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Variational methods are a common approach for computing properties of ground states but have
not yet found analogous success in finite temperature calculations. In this work we develop a new
variational finite temperature algorithm (VAFT) which combines ideas from minimally entangled
typical thermal states (METTS), variational Monte Carlo (VMC) optimization and path integral
Monte Carlo (PIMC). This allows us to define an implicit variational density matrix to estimate
finite temperature properties in two and three dimensions. We benchmark the algorithm on the
bipartite Heisenberg model and compare to exact results.

Strongly correlated fermionic and frustrated spin sys-
tems span many interesting physical systems. Comput-
ing properties of these systems is difficult, particularly in
dimensions greater then one where density matrix renor-
malization group (DMRG) [1] methods are not particu-
larly effective, and the fermion sign problem [2] renders
exact quantum Monte Carlo methods such as Path Inte-
gral Monte Carlo (PIMC) [3, 4] exponential. However,
for ground state properties, there has been significant
progress using variational Monte Carlo (VMC) methods
which, while approximate, often give qualitatively and
quantitatively detailed information [5, 6]. In VMC, one
optimizes for the lowest energy state over a set of vari-
ational wave-functions |Ψ[~α]〉 parameterized by ~α. The
approximation improves as the set of variational wave-
functions expands to include wavefunctions that have
greater overlap with the true ground state |Ψ0〉, becom-
ing exact in the limit where |Ψ0〉 is included in the space.
There exist various forms of variational wave-functions
including the Slater-Jastrow [7], backflow [8, 9], Huse-
Elser [10] (equivalently correlator product states [11],
entanglement plaquette states [12], or graph tensor net-
work states [13]), BDG states, projected entangled pair
states [14, 15], etc. At finite temperature, variational
techniques have been less useful, except again in one-
dimension where minimally entangled typical thermal
states (METTS) [16, 17] and finite-temperature DMRG
[18] have proved valuable.

Of course, it is also possible to use the variational tech-
nique at finite temperature. Most naturally one might
parameterize the finite temperature many body density
matrix (FTDM) ρ̂ ≡ exp[−βĤ]/Tr(exp[−βĤ]) as ρ̂[~α],
optimizing again over the parameters ~α. However, this
requires specifying a set of FTDM over which to optimize,
a task that is naturally more difficult than specifying a set
of wavefunctions. Additionally, this optimization needs
to minimize the free energy of the system, a quantity
which is harder to evaluate, requiring techniques such as
coupling constant integration. For one example of this
approach, see ref. [19].

Producing a good variational ansatz for very high
or low temperature density matrices is straightforward.

At high temperature (small β), one can approximate
exp[−βĤ] by either Taylor expanding as (1 − βĤ) or
using the Trotter break-up. At low temperature, one
can instead expand in terms of the low-energy excita-
tions, writing ρ̂ =

∑k
i=1 exp[−βEi]|Ψi〉〈Ψi| where |Ψi〉

and Ei are variational estimates for the ith eigenvector
and eigenvalue respectively and k is some cutoff. Unfor-
tunately, this can be difficult, requiring orthogonal vari-
ational estimates of a number of excited states, and as
one goes to higher temperature the number of eigenstates
increases exponentially. Nonetheless, this framework is
often applied in the context of density functional theory
(DFT) to produce finite temperature functionals [20].

At any temperature, one can approximate the density
matrix as a purification ρ̂ ≈

∑
i λi|Ψi〉〈Ψi| over a set

|Ψi〉 of variational wavefunctions. However, one cannot
efficiently enumerate more than a polynomial number of
|Ψi〉, nor is optimizing these wavefunctions straightfor-
ward. See ref [21] for an example of working in a trun-
cated Hilbert space of ten such wave-functions.

In spite of these difficulties, it would be useful if we
could use known classes of variational wave-functions to
compute finite temperature properties. In this paper, we
describe a new variational finite temperature approach
(VAFT), in which we implicitly define a variational finite
temperature density matrix. Our variational FTDM is
a purification of an exponentially large number of vari-
ational wavefunctions. We compute properties of this
FTDM via an algorithm which stochastically samples
from its diagonal without ever needing to explicitly repre-
sent it. The set of variational wavefunctions need not ac-
curately represent highly excited states, instead needing
only to accurately represent imaginary time propagation
of many-body basis elements.

VAFT combines ideas from METTS, VMC, and PIMC
to produce this stochastic sample. Our algorithm can
be viewed either as an approximate generalization of
METTS to wave-functions beyond matrix product states
(MPS) or a modification of two-bead PIMC which re-
places the stochastic evolution over imaginary time with
an approximate deterministic one. In fact, we will see
that, in this limit, METTS and PIMC are very similar.
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The overall outline of this paper is as follows. We
first describe an idealized purification of the FTDM. We
then introduce a variational approximation to the FTDM
which is a sum over an exponential number of varia-
tional wavefunctions, and explain how to efficiently sam-
ple from the diagonal of our variational FTDM and cal-
culate finite temperature observables. Finally, we test
the VAFT algorithm using Huse-Elser variational states
on the Heisenberg model, and compare to exact results.
For completeness, we describe all the necessary steps for
our algorithm even when they have partial overlap with
methods that already exist in the literature.

Algorithm: In what follows, {|c〉} is some many-body
basis for our Hilbert space, and Û is a unitary operator
that satisfies [Û , Ĥ] = 0. Most commonly, {|c〉} is a basis
of product states. Û may be thought of as a change of
basis that respects the symmetries of the Hamiltonian.
For simplicity, the reader may take Û = 1, although we
will see that other choices of Û can be used to mitigate
various technical issues. - We want to represent ρ̂ as a
purification over a set of wavefunctions. One way to do
this is to write

ρ̂ =
e−βĤ

Tr(e−βĤ)

=
∑
c

e−βĤ/2Û |c〉〈c|Û†e−βĤ/2 1

Tr(e−βĤ)

=
∑
c

e−βĤ/2Û |c〉〈c|Û†e−βĤ/2

〈c|e−βĤ |c〉
〈c|e−βĤ |c〉
Tr(e−βĤ)

=
∑
c

|Ψ̃[β/2; c]〉〈Ψ̃[β/2; c]|
〈Ψ̃[β/2; c]|Ψ̃[β/2; c]〉

p̃(c)

where in the last line we let p̃(c) = 〈c|ρ̂|c〉 be the diago-
nal of the FTDM, and |Ψ̃[β/2; c]〉 be the (unnormalized)
wavefunction exp[−βĤ/2]Û |c〉.

Unfortunately, there is no obvious polynomial algo-
rithm to compute either |Ψ̃[β/2; c]〉 or p̃(c). Instead, in
this paper we work with approximate versions of these
quantities |Ψ[β/2; c]〉 and probability distribution p(c).

We define our approximation |Ψ[β/2; c]〉 as

|Ψ[β/2; c]〉 ≡ [P̂ (1− τĤ)]β/(2τ)Û |c〉

where the operator P̂ projects the wavefuction into a
variational space defined by the set of wave-functions
|Ψ[~α]〉. Notice that |Ψ[β/2; c]〉 ≈ |Ψ̃[β/2; c]〉 and ap-
proaches it exactly in the limit of a large enough vari-
ational space and small enough τ.

We can compute |Ψ[β/2; c]〉 via (projected) imaginary
time propagation by applying the operator P̂ (1 − τĤ)
repeatedly, β/(2τ) times. At each application, we select a
new wave-function from the variational space by selecting
parameters ~α′ such that the overlap

〈Ψ[~α]|(1− τH)|Ψ[~α′]〉√
〈Ψ[~α′]|Ψ[~α′]〉

(1)

is maximized. Eqn 1 is maximized by choosing ~α′ such
that

~α′ = ~α− τS−1~h (2)

where, defining |Ψi〉 ≡ ∂
∂αi
|Ψ〉, we have

hi =
〈Ψ|Ĥ|Ψi〉
〈Ψ|Ψ〉

− 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

〈Ψ|Ψi〉
〈Ψ|Ψ〉

(3)

(S)ij =
〈Ψj |Ψi〉
〈Ψ|Ψ〉

− 〈Ψj |Ψ〉
〈Ψ|Ψ〉

〈Ψ|Ψi〉
〈Ψ|Ψ〉

(4)

Each of these quantities can be evaluated via Monte
Carlo (see Appendix). This process is identical to the
one used in the stochastic reconfiguration optimization
method [22].

We implicitly define our approximate probability p(c)
as the stationary distribution of a Markov chain whose
state space is the many-body basis elements |c〉 and
whose transition rule is defined by

Pr(c→ c′) ∝ |〈Ψ[β/2; c]|c′〉|2

We can now write a concrete algorithm to do a walk
over this Markov chain. To take a Markov step from
|c〉 → |c′〉, we

• Write Û |c〉 as |Ψ[~α0]〉.

• Use projected imaginary time propagation to com-
pute |Ψ[β/2; c]〉

• Use variational Monte Carlo to select a configura-
tion |c′〉 from the distribution |〈c′|Ψ[β/2; c]〉|2.

Note that this Markov chain may alternately be viewed
as a walk over the space of wavefunctions |Ψ[β/2; c]〉
where Pr(|Ψ[β/2; c]〉 → |Ψ[β/2; c′]〉) ∝ |〈Ψ[β/2; c]|c′〉|2.
The Markov chain used in our approach, restricted to
the space of MPS states and without the projection or
operator Û , is the one used in METTS; there, though,
steps on the Markov chain are implemented differently.
Notice this is a legitimate Markov chain for any set of
wave-functions as it is memoryless and therefore is guar-
anteed to reach its stationary distribution p(c) in the
long term limit. In the case where |Ψ[β/2; c]〉 is exactly
equal to |Ψ̃[β/2; c]〉, this Markov chain has the stationary
distribution p̃(c) (see Appendix for proof). Thus, when
|Ψ[β/2; c]〉 ≈ |Ψ̃[β/2; c]〉, we expect p(c) ≈ p̃(c).

It is worth stepping back a moment and recognizing
what we’ve achieved. Starting with some variational
space defined by |Ψ[~α]〉, we’ve implicitly defined an ap-
proximate FTDM that is a purification over an exponen-
tially large number of variational wavefunctions.

ρ̂ =
∑
c

|Ψ[β/2; c]〉〈Ψ[β/2; c]|
〈Ψ[β/2; c]|Ψ[β/2; c]〉

p(c)
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Note that this is still a valid density matrix, in that
ρ̂ is Hermitian and satisfies Tr(ρ̂) = 1. In the limit
where our space includes all wave-functions of the form
exp[−τĤ/2]Û |c〉 for all |c〉 in the basis and all 0 ≤ τ ≤ β,
this reduces to the exact FTDM, in the same spirit that
variational Monte Carlo becomes exact when the space
includes the true ground state.

This purification is too large to explicitly enumerate.
However, we can nonetheless compute the wavefunctions
|Ψ[β/2; c]〉 as well as sample from p(c) by doing a random
walk over the Markov chain described above; as we’ll see
below, this is all that is necessary for computing finite
temperature properties of this density matrix.

Note that, unlike in ground state VMC, there is no
optimization step; the approximate FTDM is naturally
close to the actual FTDM, and the only adjustment that
can be made to our approximation is changing the under-
lying variational space. Where ground state VMC takes
a set of variational wavefunctions as input and optimizes
to select the best one, the VAFT algorithm takes a set of
variational wavefunctions as input and produces a den-
sity matrix that is a weighted linear combination of all
of them. (Nonetheless, we will see later that we can still
choose the best set of wave-functions among many such
sets).

Up to reasonable assumptions about mixing times, this
sampling is polynomial and therefore scales well with
system size. The VMC steps involved in the projected
imaginary propagation, the VMC in sampling the new
|c′〉, and the overall Markov chain can be readily paral-
lelized. The VMC steps can be parallelized by distribut-
ing the VMC walkers across multiple processors, while
the overall Markov chain can be run independently on
multiple processors in order to obtain independent sam-
ples of p(c). Since the main aspects of the algorithm
are applying P̂ (1 − τĤ) to a variational wavefunction
and sampling from a variational wavefunction, working
at finite temperature requires minimal modifications to
an existing VMC code that does optimization using the
stochastic reconfiguration method.

In fig 1, we plot the energy of the state as our algo-
rithm runs. There are two things going on here. The
overall Markov chain takes place over the basis elements
Û |c〉 denoted by the green circles, or equivalently over the
wavefunctions |Ψ[β/2; c]〉 denoted by the red squares. To
get from the green circles to the red squares, we use pro-
jected imaginary time propagation (analogous to stochas-
tic reconfiguration optimization) to apply P̂ (1− τĤ) re-
peatedly. As we apply P̂ (1 − τĤ), the energy steadily
decreases, until we reach the red squares, where the state
has been evolved for an imaginary time of β/2. Note that
while we use Monte Carlo to apply the time evolution,
the time evolution is, up to statistical noise, determin-
istic. We calculate observables at the red squares (see
below). For example, to calculate the energy, we average
the energies of the wavefunctions at the red squares; this

Figure 1: Energy as a function of imaginary time for a
4× 4 square Heisenberg model, β = 1, using nearest
neighbor Huse-Elser states (see below). The green
circles indicate the beginning of each Markov step,

while the red squares indicate the end of each Markov
step. The arrows show the progression of the Markov

chain from one step to the next. Each Markov step lasts
β/2 = .5. Observables are calculated at the red circles.
The dashed red line indicates the average energy of the

system.

average energy is shown as the dashed line. After each
imaginary time propagation, we select a new |c〉 from our
wavefunction, which causes the energy to jump discon-
tinuously to the next green circle.

There are a number of approximations in our simu-
lation. The fundamental approximation comes from as-
suming some variational space of wavefunctions. There
are two additional systematic approximations. First, we
have introduced a time step error τ coming from approxi-
mating exp[−τĤ] ≈ (1−τĤ). Second, we have estimated
the values of (S)ij and hj using VMC, so these quanti-
ties have statistical error associated with them which go
away as the Monte Carlo run becomes arbitrarily long.

Observables: To compute the finite temperature ex-
pectation value of an observable Ô in our algorithm, we
compute Tr(ρ̂Ô) using our approximation to the FTDM:

〈Ô〉 = Tr(ρ̂Ô) =
∑
c

〈Ô〉cp(c)

where

〈Ô〉c ≡
〈Ψ[β/2; c]|Ô|Ψ[β/2; c]〉
〈Ψ[β/2; c]|Ψ[β/2; c]〉

is simply the expectation value of Ô in the state
|Ψ[β/2; c]〉. Thus, to compute 〈Ô〉, we simply av-
erage the expectation values 〈Ô〉c across the samples
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|Ψ[β/2; c]〉 generated by our Markov chain. To com-
pute 〈Ô〉c we use the Metropolis algorithm [23] to sam-
ple basis elements |c′〉 from |〈c′|Ψ[β/2; c]〉|2, then average
〈c′|Ô|Ψ[β/2; c]〉/〈c′|Ψ[β/2; c]〉 over these samples. We
can compute both diagonal and off-diagonal observables
with this method; for example, in fig 1, we’ve computed
the expectation value of the off-diagonal observable Ĥ.

In the special case where Ô is diagonal in the basis
{|c〉}, we can also write

〈Ô〉 =
∑
c

〈c|Ô|c〉p(c)

Thus, rather than averaging the 〈Ô〉c over the samples,
we may also estimate 〈Ô〉 by averaging 〈c|Ô|c〉 over the
samples. However, this latter estimate for Ô will gener-
ally have greater variance.

Low Temperature Limit: While our algorithm is
designed to compute finite-temperature properties, we
can consider whether it smoothly interpolates to the
ground state density matrix |Ψ[~αg]〉〈Ψ[~αg]| where |Ψ[~αg]〉
is the wave-function in our variational space with lowest
energy. It is straightforward to see that if |Ψ[~αg]〉 can be

reached from any configuration Û |c〉 via projected imag-
inary time evolution, then this variational ground state
limit emerges naturally. At low temperature (β → ∞)
any initial basis configuration Û |c〉 will likely have over-
lap with the ground state. Thus, Û |c〉 will propagate
down to the variational ground state in one application
of exp[−βĤ/2]. However, depending on the variational
space, it may be the case that the ground state can’t be
reached from all basis elements Û |c〉; instead the imag-
inary time evolution exp[−βĤ/2]Û |c〉 may get stuck in
local energy minima. In such a case, our algorithm does
not cleanly extrapolate to the variational limit and must
have worse average energy (although it is less obvious
whether other properties will be better or worse). As
the variational space gets sufficiently large, however, this
difference disappears.

Ansatz: The VAFT algorithm is general and can
work with any variational space Ψ[~α], provided it in-
cludes the product states {Û |c〉}. The technically chal-
lenging part of the algorithm involves computing the
imaginary time propagation step. There are two tech-
nical pitfalls in this implementation that must be con-
sidered when implementing VAFT in a new variational
space: linear dependence of the derivatives, and under-
sampling in the VMC.

A single imaginary-time step is propagated in the sub-
space of derivatives {|Ψi〉}. These derivatives may form a
linearly dependent set causing S−1 to be singular. Even
when the {|Ψi〉} are only approximately linearly depen-
dent, the time evolution may fail; in this case, S−1 will
have very large entries, which causes the parameters ~α
to change by a large amount (see eqn 2). Since the prop-
agation is based on first-order approximations to δ~α, we

may have to choose a very small τ for the approximation
to still be valid. This can be formally resolved in various
ways such as dropping parameters or using a pseudo-
inverse. It should be pointed out that in the case where
we have significant linear dependence the approximate
projected imaginary time evolution may be less accurate
because of the lower-dimensional space.

For most ansatz, we find this linear dependence to be
most severe near a product state, |c〉, where many of the
derivatives |Ψi〉 become identically zero. To solve this
linear dependence, one can choose a Û such that Û |c〉
has all nonzero derivatives.

Undersampling during the VMC generally causes the
estimates of (S)ij to not converge properly. To estimate
Sij , we use VMC to estimate the overlap 〈Ψj |Ψi〉/〈Ψ|Ψ〉
according to (see Appendix)

〈Ψj |Ψi〉
〈Ψ|Ψ〉

=

∑
c

Ψj(c)
Ψ(c)

Ψi(c)
Ψ(c) |Ψ(c)|2∑

c|Ψ(c)|2

We compute this sum by sampling basis elements |c〉 from
|Ψ〉. However, if there exist |c〉 such that Ψ(c) ≈ 0, but
Ψj(c)Ψi(c) 6= 0, our sampling will essentially ignore this
|c〉, even though it is important for estimating the over-
lap. Thus, we undersample relevant basis elements.

Undersampling, like linear dependence of derivatives,
is most severe near a product state |c〉. In this case, every
configuration |c′〉 6= |c〉 satisfies Ψ(c′) ≈ 0, though many
of these |c′〉 are relevant for computing the overlap. There
are two possible remedies to the undersampling problem.
The classical approach is to sample using another proba-
bility distribution which doesn’t undersample these con-
figuration while modifying the measured properties to
keep the integral the same. For example, one might sam-
ple |Ψ〉 +

∑
i ai|Ψi〉 rather than |Ψ〉. Alternatively, one

can choose a Û such that Û |c〉 has weight on all relevant
basis elements. In both cases, we end up sampling from
something far from a product state, as desired.

We will see an example below of choosing a Û which
solves both of these problems simultaneously for the
Huse-Elser ansatz.
Example: As a test, we apply our algorithm to a

Heisenberg antiferromagnet on a two-dimensional square
lattice, with Hamiltonian

Ĥ =
∑
<i,j>

~̂
Si · ~̂Sj

where the sum runs over all nearest neighbor sites of
the lattice. We sample from the grand canonical en-
semble, in which the total Sz is allowed to fluctuate.
The finite temperature properties of this model can be
efficiently simulated by the stochastic series expansion
(SSE) method[24]; thus, it provides an ideal test for our
approximate algorithm. Note that while the SSE algo-
rithm does not have a sign problem for this particular
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Figure 2: Three possible arrangements of correlators on
a lattice. Each shaded bubble represents the support of
one correlator. Counterclockwise from the upper right:

Nearest neighbor pairs, 2× 2 plaquettes, all pairs.
Bottom right: The variational space defined by “nearest

neighbor pairs” is a subset of both “all pairs” and
“2× 2 plaquettes”, while “all pairs” and “2× 2

plaquettes” are, naively, incomparable.

model, our algorithm never has a sign problem. We cal-
culate the squared staggered magnetization, defined by

Ô =

(∑
i

σi
~̂
Si

)2

with σi = ±1 alternating between adjacent sites. We also
calculate the energy, and an estimate of the free energy.

For this example, we use Huse-Elser variational states
[10]. If we let ci = ±1 label the spin of the ith par-
ticle in our lattice, the most general state |Ψ〉 can be
written as

∑
c1,..,cn

Ψc1,...,cn |c1, ..., cn〉, where Ψc1,...,cn is
an arbitrary set of complex coefficients. In a Huse-Elser
variational space, Ψc1,...,cn is restricted to be of the form

Ψc1,...,cn =
∏
j

C
cj1 ,...,cjk
j

where each C
cj1 ,...,cjk
j is an arbitrary complex num-

ber that depends only on some subset of the lattice
{cj1 , ..., cjk}. Each Cj is called a correlator, and the sub-
set {cj1 , ..., cjk} is called the support of the correlator.
We can specify a Huse-Elser variational space by speci-
fying the supports of all the correlators. Three examples
of possible correlator arrangements are shown in fig. 2.
As we increase the number of wavefunctions in our vari-
ational space, by either increasing the number of correla-
tors or increasing the size of the correlators, we will more
accurately reproduce the imaginary time evolution.

The most natural basis {|c〉} for the Huse-Elser states
is the basis of Ŝz product states, since these basis el-
ements can be sampled in the VMC. However, in this
basis, we suffer from both undersampling and linearly de-
pendent derivatives. In fact, for Huse-Elser states, when

|Ψ〉 = |c〉, many of the |Ψi〉 are identically zero. We solve
both of these problems by choosing Û to be the opera-
tor that rotates Ŝz product states to Ŝx product states.
This choice of Û commutes with Ĥ since Ĥ is invariant
under rotations, and it is clearly unitary. To be able
to cleanly represent the states Û |c〉 as Huse-Elser states,
we add a set of single site correlators to our correlator
arrangements.

After this rotation no derivatives are zero, and Û |Ψ〉
has weight on all basis elements |c〉, so both problems are
solved simultaneously. An additional effect of this rota-
tion is to mix Sz spin sectors, so we are indeed sampling
from the grand canonical ensemble.

We plot our results in figs 3 and 4. In fig 3, we plot
the results for three different classes of Huse-Elser states
on a 4× 4 Heisenberg lattice, as well as the (essentially)
exact result from SSE. In fig 4 we plot the results for
one class of Huse-Elser states on an 8×8 lattice, and the
corresponding SSE results. In both cases, it is necessary
to use a smaller timestep τ at lower β. It is surprising to
note that despite the restriction to a variational space,
for β ≤ 1.4, we accurately predict the staggered magne-
tization, while as β grows, our algorithm still produces
a qualitatively similar curve as the true result. The di-
vergence from the true result occurs because we can no

longer represent e−τĤ |c〉 in our variational space for all
0 < τ < β/2. We also see in fig 3 that as we add wave-
functions to our variational space, the variational esti-
mate approaches the true answer.

To find the best variational space, we can com-
pare the free energies. Each run of our algo-
rithm gives us an approximate density matrix ρ̂(β) =∑
c|Ψ[β/2; c]〉〈Ψ[β/2; c]|, where the sum runs over the

samples |c〉 from the Markov chain. The “best” den-
sity matrix should be the one that minimizes the free
energy, F (β) = E(β) − S(β)/β. We don’t compute the
entropy S(β) directly; instead, we estimate it from the
E(β) curve via the equation

S(β) = S(0)−

[∫ β

0

E(β′)dβ′ − βE(β)

]
This will not produce the exact entropy S(β) =
Tr(ρ̂(β) ln(ρ̂(β))) of our approximate density matrices,
but it will produce an approximation to S(β) based on
the entire E vs β curve. We will then get an approxima-
tion to F (β) which also depends on the whole curve.

To estimate F (β), we fit a curve of the form

E(β) =

∑N
i=1DiEie

−Eiβ∑N
i=1Die−Eiβ

to our energy data, where the Ei and Di are parameters
representing energies and densities of states, respectively.
The results of this fit for the 4 × 4 lattice are shown in
fig 5. The free energy systematically decreases as we in-
crease the number of parameters in our variational space,
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Figure 3: Above: Squared staggered magnetization as a
function of β for a 4× 4 square Heisenberg model.
Inset: Enlarged version of the boxed region. Below:
The timestep τ used for approximating exp[−βĤ/2]

indicating that “all pairs” gives a better density matrix
than “plaquettes”, which gives a better density matrix
than “nearest neighbor pairs.” Note that this ordering is
consistent with the fact that “plaquettes” and “all-pairs”
are supersets of nearest-neighbor pairs. This approach al-
lows us to compare our estimates, even in the absence of
the exact SSE result.

Figure 5 also shows that for large β, our algorithm
gives us an estimate of the ground state energy. However,
this estimate is strictly worse than ground state VMC.
This is because not every configuration |c〉 in our Markov
chain is able to propagate down to the lowest energy state
in the variational space. Instead, many get stuck in local
minima. Thus, the estimate for the energy at large β is an
average over local energy minima, and not the minimum
energy wavefunction in our variational space.

PIMC and METTS: VAFT (when Û = 1) can
either be viewed as a generalization of METTS to varia-
tional spaces besides matrix product states, or a modifi-
cation of two-bead PIMC where one replaces the stochas-
tic imaginary time evolution with a variational time evo-
lution.

As mentioned previously, METTS uses the same
Markov chain to sample from p(c) as in our algorithm,
with the restriction that the wavefunctions |Ψ[β/2; c]〉 are
written as matrix product states. With this restriction,

Figure 4: Above: Squared staggered magnetization as a
function of β for a 8× 8 square Heisenberg model.
Inset: Enlarged version of the boxed region. Below:
The timestep τ used for approximating exp[−βĤ/2]

(1 − τĤ) can be efficiently applied using DMRG tech-
niques rather than Monte Carlo. Thus, our algorithm
may be viewed as an extension of METTS to general
variational states via VMC methods.

PIMC samples from p̃(c) by rewriting Tr(exp[−βĤ])
as

Tr(exp[−βĤ]) =
∑
{ci}

∏
i

〈ci|exp[−τĤ]|ci+1〉

where each i represents a bead on the path. PIMC works
by sampling paths {ci} with appropriate weights via the
Metropolis algorithm. In the case where we have only
two beads, we write

Tr(exp[−βĤ]) =
∑
c1c2

|〈c1|exp[−βĤ/2]|c2〉|2

A local update that samples this distribution is

• Chose a new |c1〉 with probability proportional to
|〈c1|exp[−βĤ/2]|c2〉|2

• Chose a new |c2〉 with probability proportional to
|〈c1|exp[−βĤ/2]|c2〉|2

This is identical to our Markov chain, provided we calcu-
late |〈c1|exp[−βĤ/2]|c2〉|2 using our variational approx-
imation to exp[−βĤ/2]; thus, VAFT may be viewed as
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Figure 5: Energy, entropy, and free energy as a function
of β for the 4× 4 Heisenberg lattice. The free energy is

lowest for the “all pairs” correlator arrangement,
indicating this correlator arrangement gives the best

estimate for the density matrix.

a two-bead PIMC in which exp[−βĤ/2] is applied vari-
ationally.

We also see that in this point of view, METTS can
be viewed as a two-bead PIMC in which exp[−βĤ/2] is
applied using matrix product states.

Discussion: While we benchmarked VAFT on the
bipartite Heisenberg lattice, VAFT is general and can
be applied in any setting, including continuum models,
fermions, and frustrated magnets. In particular, since
VAFT has no sign problem, it can be applied in cases
where many other Monte Carlo methods fail. Variational

Monte Carlo has been the de-facto standard for under-
standing strongly-correlated ground states and VAFT al-
lows this success to translate to finite temperature. No-
tice, that VAFT also can work with any ansatz.

While this work has been focused on a variational ap-
proach, it is interesting to note that the ideas presented
here can be used to generate an alternative finite tem-
perature projector QMC approach complementing ap-
proaches such as DMQMC [25–27] and finite temperature
AFQMC [28, 29] as well as improve calculations in path-
integral Monte Carlo. While the details of these methods
will be outlined in upcoming works [30], here we mention
some general aspects of the basic approach.

With respect to projector quantum Monte Carlo, one
can replace the variational imaginary time evolution in
VAFT with a stochastic time evolution. This replace-
ment re-introduces a sign problem which then must be
separately attenuated by, for example, annihilation in
FCIQMC [31] or fixed-node/phase approaches in other
flavors of QMC [32–34]. Such attenuation techniques
have been very successful in the ground state. General-
izing VAFT to projector QMC requires additional effort
in the sampling of |〈c|Ψ〉|2.

This approach may also be used to improve the re-
stricted path integral Monte Carlo algorithm (RPIMC)
[35, 36]. In RPIMC, one avoids the sign problem by as-
suming a sign structure for the density matrix ρ̂. How-
ever, the results of RPIMC depend on accurately deter-
mining the sign structure. We can compute exp[−βĤ]|R〉
within our variational space for any configuration |R〉,
therefore letting us evaluate the sign of the many body
density matrix ρ̂(R,R′;β). This technique also has
positive implications for the low-temperature ergodicity
problems seen in PIMC.
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Appendix: Here we prove several results stated with-

out proof in the text. Namely, we show that the station-
ary distribution of the ideal Markov chain is p̃(c), that
eqn 1 is maximized by choosing ~α′ according to eqn 2,
and that both hi and (S)ij from eqns 3 and 4 can be
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calculated via Monte Carlo.

First, we show that the ideal Markov chain has the sta-
tionary distribution p̃(c). To accomplish this, we assume
that we begin in the distribution

p̃(c) =
〈c|exp[−βĤ]|c〉∑
c′′〈c′′|exp[−βĤ]|c′′〉

and show that a single step of the Markov chain leaves
the system in the same probability distribution. In other
words, we show∑

c

p̃(c)Pr(c→ c′) = p̃(c′)

where Pr(c → c′) is the transition probability of our
Markov chain. We first note that

Pr(c→ c′)

=
|〈c|Û† exp[−βĤ/2]|c′〉|2∑
c′′ |〈c|Û† exp[−βĤ/2]|c′′〉|2

=
|〈c|Û† exp[−βĤ/2]|c′〉|2∑

c′′〈c|Û† exp[−βĤ/2]|c′′〉〈c′′|exp[−βĤ/2]Û |c〉

=
|〈c|Û† exp[−βĤ/2]|c′〉|2

〈c|Û† exp[−βĤ]Û |c〉

=
|〈c|Û† exp[−βĤ/2]|c′〉|2

〈c|exp[−βĤ]|c〉

Thus, we may write∑
c

p̃(c) Pr(c→ c′)

=
∑
c

〈c|exp[−βĤ]|c〉∑
c′′〈c′′|exp[−βĤ]|c′′〉

|〈c|Û† exp[−βĤ/2]|c′〉|2

〈c|exp[−βĤ]|c〉

=
∑
c

|〈c|Û† exp[−βĤ/2]|c′〉|2∑
c′′〈c′′|exp[−βĤ]|c′′〉

=

∑
c〈c′|exp[−βĤ/2]Û |c〉〈c|Û† exp[−βĤ/2]|c′〉∑

c′′〈c′′|exp[−βĤ]|c′′〉

=
〈c′|exp[−βĤ]|c′〉∑
c′′〈c′′|exp[−βĤ]|c′′〉

= p̃(c′)

Therefore, the stationary distribution is indeed p̃(c).

Next, we prove eqn 1 is maximized by eqn 2. Maxi-
mizing eqn 1 is equivalent to setting the derivatives with
respect to ~α′ to zero. Writing ~α′ = ~α + δ~α, we work to

first order in δ~α and τ . For notational convenience, we’ll
denote |Ψ[~α]〉 by |Ψ〉, and |Ψ[~α′]〉 by |Ψ′〉,

0 =
∂

∂α′i

〈Ψ|(1− τĤ)|Ψ′〉√
〈Ψ′|Ψ′〉

=
〈Ψ|(1− τĤ)|Ψ′i〉√

〈Ψ′|Ψ′〉
− 〈Ψ|(1− τĤ)|Ψ′〉〈Ψ′|Ψ′i〉

〈Ψ′|Ψ′〉3/2

Dividing both sides by
√
〈Ψ′|Ψ′〉 gives

0 =
〈Ψ|(1− τĤ)|Ψ′i〉

〈Ψ′|Ψ′〉
− 〈Ψ|(1− τĤ)|Ψ′〉

〈Ψ′|Ψ′〉
〈Ψ′|Ψ′i〉
〈Ψ′|Ψ′〉

Expanding the first term to first order gives

〈Ψ′|Ψ′i〉
〈Ψ′|Ψ′〉

−
〈Ψ′j |Ψ′i〉
〈Ψ′|Ψ′〉

δαj − τ
〈Ψ|Ĥ|Ψ′i〉
〈Ψ′|Ψ′〉

Expanding the second term to first order gives

−〈Ψ
′|Ψ′i〉

〈Ψ′|Ψ′〉
+
〈Ψ′j |Ψ′〉
〈Ψ′|Ψ′〉

〈Ψ′|Ψ′i〉
〈Ψ′|Ψ′〉

δαj + τ
〈Ψ|Ĥ|Ψ′〉
〈Ψ′|Ψ′〉

〈Ψ′|Ψ′i〉
〈Ψ′|Ψ′〉

Thus, in total we have

0 = −
〈Ψ′j |Ψ′i〉
〈Ψ′|Ψ′〉

δαj − τ
〈Ψ|Ĥ|Ψ′i〉
〈Ψ′|Ψ′〉

+
〈Ψ′j |Ψ′〉
〈Ψ′|Ψ′〉

〈Ψ′|Ψ′i〉
〈Ψ′|Ψ′〉

δαj + τ
〈Ψ|Ĥ|Ψ′〉
〈Ψ′|Ψ′〉

〈Ψ′|Ψ′i〉
〈Ψ′|Ψ′〉

(5)

Since everything in eqn 5 is first order, we can replace |Ψ′〉
with |Ψ〉 wherever it occurs. Rearranging the equation,
we get (

〈Ψj |Ψi〉
〈Ψ|Ψ〉

+
〈Ψj |Ψ〉
〈Ψ|Ψ〉

〈Ψ|Ψi〉
〈Ψ|Ψ〉

)
δαj

= −τ

(
〈Ψ|Ĥ|Ψi〉
〈Ψ|Ψ〉

− 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

〈Ψ|Ψi〉
〈Ψ|Ψ〉

) (6)

Comparing this to eqn 3 and eqn 4, we see this is equiv-
alent to

(S)ijδαj = −τhi (7)

from which eqn 2 immediately follows. We’ll note that
for this derivation to imply 2, S need not be two-sided
invertible; it suffices for S−1 to be a right inverse to S.

Finally, we show that both hi and (S)ij can be evalu-
ated using Monte Carlo. We rewrite each term in eqns 3
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and 4 in a form amenable to Monte Carlo calculations.

〈Ψ|Ψi〉
〈Ψ|Ψ〉

=

∑
c

Ψi(c)
Ψ(c) |Ψ(c)|2∑
c|Ψ(c)|2

〈Ψj |Ψi〉
〈Ψ|Ψ〉

=

∑
c

Ψj(c)
Ψ(c)

Ψi(c)
Ψ(c) |Ψ(c)|2∑

c|Ψ(c)|2

〈Ψi|Ĥ|Ψ〉
〈Ψ|Ψ〉

=

∑
c
ĤΨ(c)
Ψi(c)

|Ψ(c)|2∑
c|Ψ(c)|2

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

=

∑
c
ĤΨ(c)
Ψ(c) |Ψ(c)|2∑
c|Ψ(c)|2

From these equations, it is clear that each term can be
calculated by sampling the distribution |Ψ(c)|2. To pro-
duce these samples, we again use the Metropolis algo-
rithm.
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