
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Effects of spin-orbit coupling on zero-energy bound states
localized at magnetic impurities in multiband

superconductors
Kangjun Seo, Jay D. Sau, and Sumanta Tewari

Phys. Rev. B 95, 205107 — Published  5 May 2017
DOI: 10.1103/PhysRevB.95.205107

http://dx.doi.org/10.1103/PhysRevB.95.205107


Effects of Spin-Orbit coupling on Zero Energy Bound States Localized at Magnetic Impurities in
Multi-Band Superconductors

Kangjun Seo1, Jay D. Sau2, and Sumanta Tewari1
1Department of Physics and Astronomy, Clemson University, Clemson, SC 29634

2Condensed Matter Theory Center and Joint Quantum Institute,
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

(Dated: March 2, 2017)

We investigate the effect of spin-orbit coupling on the in-gap bound states localized at magnetic impurities
in multi-band superconductors with unconventional (sign-changed) and conventional (sign-unchanged) s-wave
pairing symmetry, which may be relevant to iron-based superconductors. Without spin-orbit coupling, for spin-
singlet superconductors it is known that such bound states cross zero energy at a critical value of the impurity
scattering strength and acquire a finite spin-polarization. Moreover, the degenerate, spin-polarized, zero energy
bound states are unstable to applied Zeeman fields as well as deviation of the impurity scattering strength away
from criticality. Using a T-matrix formalism as well as analytical arguments, we show that, in the presence
of spin-orbit coupling, the zero-energy bound states localized at magnetic impurities in unconventional, sign-
changed, s-wave superconductors acquire surprising robustness to applied Zeeman fields and variation in the
impurity scattering strength, an effect which is absent in the conventional, sign-unchanged, s-wave supercon-
ductors. Given that the iron-based multi-band superconductors may possess a substantial spin-orbit coupling as
seen in recent experiments, our results may provide one possible explanation to the recent observation of sur-
prisingly robust zero bias scanning tunneling microscope peaks localized at magnetic impurities in iron-based
superconductors provided the order parameter symmetry is sign changing s+−-wave.

PACS numbers: 73.20.Hb, 74.20.-z, 74.70.Xa, 75.70.Tj

I. INTRODUCTION

We are motivated by a recent scanning tunneling mi-
croscope (STM) observation of a robust zero bias conduc-
tance peak (un-split by an applied magnetic field ∼ 8T ) in-
duced at magnetic impurities in iron-based superconductor
Fe1+x(Te,Se)1. Zero– or low-energy sub-gap states bound to
magnetic and/or non-magnetic impurities in superconductors
are not unusual2–13. However, in spin-singlet superconduc-
tors [e.g., s-wave (s++, s+−-wave), d-wave, etc], the zero bias
peaks localized at impurities are expected to split into a dou-
ble peak structure on application of a magnetic field. Qualita-
tively, the splitting of the peak by a magnetic field is due to the
fundamental two-fold spin degeneracy of Bogoliubov quasi-
particle states in a singlet superconductor. Since the spin of
the zero-energy bound states couples to a magnetic field via
Zeeman coupling, the zero bias STM peak, if any, gives rise
to a double peak structure by application of a magnetic field.
Theoretically, a defect-induced zero-energy state can escape
splitting by a magnetic field when the state is non-degenerate.
A non-degenerate zero energy bound state in a superconduc-
tor, on the other hand, is very unusual, and is commonly re-
ferred as a Majorana bound state (MBS) that can be realized in
a topological superconductor14,15. This has led to the tantaliz-
ing conjecture of realizing a topological superconductor and
MBS in iron-based superconductors induced by superconduc-
tivity, spin-orbit coupling, and local magnetic order induced
at isolated magnetic impurities1.

Impurity induced in-gap states at non-magnetic and mag-
netic impurities in iron-based superconductors have been in-
vestigated before within a T-matrix approach and the Bogoli-
ubov de-Gennes formalism5–13. In both approaches it has been
found that, while for non-magnetic impurities in-gap bound

states exist only for unconventional, sign-changed, s-wave su-
perconductors (s+−), for magnetic impurities such states ex-
ist for both sign-unchanged (s++) and sign-changed (s+−) su-
perconducting ordering symmetries. For magnetic impuri-
ties, with increasing strength of the impurity potential, a pair
of spin-polarized in-gap bound states cross zero energy at a
quantum phase transition at a critical value of the scattering
potential. Moreover, the pair of zero energy bound states at the
critical scattering strength, owing to finite spin-polarizations,
are unstable to applied Zeeman fields, which split them into
a pair of positive and negative energy in-gap states, produc-
ing a double peak structure in tunneling experiments. Thus,
within this conventional picture of impurity scattering in iron-
based superconductors5–13, zero bias STM peaks at magnetic
impurities that remain unsplit by magnetic fields ∼ 8T can-
not be explained, irrespective of whether the superconducting
ordering symmetry is assumed to be s+− or s++-wave. More
recently, Ref. [16] has attempted to explain the robustness of
zero bias STM peaks at magnetic impurities in iron-based su-
perconductor Fe1+x(Te,Se)1 in terms of a Z2 topological mirror
order and s+− superconducting order symmetry. In other re-
cent work, Ref. [17] has attempted to explain the same experi-
ments 1 within a so-called ‘tunneling impurity’ formulation, in
which the magnetic impurity is assumed to be coupled to the
underlying Fe lattice only by hoping terms, but no exchange
interaction, in spite of the fact that the impurity possesses a
non-zero local magnetic moment. In this paper we show that
the zero-energy bound states localized at magnetic impurities
in sign changing s+−-wave superconductors (but not in sign
unchanged s++-wave superconductors) can be surprisingly ro-
bust to perturbations such as Zeeman fields and variations in
the impurity scattering strength in the presence of spin-orbit
coupling. Given that a substantial spin-orbit coupling (∼ 5−10
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meV) may be present in all the classes of iron based supercon-
ductors as seen in recent experiments18, our work provides an
alternative explanation of robust STM peaks in iron-based su-
perconductor Fe1+x(Te,Se)1 which remain unsplit even by a
magnetic field as high as ∼ 8T without having to invoke ex-
otic physics such as topological superconductivity1,16 and/or
absence of exchange coupling of magnetic impurity with the
underlying Fe lattice17. In addition, our work fills the gap of
analyzing the effects of spin-orbit coupling on magnetic im-
purity induced Yu-Shiba-Rusinov (YSR) states19–21 in uncon-
ventional and conventional s-wave superconductors.

In our calculations, the key to the robustness of magnetic
impurity induced zero energy bound states in multi-band un-
conventional s-wave superconductors is a non-zero spin-orbit
coupling (SOC), which has so far been neglected in the anal-
ysis of YSR states in multi-band superconductors. In re-
cent high resolution ARPES experiments, substantial SOC
(∼ 5 − 10 meV) has been detected in all the families of iron-
based superconductors via the observation of SOC-induced
Fermi surface splitting18. With a minimal modeling of the
band Hamiltonian in the presence of SOC we are able to show
that a robust zero bias state (ZBS) is induced at magnetic im-
purities in iron-based superconductors provided the symme-
try of the superconducting order parameter is sign-changing
s+−-wave. The robustness of the ZBS due to SOC can be in-
tuitively understood as resulting from the suppression of the
superconducting gap by SOC in the s+− case and the proper-
ties of impurities in nearly isotropic gap superconductors19–21.
As shown in Fig. 1, SOC produces a finite Fermi surface split-
ting that pushes one Fermi surface towards the X-point and the
other towards the Γ-point of the Brillouin zone. On the other
hand, for s+− pairing, the pairing potential changes sign be-
tween these two points in the Brillouin zone. Therefore, with
one Fermi surface moving towards the X-point, the pairing
amplitude on that Fermi surface is suppressed. As a result,
one of the Fermi surfaces in s+−-wave superconductors in the
presence of SOC would have a smaller gap. This suppressed
gap is still quite isotropic and as shown in the Appendix, for
such isotropic Fermi surfaces, one can prove that a magnetic
impurity will support localized sub-gap bound states just as in
the case of the Yu-Shiba-Rusinov states19–21. However, if the
gap is suppressed by SOC, then the impurity-induced sub-gap
state is pinned to live inside the smaller gap, even in the pres-
ence of a magnetic field, explaining the robustness of the zero
bias peak to substantial magnetic fields. On the other hand,
the magnitude of conventional s++ pairing gap does not renor-
malize in the presence of SOC. Thus, the s++ superconductor
does not provide the robust zero-energy bound states at mag-
netic impurities, with zero bias states being strongly affected
by the perturbation of a magnetic field even with spin-orbit
coupling. Thus, our results, in addition to providing a pos-
sible theoretical explanation of robust zero bias conductance
peaks in iron-based superconductors1 without having to in-
voke exotic physics such as topological superconductivity1,16

or absence of exchange coupling between magnetic impurity
and the underlying Fe lattice17, also helps in identifying the
relevant symmetry of the superconducting order parameter of
iron-based superconductors as sign-changing s+−-wave.

The paper is organized as follows: In Sec. II, we introduce
the model Hamiltonian and the formalism. The robustness of
the zero-energy bound states induced by a single magnetic im-
purity with and without spin orbit coupling is investigated in
Sec. III. Then, we present the effects of the multiple magnetic
impurities in Sec. IV. Finally, a conclusion is given in Sec. V.
Some technical details pertaining to the analytical calculations
of the robustness are relegated to the Appendix.

II. MODEL AND FORMALISM

We start with a mean-field Hamiltonian for the iron-based
superconductor using the two-orbital model (dxz and dyz) on
the two-dimensional Fe square lattice24,

H = H0 + Hmag + Himp. (1)

Here, H0 is the tight-binding Hamiltonian in the supercon-
ducting state, including intra- and inter-orbital hopping inte-
grals

H0 =
∑

ijαβσ

tαβij c†iασcjβσ − µ
∑
iασ

c†iασciασ + Hpair, (2)

where c†iασ creates an electron with spin σ in the orbitals
α = 1 (dxz) and 2 (dyz) at site i. Following earlier work 5,
we take the values of the nearest-neighbor hopping matrix el-
ements as t11

i±x̂ = t22
i±ŷ = t1, t22

i±x̂ = t11
i±ŷ = t2 = −1.3t1, and

the next-nearest-neighbor hopping as tααi±(x̂+ŷ) = tααi±(x̂−ŷ) = t3,

and tαβi±(x̂+ŷ) = −tαβi±(x̂−ŷ) = t4 with t3 = t4 = 0.85t1. We have
taken t1 = 10 meV as the energy units and lattice constant
a = 1. The chemical potential µ = 1.65t1 is adjusted to give
a fixed filling factor ne ' 2.1 per site5. We have checked that
the main result of this paper – robust zero energy states at
magnetic impurities in s+− superconductors in the presence of
spin-orbit coupling – is robust to variations in these parame-
ters as long as the superconducting order parameter symmetry
is sign changing s+−-wave. The Fermi surfaces consist of the
hole pockets at Γ and M points and the electron pocket at X
point in the unfolded Brillouin Zone [Fig. 1(a)] without SOC.

The pairing Hamiltonian Hpair is given by

Hpair =
∑
ijα

∆α(i, j)c†iα↑c
†

jα↓ + h.c., (3)

where ∆α(i, j) is a mean-field superconducting order parame-
ter. We focus on the unconventional sign-changed s+− pairing
symmetry so that ∆α(i, j) = ∆0δi,j±(x̂±ŷ)

5,25. For a conventional
s++ superconductor, ∆α(i, j) = ∆0δi,j.

We can rewrite the Hamiltonian in the momentum space as
H0 = 1

N
∑

k Ψ
†

kĥ0
kΨk, where

ĥ0
k = ξi

kα̂
i ⊗ (τ̂3 ⊗ σ̂0) + ∆kα̂

0 ⊗ (τ̂1 ⊗ σ̂0), (4)

and Ψk is an 8-dimensional Nambu spinor Ψ
†

k =

[c†k1↑, c
†

k1↓, c−k1↓,−c−k1↑, c
†

k2↑, c
†

k2↓, c−k2↓,−c−k2↑] with ckασ

being a Fourier transform of crασ. The Pauli matrices α̂i, σ̂i
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FIG. 1. (a) Fermi surfaces of the two-band model at µ = 1.65t1 in
the unfolded BZ, and (b) the fermi surfaces of the helicity bands in
the presence of the Rashba-type SOC with ν = 0.25t1 = 2.5 meV.
The red pockets at Γ and M points represent the holelike pockets,
and the blue pockets at X point represent the electronlike pockets.
SOC produces the additional Fermi surfaces with the same chemical
potential.

and τ̂i act on the orbital, the particle-hole and the spin spaces,
respectively. Then, the order parameter ∆k = ∆0 cos kx cos ky
for s+− pairing, and the dispersions ξ0

k = (t1 + t2)(cos kx +

cos ky) + 4t3 cos kx cos ky −µ, ξ1
k = 4t3 sin kx sin ky, ξ2

k = 0, and
ξ3

k = (t1 − t2)(cos kx − cos ky).
The second term in the Hamiltonian Hmag describes

the effects of the magnetic field and SOC. In our work,
we consider the out-of-plane magnetic field hext, and the
Rashba-type SOC26 with an angular momentum L(k) =

(− sin ky, sin kx, 0)27,28 on the two-dimensional x − y plane.
Then, we have Hmag = 1

N
∑

k Ψ
†

kĥmag
k Ψk, where

ĥmag
k = −hextα̂

0 ⊗ (τ̂0 ⊗ σ̂3) + να̂0 ⊗ (τ̂3 ⊗ L(k) · σ̂) (5)

with ν being the strength of SOC.
In this work, we treat the magnetic impurity as a localized

spin in the classical limit (S � 1)19–21,29, and the quantum
(Kondo) effect of impurity is not under our consideration. In
this limit, which has been studied earlier quite extensively
for s+− and s++ superconductors in the absence of spin-orbit
coupling5–13, the magnetic impurity is equivalent to the lo-
cal magnetic moment S. Then the impurity Hamiltonian de-
scribes the interaction between the conduction electrons and
the impurity spin located at r = 0

Himp =
∑
α

S · (J1sαα(0) + J2sαᾱ(0)), (6)

where J1 and J2 are the intra- and inter-orbital exchange cou-
plings, and the operators sαβ(r) = 1

2
∑
σσ′ c†rαστ̂σσ′crβσ′ . Spin-

rotational symmetry of the system enables us to choose the
z axis of the spin degrees of freedom to point in the direc-
tion of S. Using the Nambu spinor Ψk, the impurity Hamil-
tonian can be rewritten as Himp =

∑
k,k′ Ψ

†

kV̂Ψk′ with V̂ =

J1S α̂0⊗(τ̂0⊗σ̂3)+J2S α̂1⊗(τ̂0⊗σ̂3). We shall consider the ef-
fects of the intra-orbital impurity scattering, thus the strength
of the impurity is given by w = S zJ1.

We perform a numerical study employing a mean-field T -
matrix approximation4,30. In this case, we assume that the

spatial variation of the superconducting order parameter can
be neglected. Since the impurity interaction is limited to one
site, scattering of quasiparticles from the impurity moment is
described by a T -matrix, T̂ (ω), whose Fourier transform is
independent of wave vectors. Then the single-particle Green’s
function for an impurity located at r = 0 is given by

Ĝ(r, r′;ω) = Ĝ(0)(r−r′, ω)+Ĝ(0)(r, ω)T̂ (ω)Ĝ(0)(−r′, ω), (7)

where Ĝ(0)(r, ω) = 1
N
∑

k Ĝ(0)(k, ω)eik·r. The single-particle
Green’s function for a clean system Ĝ(0)(k, ω) = [(ω+ i0+)I −
(ĥ0

k + ĥmag
k )]−1, where I is a 8-dimensional identity matrix. The

Fermi surfaces in the presence of SOC at zero magnetic field
is presented in Fig. 1(b). The helicity bands remove the de-
generacies of the electron spin in the electronlike and holelike
pockets. With Ĝ(0)(r, ω) in hands, the T -matrix can be ob-
tained from the Lippmann-Schwinger equation

T̂ (ω) =
[
Î − V̂Ĝ(0)(0, ω)

]−1
V̂ . (8)

Note that as far as the spatial variation of order parameter can
be neglected, these equations allow a complete solution of the
problem.

The nature of the magnetic impurity induced bound states
can be found by computing the spin-resolved local density of
states (LDOS)

Nασ(r, ω) = −
1
π

Im Gασ,ασ(r, r;ω) (9)

of which the poles give the energy spectra of single-particle
excitations, and consist of those of the Ĝ0 and the T matrix.
The poles of T -matrix signifies the emergence of the impurity
induced states. It is known that a strong scattering yields lo-
calized states deep in the gap, while a weak scattering results
in bound states close to the gap edge4.

For the case of a quantum spin, one needs to address the
Kondo effect31–33. However, following earlier work on s-wave
superconductors including s+− and s++

5–13, in this work, we
treat the magnetic impurity as a classical spin using a mean-
field T -matrix approximation approach. In this case the main
effect of the exchange coupling between the local moment S
and electron spin is the renormalization of the effective scat-
tering potential for electrons of two different spin orientations,
and so there are four impurity induced in-gap states, one for
each electron-spin orientation in each dxz (α = 1) and dyz
(α = 2) orbitals. It is noteworthy that the degeneracy between
two orbitals, dxz and dyz, cannot be removed by the magnetic
field and the SOC as well, thus we omit the notation of α in
the spin-resolved LDOS throughout this paper.

III. SINGLE MAGNETIC IMPURITY

We begin with the effects of the applied magnetic field and
SOC on the in-gap bound states induced by a single magnetic
impurity for the sign changed s+−-wave iron-based supercon-
ductor. Fig. 2 presents the spin-resolved LDOS Nσ(r = 0, ω)
at the critical values of impurity strengths w = wc(ν = 0) and
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FIG. 2. Magnetic field and SOC effects on LDOS, Nσ for s+− pairing
vs bias energy ω for clean system (green and magenta for σ =↑, ↓,
respectively) and system with an impurity at r = 0 (blue and red for
σ =↑, ↓) at T = 1.5 K. (a) and (d) show the appearance of both ZBPs
for σ =↑ and ↓ at the critical values w = wc(ν = 0) and w = wc(ν =

0.5t1), respectively; (b) and (c) illustrate the Zeeman splitting of N↑
and N↓ at weak magnetic fields hext = 0.06∆0 and 0.12∆0 without
SOC. Whereas (e) illustrates the robustness of the ZBPs, N↑,↓, to the
applied magnetic field in the presence of SOC, ν = 0.5t1 = 5 meV,
(f) the Zeeman split begins to appear with increasing magnetic field
for a single impurity in the system. Comparing the LDOS for clean
systems (green and magenta), it is manifest that the SOC slightly
changes the low energy states by forming a V-shaped LDOS, and
make the system robust against magnetic field.

w = wc(ν = 0.5t1) for a finite temperature T = 1.5 K below
the superconducting critical temperature Tc. For a weak im-
purity scattering w < wc, the ground state has time-reversed
pairs of single-particle in-gap states ±Ω. As w increases, the
energies ±Ω approach the chemical potential and, eventually,
at the critical scattering strength w = wc, it becomes a zero
energy state, or zero-energy bound state (ZBS)2–5. Fig. 2(a)
and (d) show the ZBSs for both spins (σ =↑ and σ =↓)
with zero magnetic field applied, hext = 0. In the absence
of SOC (ν = 0), the corresponding zero bias peaks (ZBPs)
in the LDOS at hext = 0 begin to split with increasing mag-
netic field hext. Fig. 2(b) and (c) illustrate the Zeeman splitting
by the applied magnetic fields hext = 0.06∆0 (∼ 4 Tesla) and
hext = 0.12∆0 (∼ 8 Tesla), respectively. In contrast, the pres-
ence of SOC (ν = 0.5t1 ∼ 5 meV) dramatically reduces the
Zeeman splitting and makes the ZBPs robust to the magnetic
field [Fig. 2(e) and (f)]. Note that SOC ∼ 5 − 10 meV may
not be unrealistic in iron based superconductors as seen in re-
cent high resolution ARPES experiments18. It is noteworthy
that the ZBSs localized at the impurity site in the presence of
SOC remain pinned to zero energy even in a magnetic field
0.12∆0 ∼ 8 Tesla. It is in good agreement with the exper-
imental observations1. We believe that the robust ZBS is a
strong signature of the presence of SOC in the system. Note,
however, the low energy quasiparticle states inside the gap

in the clean system (green and magenta) even at hext = 0
[Fig. 2(d),(e),(f)]. They exist because a finite SOC reduces
the magnitude of the superconducting gap, as discussed in the
introduction, and with a finite SOC ν = 0.5t1 = 5 meV the
system is a nodal superconductor. As discussed in the intro-
duction (also see below and the Appendix for more details),
the reduction of the magnitude of the superconducting gap in
s+− (but not in s++) superconductors with SOC is the key ef-
fect responsible for the increased robustness of magnetic im-
purity induced ZBSs to applied Zeeman fields. Later we will
show that in a system with a finite concentration of magnetic
impurities as in the experiments1, the low energy quasipar-
ticle density which effectively reduces the gap can naturally
arise from YSR states bound to the nearby impurities. In this
case, the ZBSs localized at impurity sites are robust to applied
magnetic fields (as well as to variations in the impurity poten-
tial) even for smaller values of SOC (ν = 0.25t1 = 2.5 meV),
corresponding to which the clean system has a full gap. This
demonstrates that our results are robust and do not depend on
the specific values of the parameters, as long as there is SOC
and a finite concentration of low energy quasiparticles at the
impurity sites as in the experiments.

The robustness of the ZBS due to SOC is attributed to a
combined effets of suppression of the superconducting gap by
SOC in the s+− case and the properties of magnetic impuri-
ties in nearly isotropically gapped superconductors. As seen
in Fig. 1, SOC produces a relatively large spin splitting that
pushes one Fermi surface towards the X-point and the other
towards the Γ-point in the Brillouin zone. On the other hand,
in s+− pairing, the pairing potential changes sign between
these two points. Therefore, as one Fermi surface moves to-
wards the X-point, the pairing amplitude is suppressed, so that
one of the Fermi surfaces would have a smaller gap. This
suppressed gap is still quite isotropic and as shown in the ap-
pendix, for such isotropic Fermi surfaces, one can prove that
an infinitesimal magnetic impurity will support sub-gap states
just as in the case of the YSR states19–21. However, if the
gap is suppressed by SOC, then the impurity-induced sub-gap
state is pinned to live inside the smaller gap, even in the pres-
ence of a magnetic field, explaining the robustness of the ZBP
to substantial magnetic fields. Since the coherence peaks from
the larger gapped Fermi surfaces are expected to be larger, the
smaller gap could appear as a pinned peak inside the larger
gap.

IV. MULTIPLE MAGNETIC IMPURITIES

Now we consider the robust ZBSs induced by the multi-
ple magnetic impurities for s+−-wave superconductor in the
presence of SOC. This addresses the so-called class-D anti-
localization mechanism. The case of a large number of bound
states to magnetic impurities in a superconductor with SOC
is described by random-matrix theory in symmetry class D22.
This symmetry class shows no level repulsion at zero energy.
Because of this, the disorder averaged density of states (or the
density of states of a large number of weakly localized bound
states) is expected to show a peak at zero energy quite gener-
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FIG. 3. Magnetic field and SOC effects on LDOS, Nσ for s+− pairing
vs bias energy ω for clean system (green and magenta for σ =↑, ↓,
respectively) and system with multiple impurities (blue and red for
σ =↑, ↓) at T = 1.5 K. 8 impurities are located in a square and d = 12
atomic sites. The LDOS are calculated at a impurity site. (a)–(c)
show the ZBPs for σ =↑ and ↓ at the critical value value of the im-
purity potential without SOC, w = wc(ν = 0). The ZBP is split by
applying magnetic field hext = 0.12∆0; (d)–(f) illustrate the robust-
ness of the ZBPs, N↑,↓ in the presence of SOC, ν = 0.25t1 = 2.5
meV.

ically independent of the magnetic field23. Specifically, in the
present context, nearby multiple Shiba impurities provide a
second mechanism (aside from SOC) of reducing the magni-
tude of local gap near a given magnetic impurity. By the ar-
gument given in the appendix, the zero bias peak at the given
impurity will then stay pinned at zero energy even if the value
of SOC is smaller, provided there is overlap of wave functions
from states localized at nearby impurities. This demonstrates
that our results are robust to specific values of SOC. Below we
explore this mechanism numerically by introducing multiple
Shiba impurities.

For numerical analysis, we consider 8 impurities arranged
in the shape of a square with the nearest neighbors separated
by d/2 = 6 lattice sites (various other arrangements of impu-
rities give qualitatively the same results). For this multiple-
impurity problem, the Green’s function, Eq. (7), is modified
to include the scattering from the neighboring impurities rI :

Ĝ(r, r;ω) = Ĝ(0)(0, ω) (10)

+
∑
I,I′

Ĝ(0)(δrI , ω)T̂ (rI , rI′ , ω)Ĝ(0)(−δrI′ , ω),

where δrI = r − rI runs for all impurities in the system, and
T̂ (rI , rI′ , ω) = [Î − V̂G(0)(rI − rI′ , ω)]−1V̂ is the 8×nimp-matrix
with nimp being the number of the impurities in the system. In
Fig. 3, we present the spin-resolved LDOS Nσ(0, ω) at one of
the impurity sites (rI = 0) for clean system (green and ma-
genta lines) and the impurity induced bound states at the crit-
ical scattering wc (blue and red lines) with and without SOC.
The Zeeman splitting in the absence of SOC is manifest in the

shift of each spin component in the LDOS for the clean system
with increasing Zeeman field, as shown in Fig. 3(b) and (c).
As the Zeeman field increases, the degeneracy between the
two spin components is removed, thus N↑ and N↓ split from
each other. On the other hand, even weak SOC (ν = 0.25t1)
dramatically changes the zero energy bound states, maintain-
ing the ZBS even in the presence of the applied magnetic field
∼ 8 Tesla. Fig. 3(d) shows the appearance of the ZPBs at
the critical value of the impurity scattering w = wc(ν) in the
presence of SOC ν = 0.25t1 with no magnetic field applied.
Fig. 3 (e) and (f) illustrate the robustness of the ZBSs to the
magnetic field hext.

In addition to robustness to applied magnetic field, in the
presence of SOC and low energy quasi-particle states within
the gap, the ZBSs in s+−-wave superconductors also become
robust to variations in the magnitude of the impurity scattering
potential. This is important because without SOC the appear-
ance of the ZBS at magnetic impurity sites in s+− supercon-
ductors requires fine tuned scattering potential at criticality
wc(ν = 0)5. In contrast, SOC enforces the appearance of ZBS
in a range of magnetic impurity scattering potential above the
critical value w = wc(ν). Fig. 4(b), (c), (e), and (f) show that
the presence of SOC facilitates the emergence of ZBSs in a
broad range of the impurity strength, whereas in the absence
of SOC, a ZBS is allowed only at the critical impurity scat-
tering w = wc(ν) [Fig. 4(a) and (d)]. In this plot, to illustrate
the impurity strength dependence of the peak positions, Nσ is
normalized by the height as Ñσ = Nσ/max(|Nσ|).

In contrast to unconventional sign-changing s+− pairing su-
perconductors, magnetic impurity-induced ZBSs in conven-
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FIG. 4. SOC effects on the ZBP for s+− pairing at hext = 0 for a
single impurity (top) and for 8 impurities in a square shape (bottom)
as in Fig. 3. For ν = 0, (a) and (d), the ZBP appears at the critical
value of impurity strength w = wc(ν = 0). For finite values of ν, (b),
(c), (e), and (f), the ZBP remains in a range of impurity strengths
(∆w = wU − wL) and the robustness increases with increasing SOC.
Note that ∆w for a single impurity is the same as those for multiple
impurities at the finite values of the SOC strength ν.
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FIG. 5. Effects of magnetic field and impurity strength on the in-
gap states for s++ pairing induced by 8 magnetic impurities in the
presence of SOC. (a) At wc, the peaks for σ =↑ and ↓ are located at
zero bias ω = 0 for hext = 0. (b) Magnetic field splits into double
peaks even in the presence of SOC (ν = 0.25t1). (c) and (d) illustrate
the ZBPs are sensitive to values of impurity strengths at ν = 0.25t1.
Insets illustrate the robustness of the ZBPs for s+− pairing against
the magnetic field and impurity strengths at the same SOC strength,
ν = 0.25t1.

tional s++ pairing (s-wave gap of the same sign on both hole
and electron pockets) is not robust to applied magnetic fields
even in the presence of SOC. Fig. 5 shows the spin-resolved
LDOS Nσ at a given impurity site (rI = 0) for a spin-orbit cou-
pled superconductor (ν = 0.25t1) with s++ pairing order pa-
rameter (∆k = ∆0) for various values of applied magnetic field
and the magnitudes of impurity strengths. Fig. 5 (a) shows the
appearance of the ZBS at w = wc(ν = 0.25t1) at zero applied
magnetic field and (b) shows the pronounced Zeeman split-
ting of the peaks even in the presence of SOC, which is in
stark contrast to the case of s+− pairing as shown in the insets.
It is noteworthy that the ZBSs for the s++ pairing requires fine
tuning in the impurity potential even in the presence of SOC.
Fig. 5 (c) and (d) show the double peak structure for σ =↑ and
σ =↓ for w < wc(ν = 0.25) and w > wc(ν = 0.25), respec-
tively, while the insets show the robustness of the ZBSs with
SOC to variations in the magnitude of the impurity potentials
for s+− symmetry of the order parameter.

V. DISCUSSION AND CONCLUSION

The formation of localized sub-gap bound states at non-
magnetic and magnetic impurity sites in unconventional (s+−)
and conventional (s++) multi-band superconductors have been
studied earlier5–13. Similar to the case of Yu-Shiba-Rusinov
states19–21 in spin-singlet single-band superconductors2–4, it
was found earlier that magnetic impurities induce localized
zero energy bound states in multi-band s± and s++ supercon-
ductors. Such zero energy bound states, however, occur at

a critical value of the impurity scattering potential and are
unlikely to be observed in experiments without fine tuning.
Moreover, in analogy to their counterparts in single-band su-
perconductors, the YSR states localized at magnetic impuri-
ties in multi-band superconductors are also unstable to applied
Zeeman fields. Applied magnetic fields, therefore, are ex-
pected to split the magnetic impurity induced STM zero bias
conductance peaks, if any, in a double peak structure. In re-
cent experiments1, however, robust STM peaks have been ob-
served in a class of iron based superconductors, which remain
unsplit even by a magnetic field as high as ∼ 8T . Concur-
rently, in another set of experiments18, a substantial spin-orbit
coupling ∼ 5 − 10meV have been observed in all the classes
of iron based superconductors in high resolution ARPES ex-
periments. This has prompted us to investigate the effects of
spin-orbit coupling on the Yu-Shiba-Rusinov states induced
at magnetic impurities in multi-band s± and s++ superconduc-
tors. Using a numerical T-matrix formalism and supporting
theoretical arguments we have shown that robust zero energy
bound states (that remain unsplit even by a magnetic field
as high as ∼ 8T ) are induced at isolated magnetic impurity
sites in multi-band unconventional sign-changed s+− super-
conductors in the presence of spin-orbit coupling. No such
enhancement of robustness by the effects of spin-orbit cou-
pling is present for magnetic impurities in conventional s++

multi-band superconductors.

The robustness of magnetic impurity induced zero bias
states in sign-changing s± superconductors to variations in
the impurity scattering potentials as well as the applied mag-
netic fields are the consequences of spin-orbit coupling along
with low energy quasiparticle states within the superconduct-
ing gap. As we have shown, spin-orbit coupling (and also the
presence of nearby magnetic impurities) effectively reduces
the magnitude of the superconducting gap in s± (but not in
s++) superconductors. Since the impurity induced YSR states
are pinned to the sub-gap energies even in the presence of
a Zeeman field (see Appendix), the reduction of the super-
conducting gap (on one of the Fermi surfaces) in s± super-
conductors by spin-orbit coupling effectively ensures that the
YSR states will remain pinned to zero or low energies in s±
superconductors even in the presence of a substantial mag-
netic field. As no reduction of the superconducting gap oc-
curs in s++ superconductors by the effects of spin-orbit cou-
pling, STM zero bias conductance peaks from magnetic im-
purities in s++ superconductors remain strongly split by mag-
netic fields even in the presence of spin-orbit coupling. These
simple and intuitive arguments, supported by theoretical and
numerical evidence presented in this paper, provides one pos-
sible explanation of the recent observation1 of robust STM
zero bias peaks at isolated magnetic impurities in one class of
iron-based superconductors, without having to invoke exotic
physics such as topological superconductivity1,16 and/or the
absence of exchange coupling of magnetic impurities with the
underlying Fe lattice17. It is important to reiterate that we find
the zero energy bound states localized at magnetic impurity
sites in conventional sign-unchanged (s++) superconductors to
be strongly sensitive to applied magnetic fields and variations
in the impurity potentials even in the presence of spin-orbit
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coupling. Thus, our results, in addition to filling the gap of
analyzing the effects of spin-orbit coupling on YSR states in
multi-band superconductors and providing one possible theo-
retical explanation of the observation of robust zero bias peaks
in iron based superconductors, may help identify the order pa-
rameter symmetry of these superconductors as sign-changing
s+− wave.
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Appendix A: Subgap states for weak coupling

Here we show that under quite generic circumstances there
is always a sub-gap state bound to magnetic impurities in two
dimensional BCS superconductor with an isotropic gap. The
bound states to an impurity in a lattice are obtained by solving
for the poles of the T-matrix or equivalently the zeros of an
effective Hamiltonian that is written as

Heff(ω) = V −G(0)−1(ω) (A1)

where in the case of a single-lattice site impurity, G(0)(ω) is
calculated on one lattice site. The single-site Green function
(G(0)(ω) ) can be expanded in terms of BdG eigenstates of the
bulk as

G(0)(ω) =
∑
n,k

ΨnkΨ
†

nk

ω − εnk
=

∫
dε
ρ0(ε)
ω − ε

χ(ε), (A2)

where ρ0(ε) is the DOS of BdG quasiparticles and χ(ε) =

ρ0(ε)−1∑
n,k ΨnkΨ

†

nkδ(ε − εnk).

Following Ref. 34, we note that in the presence of rotational
symmetry about the z-direction the Green function conserves
spin (i.e. [G(0)(ω), σz] = 0), so that it commutes with the im-
purity Hamiltonian V . In this case the two operators in the
effective Hamiltonian in Eq. (A1) can be simultaneously di-
agonalized and a bound state occurs whenever V = λ−1, for
some eigenvalue λ of G(0)(ω). In this appendix we focus on
weak impurity strengths, V , which could produce states near
the gap edge ∆1. For 2D BCS superconductors with a rota-
tionally symmetric gap, ρ0(ε) diverges near the gap edge as
ε → ∆1 and thus one can approximate the energy dependence
of χ(ε) in Eq. (A2) as χ(ε) ≈ χ0 + εχ1. Therefore, we can
ignore the energy dependence of χ(ε) ≈ χ0 in Eq. (A2) and
conclude that in the limit ω → ∆1, the eigenvalue of G(0)(ω)
can be approximated as λ ≈ f (ω)χ0,n, where f (ω) =

∫
dε ρ0(ε)

ω−ε
and χ0,n are eigenvalues of χ0.

Since the integral f (ω) is divergent as ω → ∆1 and χ0 has
at least one finite (non-zero) eigenvalue, λ−1 ∝ f (ω)−1 →

0 as ω → ∆1. Therefore, the impurity strength, V = λ−1,
required to produce a bound state near the gap edge (i.e. at
ω ∼ ∆1) vanishes as the bound state energy ω approaches the
gap edge. This implies that there is a bound state at arbitrarily
small impurity strengths inside the spectral gap independent
of how far the gap is suppressed.
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