to zero in region n + 1 (see Fig.2). Inserting E+

n+1 = I

and E−n+1 = 0, into Eq.(8) results in,

E+
1 = M11 , E−1 = M21 . (95)

In the second case, we assume E+
n+1 = 0 and E−n+1 = I

in Eq.(8), which yields,

E+
1 = M12 , E−1 = M22 . (96)

Now, we have two sets of electric field vectors in terms
of WM components. We can insert them into Eq.(6)
and Eq.(7) to find the Impedance and Hybrid matrices
as a function of WM components. This results in the
following expression for the Impedance matrix,(

Z11 Z12

Z21 Z22

)
=

(
M11 + M21 M12 + M22

I I

)

×

(
1
η1

n(M11 −M21) 1
η1

n(M12 −M22)
1

ηn+1
n − 1

ηn+1
n

)−1
. (97)

Similarly, for the Hybrid matrix we find,(
H11 H12

H21 H22

)
=

(
M11 + M21 M12 + M22

1
ηn+1

n − 1
ηn+1

n

)

×
(

1
η1

n(M11 −M21) 1
η1

n(M12 −M22)

I I

)−1
. (98)

Conversely, to find the WM in terms of the impedance
matrix, we can rearrange Eq.(97) as,(

Z11 Z12

Z21 Z22

)[( 0 0
1

ηn+1
n − 1

ηn+1
n

)
+

(
1
η1

n − 1
η1

n

0 0

)
M
]

=

(
0 0
I I

)
+

(
I I
0 0

)
M . (99)
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Solving for M yields,

M =

(−I + 1
η1

Z11n −I− 1
η1

Z11n
1
η1

Z21n − 1
η1

Z21n

)−1

×

(
− 1
ηn+1

Z12n
1

ηn+1
Z12n

I− 1
ηn+1

Z22n I + 1
ηn+1

Z22n

)
. (100)

Similarly, Eq.(98) can be rearranged to find the WM in
terms of the hybrid matrix,(

H11 H12

H21 H22

)[(
0 0
I I

)
+

(
1
η1

n − 1
η1

n

0 0

)
M
]

=

(
0 0
1

ηn+1
n − 1

ηn+1
n

)
+

(
I I
0 0

)
M . (101)

Solving for M using the equation above leads to,

M =

( 1
η1

H11n− I − 1
η1

H11n− I
1
η1

H21n − 1
η1

H21n

)−1

×
(
−H12 −H12

n
ηn+1

−H22 − n
ηn+1

−H22

)
. (102)

B. WM Derivations

Here, we derive the WMs reported in section III, using
block matrix inversion rules. Assume a 4×4 nonsingular
matrix R that is partitioned into 2 × 2 submatrices of
A, B, C, and D,

R =

(
A B
C D

)
. (103)

If A and D are both invertible matrices, we have the fol-
lowing expression for R−1 (see Ref.[24] for more details),

R−1 =(
(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1

)
.

(104)

The WM of an interface between two isotropic media is
derived by writing boundary conditions at the interface
(see Eq.(25)),

M =

(
I I
1
η1

n − 1
η1

n

)−1(
I I
1
η2

n − 1
η2

n

)
. (105)

Using Eq.(104), M can be simplified to,

M = (
η2 + η1

2η2
)

(
I (η2−η1η2+η1

)I

(η2−η1η2+η1
)I I

)
= t⊗ I , (106)

which is the same as Eq.(26).
Now, let’s assume an interface only has an electric re-

sponse: χ = 0, Υ = 0, and Z = 0. Therefore, the WM
given by Eq.(35) simplifies to,

M =

Y
2 −

I
η1

Y
2 + I

η1

−n −n

−1−Y
2 −

I
η1
−Y

2 + I
η1

−n −n

 .

(107)

Taking the inverse of the first matrix, and performing the
multiplications results in,

M =

(
I 0
0 I

)
+
η1
2

(
Y Y
−Y −Y

)
, (108)

which is the same expression as Eq.(36). Similarly, the
WM for a magnetic sheet (χ = 0, Υ = 0, and Y = 0) is,

M =

 − I
η1

I
η1

Zn
2η1
− n − Zn

2η1
− n

−1 − I
η1

I
η1

− Zn
2η1
− n Zn

2η1
− n

 .

(109)

Finally, Matrix M can be simplified to,

M =

(
I 0
0 I

)
+

1

2η2

(
nZn −nZn
nZn −nZn

)
. (110)
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