
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Instability of the non-Fermi-liquid state of the Sachdev-Ye-
Kitaev model

Zhen Bi, Chao-Ming Jian, Yi-Zhuang You, Kelly Ann Pawlak, and Cenke Xu
Phys. Rev. B 95, 205105 — Published  4 May 2017

DOI: 10.1103/PhysRevB.95.205105

http://dx.doi.org/10.1103/PhysRevB.95.205105


Instability of the non-Fermi liquid state of the Sachdev-Ye-Kitaev Model

Zhen Bi,1 Chao-Ming Jian,2 Yi-Zhuang You,3 Kelly Ann Pawlak,1 and Cenke Xu1

1Department of Physics, University of California, Santa Barbara, CA 93106, USA
2Kavli Institute of Theoretical Physics, Santa Barbara, CA 93106, USA

3Department of Physics, Harvard University, Cambridge, MA 02138, USA
(Dated: April 10, 2017)

We study a series of perturbations on the Sachdev-Ye-Kitaev (SYK) model. We show that the
maximal chaotic non-Fermi liquid phase described by the ordinary q = 4 SYK model has marginally
relevant/irrelevant (depending on the sign of the coupling constants) four-fermion perturbations
allowed by symmetry. Changing the sign of one of these four-fermion perturbations leads to a con-
tinuous chaotic-nonchaotic quantum phase transition of the system accompanied by a spontaneous
time-reversal symmetry breaking. Starting with the SYKq model with a q−fermion interaction,
similar perturbations can lead to a series of new fixed points with continuously varying exponents.

PACS numbers:

I. INTRODUCTION

Non-Fermi liquids usually occur at quantum critical points of itinerant electron systems1–3. Strong correlation
and quantum critical fluctuation often make it challenging to study the non-fermi liquids through the standard
diagrammatic approach, and various expansion methods have been developed for that purpose4–8. Fortunately, there
exist some exactly soluble models for non-Fermi liquid states which do not rely on perturbation theory. In 1993,
Sachdev and Ye constructed one such example in (0 + 1)d9, which was reintroduced in a modified version lately by
Kitaev10. This model is now known as the Sachdev-Ye-Kitaev (SYK) model. The SYK model is a (0+1)d system that
consists of N Majorana fermions with q-fermion random interactions. When q = 2, the model is simply N Majorana
fermions with only random hopping terms, which can be solved completely using the random matrix theory. The
q = 4 SYK model (hereafter labelled as SYK4 model) is most thoroughly studied. Its Hamiltonian is given by

HSYK4 =
∑
ijkl

Jijkl
4!

χiχjχkχl, (1)

where χi,j,k,l are Majorana fermion operators with index i, j, k, l = 1 · · ·N , and Jijkl is a fully anti-symmetric tensor

whose each entry is drawn from a Gaussian distribution with zero mean and variance J2
ijkl = 3!J2

4/N
3. With large

N and low temperature, the SYK4 model can be solved exactly via saddle point equations and exhibits an emergent
conformal symmetry. The scaling dimension of the Fermion operator is ∆f = 1/4, which suggests a non-Fermi liquid
behavior without quasi-particle excitations10,11.

Furthermore, the exact solution also suggests that the SYK4 model is maximally chaotic, in the sense that its
Lyapunov exponent10,11, a measure of quantum chaos, saturates the universal upper bound established in Ref. 12.
The saturation of the universal upper bound is also a feature of black holes. In fact, the exact solution also indicates
that the SYK4 model should indeed be holographically dual to a gravity theory11,13–18. All SYKq models share the
properties such as maximally chaotic non-Fermi liquid ground states (for q > 2), emergent conformal symmetry at
large-N43, etc. Many other aspects of the SYK model, including the numerical simulations, generalizations to models
with higher symmetry, and higher dimensions, have been investigated recently14,19–32.

One peculiar feature of the SYKq model with q > 2 is that, in the large N limit, the chaotic non-Fermi liquids all
have finite entropy density even when the temperature approaches zero10,11,14,19. One might conjecture directly that
the system has instabilities towards states with lower (or zero) zero-temperature entropy density upon perturbations.
Indeed, in experimental systems, the non-Fermi liquid state at a quantum critical point is usually buried in a dome of
ordered phase with spontaneous symmetry breaking at low temperature33. One usual scenario is the emergence of a
superconducting dome around the quantum critical point, which occurs in cuprates, pnictides superconductors, and
also some heavy fermion systems. Thus it is meaningful to ask whether the SYKq model, especially the SYK4 model
is instable against spontaneous symmetry breaking. Or in other words, the SYK4 model could be the parent state of
ordered phases at the infrared44.

In this paper, we study a class of perturbations on the SYKq models. We will concentrate mostly on the case with
q = 4. Obviously, the non-Fermi liquid at the SYK4 fixed point will be unstable against the SYK2 perturbation.
However, the SYK4 has a time-reversal symmetry, under which all fermion bilinears are odd. The time-reversal
symmetry T forbids perturbations like the SYK2 term. Thus we only consider four-fermion terms which are symmetric
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FIG. 1: The phase diagram of Eq. 2.

under T . As we will show, the non-Fermi liquid SYK4 model is instable against a series of four-fermion interactions
that preserve all the symmetries, and the system flows to a state with spontaneous breaking of T .

A similar analysis can be generalized to the SYKq non-Fermi liquid with q > 4 perturbed by the four-Fermion
interactions we design. Interestingly, the four fermion interactions can drive the SYKq model to a series of new stable
fixed points with conformal symmetry.

II. A PERTURBED q = 4 SYK MODEL

The goal of the first section is to study the following generalized SYK model:

H =
Jijkl

4!
χiχjχkχl +

u

2
CijCklχiχjχkχl (2)

Both Jijkl and Cij are anti-symmetric random tensors drawn from a gaussian distribution. We choose the following
normalization for Jijkl and Cij :

Jijkl = 0, N3J2
ijkl = 3!J2

4

Cij = 0, N2CijCkl = J2(δikδjl − δilδjk). (3)

Note that J4 has the dimension of energy, while J has the dimension of (energy)1/2. The results of this section is
summarized in phase diagram Fig. 1.

The two terms in Eq. 2 have the same symmetry: the time-reversal symmetry T which acts as χj → χj , i→ −i (it
is the same time-reversal symmetry of the boundary states of the topological superconductor in the BDI class34–36),
and a statistical O(N) symmetry. We will demonstrate that, by tuning u from negative to positive, the system goes
through a continuous phase transition from a chaotic phase to a nonchaotic phase. The critical properties of this
transition are analogous to that of the Kosterlitz-Thouless transition, with exponent ν = +∞.

A. The u−term

Before we study Eq. 2, let us start with the Hamiltonian with only the second term:

H ′ =
u

2
CijCklχiχjχkχl. (4)

This Hamiltonian can be written as H ′ = −ub̂2/2, with b̂ = iCjkχjχk. Since b̂ commutes with H ′, it is a conserved

quantity. Thus every eigenstate of H ′ is an eigenstate of b̂ with eigenvalue b. When u > 0, the ground state of H ′ has

the maximum eigenvalue of b̂.

Now we can view b̂ as a quadratic fermion Hamiltonian with random hopping. To maximize b̂, the system fills all
the negative (or positive) eigenvalues of the single fermion energy level εl, and Max[|b|] = |

∑
εl| with εl < 0.
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The single particle energy levels εl are the eigenvalues of the random Hermitian matrix iC. Based on the semi-circle
law, the average number of eigenvalues of iC in (ε, ε+ dε) is given by ρ(ε)dε with

ρ(ε) =
N2

2πJ2

√
4J2

N
− ε2. (5)

Then we can obtain the average value of Max[|b|] as

Max[|b|] =

∣∣∣∣∣
∫
ε<0

dεερ(ε)

∣∣∣∣∣ =
4JN

1
2

3π
. (6)

Therefore, the average ground state energy of H ′ is E0(H ′) = − 16uJ2N
9π2 . Thus just like the ordinary SYK model, H ′

normalized as in Eq. 3 is an order-N term.
For u < 0, all states with b = 0 are ground states, and b = 0 is a very “loose” condition. We will argue that H ′

with u < 0 behaves like a completely free system with zero Hamiltonian. The (many-body) spectrum of b̂ is given
by b =

∑
εl>0 εlnl, where the occupation number nl = ±1. This expression of b is similar to an N

2 -step random walk
centered around 0. The distribution of b should therefore be Gaussian. The standard deviation σb of this “random
walk” is given by

σ2
b =

∑
εl>0

ε2
l =

1

2
Tr
(
(iC)†(iC)

)
=
∑
i<j

|Cij |2 =
N − 1

2N
J2. (7)

The (many-body) density of states of b̂ can be then approximated by

ρ(b) = 2
N
2

√
N

π(N − 1)J2
e
− Nb2

(N−1)J2 , (8)

namely the number of eigenvalues of b̂ in (b, b+ db) is given by ρ(b)db. The expression ρ(b) of the density of states b̂
is most accurate near b = 0, which is exactly the region of interest when u < 0. We can now calculate the partition
function

Z =

∫
dbρ(b)eβub

2

= 2
N
2

1√
1 + β|u|N−1

N J2
. (9)

The entropy density S can be written as S = 1
N

(
logZ − β ∂

∂β logZ
)

. Interestingly, we notice that, for any fixed β,

lim
N→∞

S =
1

2
log 2. (10)

Therefore, if we take the large N limit first before we take β → ∞, we will conclude that the “ground state”
entropy density is given by 1

2 log 2. Such an entropy density is exactly the same as the system with zero Hamiltonian.
Therefore, we argue that the system with u < 0 behaves like a completely free system with zero Hamiltonian. Using
the partition function, we can also calculate the specific heat of H ′ with u < 0:

cv = −β dS
dβ

=
1

2N

(
N−1
N |u|J

2β

1 + N−1
N |u|J2β

)2

. (11)

B. Renormalization Group of u

When u is treated as a perturbation in Eq. 2, power counting indicates that it is a marginal perturbation at the
SYK4 fixed point. Now we perform a perturbative renormalization group calculation for u. We evaluate the fermion
Green’s function at the SYK4 fixed point:

G(τ) =

(
1

4π

)1/4
sgn(τ)

|J4τ |1/2
, G(iω) = π1/4 isgn(ω)

|J4ω|1/2
. (12)
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FIG. 2: (a), (b), (c), the diagrams that we consider for the leading order RG for the coupling constant u in Eq. 2. Only diagram
(a) contributes in the large−N limit. (d), the leading order RG for u in Eq. 17, which is equivalent to (a), the solid and dashed
lines are fermion and boson Green’s functions.

The diagram Fig. 2a leads to the following beta function for u:

β(u) =
du

d ln l
=

2√
π

1

J4

∑
i,j

|Cij |2u2 =
2J2

√
πJ4

u2. (13)

Here we have replaced
∑
i,j |Cij |2 by J2, which is consistent with the distribution of Cij , in the large N limit.

Diagrams Fig. 2b and c will contribute at the subleading order of 1/N . For example, Fig. 2b will generate a term
∼
∑
m,n CimCmnCnjCklu

2χiχjχkχl. This term is subleading in 1/N counting after disorder average.

The beta function indicates that the H ′ perturbation with u > 0 (u < 0) is marginally relevant (marginally
irrelevant) at the SYK4 fixed point. If we start with a small perturbation u > 0, the RG equation implies that it will

become order 1 at the energy scale Λ̃ where

Λ̃ ∼ Λ exp

(
−
√
πJ4

2J2u

)
. (14)

Λ is the UV cut-off of the RG that we can roughly take as Λ ∼ J4. The standard scaling relation between the
energy scale (mass gap) and the tuning parameter r away from a critical point rc is Λ̃ ∼ |r − rc|ν , thus the quantum
phase transition led by tuning u across zero has exponent ν = +∞, which is analogous to the Kosterlitz-Thouless
transition37.

This RG analysis predicts that the SYK model, although describes a non-Fermi liquid state, actually has similar
instabilities as the ordinary Fermi liquid: there exists symmetry allowed four fermion terms that are marginally
relevant/irreleavant depending on their sign. When u is marginally relevant, our mean field solution in the next
subsection (and the analysis of H ′ in the previous subsection) suggests that the fate of the SYK model is also similar

to the ordinary Fermi liquid: the system develops long range correlation 〈b̂(0) b̂(τ)〉, where b̂ is the fermion-bilinear
operator defined in the previous subsection. The physics here is analogous to the condensation of Cooper pair of the
ordinary Fermi liquid theory.

The effective action of Eq. 2 after a Hubbard-Stratonovich transformation reads

Seff =

∫
dτ

1

2

∑
i

χi∂τχi +
∑
ijkl

{
Jijkl

4!
χiχjχkχl +

u

2
CijCklχiχjχkχl

}
(15)

=

∫
dτ

(
1

2
χi∂τχi +

u

2
b2 − iuCjkbχjχk

)
+
Jijkl

4!
χiχjχkχl (16)

The Hubbard-Stratonovich field b is a real field. Einstein summation convention is assumed in all the equations.
The indices are summed from 1 to N with the constraint that different indices cannot take the same value. Now we
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FIG. 3: The fermion wave function renormalization based on Eq. 2 and Eq. 17 respectively. These diagrams correspond to a
u3 term in the beta function, and it carries a factor of 1/N .

can perform disorder average on Jijkl and Cjk with the distribution Eq. 3. Assuming everything is replica diagonal
(justification of this assumption will be given in section IV), the disorder-averaged action is equivalent to the following
form:

Seff =

∫
dτ

1

2
χi∂τχi +

u

2
b2 − u2 J

2

N2

∫
dτ1dτ2 (b(τ1) b(τ2))(χj(τ1)χj(τ2))2

− J2
4

8N3

∫
dτ1dτ2 (χi(τ1)χi(τ2))4. (17)

This disorder-averaged action has an explicit O(N) symmetry, the fermion carries a vector representation of the O(N).
The beta function for u can also be computed based on Eq. 17. Fig. 2d based on Eq. 17 makes the same contribution

to the beta function as Fig. 2a. In the large−N limit, the beta function Eq. 13 is actually exact. The higher order
terms of the beta function can be ignored in the large−N limit even when u grows beyond order-1 (and hence becomes
dominant) under the RG flow. For example the fermion wave function renormalization in Fig. 3 corresponds to a
u3 term in the beta function, and it carries a coefficient 1/N . Other diagrams, such as the ladder diagrams for the
four-point functions computed in Ref. 11, also contribute at the subleading 1/N order compared with Fig. 2a,d.

C. Mean field solution

We can introduce fermion Green’s function and Self-energy function G and Σ by inserting the following integral in
the action (G and Σ are real fields):∫

DΣDG exp

{
−N

2
Σ(τ1, τ2)

(
G(τ1, τ2)− 1

N

∑
i

χi(τ1)χi(τ2)

)}
(18)

Then the action Seff is equivalent to:

Seff = −N log Pf (∂τ − Σ) +

∫
dτ

u

2
b2 − u2J2

∫
dτ1dτ2 (b(τ1)b(τ2))(G(τ1, τ2))2

−N J2
4

8

∫
dτ1dτ2 (G(τ1, τ2))4 +N

∫
dτ1dτ2

1

2
Σ(τ1, τ2)G(τ1, τ2) (19)

Since the H ′ term itself has long range correlation of b̂, we expect that the phase with relevant u perturbation also
develops the long range correlation of b(τ). Since the ground state of H ′ has b ∼ N1/2, let us assume 〈b(τ1)b(τ2)〉 =
Nw2, where w takes order-1 value with no time dependence. Then we can derive the mean field equation for the
Green’s function, the self-energy, and also w:

G(iωn)−1 = −iωn − Σ(iωn) (20)
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FIG. 4: Transition temperature Tc as a function of u by numerically solving the mean field equations (20-22). This confirms
the scaling relation in Eq. 14.

Σ(τ) = J2
4G(τ)3 + 4u2J2w2G(τ) (21)

∫
dτ

(
uJ2G(τ)2 − 1

2
δ(τ)

)
uw = 0 (22)

The saddle point Eq. 22 has two possible solutions: w = 0 or∫
dτ G(τ)2 =

1

2uJ2
. (23)

For the w = 0 saddle point, these equations return to the saddle point equations for the pure q = 4 SYK model.
The system is in the chaotic non-Fermi liquid phase. However, when w 6= 0, in the low energy, the second term in
Eq. 21 becomes dominant, and the system is effectively described by a random two fermion interaction and it is in
a non-chaotic phase45. In this phase, G(τ) will depend on the values of w, and we can self-consistently determine w
from Eq. 23. The chaotic-nonchaotic transition happens when u is tuned from negative to positive through 0. When
u is negative, Eq. 23 has no solution and w has to be 0. For any positive u, at zero temperature there is always
a solution with finite w. The state with long range correlation 〈b(0)b(τ)〉 spontaneously breaks the time-reversal
symmetry T : χj → χj .

There are two time scales in our problem, τUV2 ∼ (uwJ)−1 and τUV4 ∼ J−1
4 . In the small u limit, namely

τUV2 � τUV4 , the contribution of the integral in Eq. 23 mainly comes from the region τ ∈ [τUV4 , τUV2 ], and in this
region G(τ) takes the form of the ordinary SYK model:∫

dτ G(τ)2 '
∫ τUV

2

τUV
4

dτ
2√
π

1

J4τ
=

2√
πJ4

log(
J4

uwJ
) (24)

Together with Eq. 23, we have

w ' J4

uJ
exp

(
−
√
πJ4

4uJ2

)
. (25)

This result is consistent with the observation that a positive u is only marginally relevant. The size of the condensate
is analogous to the superconductor gap of the BCS theory.

At finite u, the scale Λ̃ in Eq. 14 can be viewed as the critical temperature Tc below which the system develops
nonzero w and hence spontaneously breaks time-reversal T . Our numerical solution of the mean field equations
Eq. 20,21,22 confirms the scaling between Tc and u (Fig. 4). In the numerical solution we have taken J2/J4 = 1. Our

RG Eq. 14 predicts that Tc ∼ exp(−
√
π

2
1
u ) = exp(−0.886/u), and our mean field solution gives Tc ∼ exp(−0.897/u).
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III. FURTHER GENERALIZED PERTURBATIONS

Now let us consider a series of generalized Hamiltonians:

H = SYKq +H ′, H ′ =
u

2

M∑
a=1

CaijC
a
klχiχjχkχl, (26)

with M ∼ NA. SYKq is the generalized SYK model with a random q−fermion interaction, and A ≥ 0. We first
choose the following normalization of Caij

N2 CaijC
b
kl = J2δab(δikδjl − δilδjk). (27)

We still start with the beta function of u. If we evaluate the Green’s functions at the SYKq fixed point, the beta
function of u reads

β(u) =
du

d ln l
= (1− 4

q
)u+ Cu2 + c̃3

M

N
u3 + · · · (28)

where C > 0 is an order-1 constant.

A. cases with A < 1

For A < 1, we can keep just the linear and quadratic terms of the beta function, as all the higher order terms
vanish in the large−N limit, when u is order-1 or smaller. For A < 1 and u > 0, u is relevant at the SYK fixed point
for q > 4, and marginally relevant for q = 4. We expect the system to behave similarly as the case with M = 1 and
q = 4, namely the relevant u perturbation drives the system into a nonchaotic phase with spontaneous T breaking:

limτ→∞
∑
a〈ba(0) ba(τ)〉 6= 0, where b̂a = iCajkχjχk. The same set of equations as Eq. 20,21,22 can be derived, and

in this case
∑M
a=1〈ba(0) ba(τ)〉 = Nw2, and w is given by Eq. 25.

Exact diagonalization of the H ′ term in this case confirms our expectations. To detect the long range correlation
of 〈ba(0)ba(τ)〉, we measure the zero-frequency component of the boson spectral function. The spectral function is
defined as

D(ω) =
1

M

M∑
a=1

∑
n

∣∣〈0|b̂a|n〉∣∣2δ(ω − En + E0), (29)

where En and |n〉 are eigenenergies and corresponding eigenstates of the Hamiltonian H ′, obtained from the exact
diagonalization H ′|n〉 = En|n〉 (n = 0, 1, 2, · · ·). n = 0 labels the ground state. The Caij normalization in Eq. 27

ensures that b̂a†b̂a = 1 (the identity matrix) in the large N limit, so that D(ω) has a well-defined thermodynamic
limit. If the static correlation D(ω = 0) remains finite in the thermodynamic limit N → ∞, then the system will
develop long range correlation and spontaneously break T . The Fig. 5 shows the result of the static correlation
D(ω = 0) (in logarithmic scale) for different N at A = 0.2 and u > 0. lnD(0) oscillates with N in an eight-fold period
due to the systematic change of random-matrix ensemble of H ′ as discussed in Ref. 20. Apart from the oscillation,
D(ω = 0) remains at and converges to a finite level (roughly indicated by the dashed line in Fig. 5). Therefore our
finite-sized calculation indeed supports a nonchaotic phase with spontaneous T breaking for the A < 1 and u > 0
case.

By contrast, for either A > 1, or A < 1 while u < 0, ED shows D(0) decreases rapidly with increasing N (Fig. 6).
For A < 1 and u < 0, the u term flows to a stable fixed point u∗ ∼ −(1 − 4/q)/C. At this fixed point, since u∗

is an order-1 number, the fermion self-energy correction Fig. 3 is at the M/N order, which vanishes in the large−N
limit for A < 1. Thus the fermion scaling dimension remains the same as the SYKq model: ∆f = 1/q. But at this
stable fixed point, the boson field ba ∼ iCajkχjχk acquires a correction, and has scaling dimension ∆b = 1 − 2/q in
the large−N limit. Starting with a SYKq model with q > 4, changing the sign of u will drive a chaotic-nonchaotic
transition with exponent ν = q/(q − 4).

B. cases with A > 1

For A > 1, the RG equation is uncontrolled because the higher order terms in the beta function dominate in the
large−N limit. However, we can understand the model by taking the limit M → +∞ first. One intuitive way to
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FIG. 5: The logarithmic static correlation lnD(0) v.s. the fermion number N for the case of u > 0 and A = 0.2. The error bar
shows the statistical deviation over different random realizations of the coefficient Ca

ij . When N mod 8 = 0, D(ω = 0) vanishes
exactly, so we use the finite frequency extrapolation to obtain the static correlation D(0) = limω→0D(ω) in these cases.

FIG. 6: The logarithmic static correlation lnD(0) v.s. the fermion number N for the case of A = 0.2, u < 0 (left), and A = 2,
u > 0 (right). Neither case shows long range correlation of the bosonic field ba. Both D(ω = 0) (red) and limω→0D(ω) (blue)
are plotted in the figures.

think about this case is that according to the central limit theorem
∑M
a=1 C

a
ijC

a
kl with M → +∞ follows the Gaussian

distribution. So for either sign of u, Eq. 26 should behave the same as the q = 4 SYK model. In order to explicitly
demonstrate this statement, it is more convenient to use a different normalization of Caij :

N (3+A)/2 CaijC
b
kl = J2δab(δikδjl − δilδjk). (30)

We can perform the disorder average and integrating out Caij , the leading order term in the large−N limit is an eight-

fermion interaction term ∼ u2J4

N3

∫ ∫
dτdτ ′(χi(τ)χi(τ

′))4, just like the disorder averaged q = 4 SYK model, while all

higher order 8n-fermion interaction terms S(8n) are suppressed ∼ (u2J4)n

N3n+A(n−1)

(∫ ∫
dτdτ ′(χi(τ)χi(τ

′))4
)n

. Thus for
A > 1, the u−term actually behaves the same as the SYK model in the large−N limit. This conclusion is consistent
with the previous study of a similar generalization of the SYK model38.

C. the H ′ term with A = 1

A = 1 is the critical situation, and the H ′ term itself (equivalent to taking q = +∞ in Eq. 26) is already interesting
enough when A = 1. With the H ′ term only, we numerically solve the following coupled Schwinger-Dyson equations
with the normalization from Eq. 30:

G̃f (iωn)−1 = −iωn − Σ̃f (iωn), Σf (τ) = 4

√
M

N
u2J2Gb(τ)Gf (τ) (31)

G̃b(iωn)−1 = u− Σ̃b(iωn), Σb(τ) = 2

√
N

M
u2J2G2

f (τ) (32)
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FIG. 7: The numerical solution of Eq. 31,32, for u = −1, J = 1, β = 300 with different M/N , without assuming a conformal
solution from the beginning. Both the boson and fermion Green’s functions have nice power-law scaling with the frequency,
whose scaling dimensions depend on M/N .

FIG. 8: We numerically solve the Schwinger-Dyson equations (31-32) for u = −1, J = 1, β = 300 and fit the low frequency part
as a power law. The scaling dimensions are continuous function of M/N , and for all the data points, the relation 2∆f + ∆b = 1
is held. The solid curves plot the solution of the scaling dimensions based on Eq. 33. In particular, for M/N = 1 (the dashed
line), the scaling dimensions obtained from both the numerical and analytical solutions match with the prediction from the
SUSY SYK model.23

For the case with A = 1 and u < 0, the numerical solution of Eq. 31,32 generates well-converged power-law
correlation functions for all α = M/N , for both the fermion and boson fields (Fig. 7). And the scaling dimensions
always satisfy 2∆f + ∆b = 1.

Alternatively, by assuming that Gb(τ) ∼ B/|τ |2∆b and Gf (τ) ∼ F sgn(τ)/|τ |2∆f in the infrared limit, Eq. 31,32
reduce to the following equation for ∆b for each ratio M/N :

2
M

N

sin2
(
π
2 ∆b

)
sin2 (π∆b)

Γ(∆b)Γ(−∆b)

Γ(2∆b)Γ(−2∆b)

2∆b − 1

2∆b
= −1. (33)

∆f can be determined by ∆b + 2∆f = 1. In particular, for M/N = 1, our solution matches with the result of the
SUSY SYK model23, where the model also has M/N = 1 and u < 0. The numerical solutions of Eq. 31,32 and

analytical solution of Eq. 33 are both plotted in Fig. 8. With small M/N , ∆f is approximately ∆f ∼ 1/π
√
M/N .

IV. SUMMARY AND DISCUSSION

In this work we have demonstrated through various methods that the non-Fermi liquid fixed point of the SYK4

model is instable against a class of marginally relevant four fermion perturbations, and these perturbations drive the
system into a non-chaotic state with zero ground state entropy, and spontaneous time-reversal symmetry breaking.
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Because these perturbations are only marginally relevant, this effect occurs at exponentially low energy scale for a
fixed strength of the perturbation. Spontaneous time-reversal symmetry breaking in experimental systems can be
probed through Kerr rotation, which has been successfully applied to various condensed matter systems39–42. Similar
perturbations (with an opposite sign) can drive the SYKq model with q > 4 to a series of fixed points with continuously
varying scaling dimensions.

So far we have ignored the replica index, for instance in Eq. 17. We will provide a self-consistent justification for
this procedure. The usual argument for ignoring the replica index after disorder averaging the SYK interaction Jijkl
is that, the replica off-diagonal terms are subleading in 1/N expansion24. Here we will investigate the replica index
introduced after disorder averaging Cajk, and we only need to consider the case with A ≤ 1, since as we have argued
before, the case with A > 1 is equivalent to the SYK4 model.

Starting with the boson-fermion interaction term, −iuCajkbaχjχk, reinstating the replica index after disorder-average
will lead to the following term

∼ −u
2J2

N2

∑
α,β

∫
dτ

∫
dτ ′

M∑
a=1

baα(τ)baβ(τ ′)
(
χαj (τ)χβj (τ ′)

)2

. (34)

In the phase where baα does not condense (corresponds to u < 0 in our case), the usual perturbation argument like
Ref. 24 will conclude that the replica off-diagonal terms will always make subleading contribution to the partition
function compared with the diagonal terms. In the phase with ba condenses (A < 1, u > 0), the mean field solution

tells us that
∑M
a=1〈baα(τ)baβ(τ ′)〉 in Eq. 34 is at order of N . Then the perturbation argument will tell us when u > 0

and A < 1, the contribution from the replica off-diagonal terms is still subleading. Thus for all the main conclusions
of this work, we can always make the replica diagonal assumption, and hence ignore the replica index.

The authors thank Wenbo Fu, Yingfei Gu, Xiao-Liang Qi, Subir Sachdev for very helpful discussions. Zhen Bi and
Cenke Xu are supported by the David and Lucile Packard Foundation and NSF Grant No. DMR-1151208.
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