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We explore the far-field scattering properties of anisotropic 2D materials in ribbon array configu-
ration. Our study reveals the plasmon-enhanced linear birefringence in these ultrathin metasurfaces,
where linearly polarized incident light can be scattered into its orthogonal polarization or be con-
verted into circular polarized light. We found wide modulation in both amplitude and phase of the
scattered light via tuning the operating frequency or material’s anisotropy and develop models to
explain the observed scattering behavior.

Introduction – Metal-based metasurfaces can allow
ways to manipulate light not possible in natural media,
such as anomalous reflection and refraction [1], photonic
spin Hall effect [2], sub-wavelength imaging [3], among
many other optical phenomena [4–6]. Although, one can
tailor the optical response of metallic metasurfaces with
geometry and choice of constituent metals, such metasur-
faces cannot be cast in reconfigurable photonics, where
real time control over the designated functionality is de-
manded [7]. As alternate platforms, two dimensional
(2D) materials [8, 9], such as graphene, which allow for
active modulation of optical properties via electrical [10],
chemical [11], and optical [12] means, garner attention as
natural material choice for application in tunable planar
photonics [13–15].

The linear birefringent effect, which denotes direction-
dependent phase accumulation of linearly polarized light,
relies on the anisotropic property of the host medium [16].
In metasurfaces, the latter can be achieved through arti-
ficial manipulation of the surface itself (with anisotropic
doping [17] or patterning [18, 19]) or its surroundings
(through integration with an array of anisotropic metal-
lic or dielectric patches [20, 21]). Alternately, with the
recent isolation of anisotropic 2D materials [22–25], one
can exploit the inherent anisotropy of the crystal lattice
to induce the phase anisotropy [26, 27]. In homogeneous
form, such 2D materials with anisotropic [28, 29] and hy-
perbolic [30, 31] polaritonic properties, can be regarded
as ideal material platforms to be used as ultra-thin lin-
early birefringent retarders.

In this work, we study light scattering properties in
anisotropic 2D materials and show how plasmon excita-
tion in ribbon array (RA) configuration can enable a wide
range of control over the amplitude, phase, and polariza-
tion state of the scattered light. Through inspection of
various scenarios, we found that the mere rotation of the
array plane relative to the incident field polarization, or
modulation of material Drude weights through control of
its carrier density or effective mass, can be adopted to
drastically tune the RA optical response.

Homogeneous anisotropic surface – To avoid additional

scattering effects due to index contrast, we focus our
study on a free-standing anisotropic surface. The 2D
crystal resides on the x − y plane, where x and y are
set to be along the lattice high-symmetry directions, i.e.,
x = xp and y = yp, with xp denoting the crystal axis
with the highest static conductivity; see the schematic
illustration in Fig. 1(a).

For a linearly-polarized plane wave impinging normally
on the anisotropic 2D lattice, the scattered fields, in gen-
eral, are elliptically-polarized plane waves with the scat-
tered power, given as [32]:

|ς|2 =
|ςx|2 + |ςy|2 tan2 θ0

1 + tan2 θ0
, (1)

and the ellipse major-axis rotation of:

∆θς =
1

2
arctan ( Aς ,Bς )− θ0

Aς = 2 |ςxςy tan θ0| cosψς

Bς = |ςx|2 − |ςy|2 tan2 θ0.

(2)

In Eqs. (1) and (2), ς → r(t) for the reflected (transmit-
ted) wave and arctan (·, ·) is the four quadrant inverse
tangent function. θ0 is the angular detuning and denotes
the angle between the incident polarization vector and
x-axis; see Fig. 1(a). ςj with j ∈ {x, y} is the scattering
amplitude, defined as the ratio of the scattered field along
the j-axis over the field component of the incident wave
parallel to the same axis. For the homogeneous surface,
the latter can be calculated through:

rj =
−σpjj

2Y0 + σpjj
, tj =

2Y0
2Y0 + σpjj

, (3)

where Y0 =
√
ε0/µ0 is the intrinsic admittance of the

free space. A Drude-like expression is used to model the
dynamic conductivity of the anisotropic surface:

σpjj(ω) =
iDj

ω + iδ/h̄
, (4)

where δ accounts for the finite carrier lifetime, taken to be
10 meV in this work, and Dj denotes the Drude weight
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FIG. 1: (a) The schematic illustra-
tion of plane wave interaction with
homogeneous anisotropic 2D mate-
rial. Contour plots of the reflected
(b) power and (c) absolute rotation
angle (in degrees) versus frequency
and angular detuning. (d) and (e)
are similar to (b) and (c) for the
transmitted field.

along the corresponding axis, j [33]. We note that for
homogeneous surface, off diagonal conductivity elements
are zero in the basis of principal axes. The Drude model
would suffice for terahertz frequencies since the band gaps
of known anisotropic 2D materials are in the mid-infrared
to visible [34–36]. Take for instance, a 10 nm black phos-
phorous film, with a doping of 0.3 eV, yields the pair of
Drude weights Dx = 162 and Dy = 59 GHz/Ω (see Sup-
plemental Material [37]). Throughout this study, unless
mentioned otherwise, these Drude weights are assumed.
The quantity ψς = 6 ςy− 6 ςx, measures the phase retarda-
tion between the components of the scattered field along
the two coordinate axes. To determine the polarization
type of the scattered field, we compute the ellipticity
angle, φς , defined as: tan 2φς = tanψς sin 2 (∆θς + θ0),
where φς = 0◦/45◦ identifies the scattered field as a plane
wave with linear/circular field polarization [32].

The homogeneous surface response and its dependence
on frequency and angular detuning are summarized in
Figs. 1(b)-(e). When incident light is linearly-polarized
along the principal axes, the scattered field remains lin-
ear with zero rotation of polarization plane. The corre-
sponding power in this case is simplified to: |ς|2 = |ςx/y|2
for θ0 = 0◦/90◦ angular detuning. However, when the
incident polarization is not aligned with the crystal high-
symmetry axes, the anisotropic Drude absorption renders
the scattered fields to be of elliptical form with nonzero
ellipse rotation. The observed trends in this scenario sug-
gest a trade-off between the scattered power and ∆θς ,
where one can identify a maximum for ellipse rotation
angle, ∆θmax

ς at a particular angular detuning, θmax,ς
0 .

These quantities can be well approximated by [37]:

θmax,ς
0 ' arctan

√∣∣∣∣ ςxςy
∣∣∣∣

∆θmax
ς ' arctan

(
1

2

(√∣∣∣∣ ςyςx
∣∣∣∣−
√∣∣∣∣ ςxςy

∣∣∣∣
))

.

(5)

From Figs. 1(c) and (e), the maximum rotation angle is

higher for the reflected wave compared to that of the
transmitted wave. Moreover, θmax,r

0 > θmax,t
0 . Equations

(3) and (5) along with |σpxx| >
∣∣σpyy∣∣ can be invoked to

justify these observations.

From Eq. (5), the linear birefringent effect and its in-
duced ellipse rotation is directly dependent on the ratio
of the scattered amplitudes. Thus, to engineer the ra-
tio, one may pattern the homogeneous 2D surface into
periodic array of microribbons [38, 39]. In the array ge-
ometry, the scattered amplitude, perpendicular to the
ribbons, can be enhanced through excitation of localized
plasmons. We next, elaborate how patterning can play a
role in enhancing the linear birefringence.

Periodic array of microribbons – To properly model the
plane wave interaction with patterned anisotropic meta-
surfaces, one needs to resort to numerical approaches
for solving the Maxwell’s equations in conjunction with
the appropriate boundary conditions. For this pur-
pose, we use the periodic method of moments technique,
which is widely adopted for the simulation of patterned
conductive metasurfaces in the past decades [40, 41].
The method offers straightforward implementation of the
anisotropic conductivity and provides a versatile plat-
form for analyzing the plane wave interaction [42, 43]. In
line with the study we conduct for the homogeneous sur-
face, here again we are interested in free standing array
under normal illumination.

In conjunction to the numerical results, we also de-
rived an approximate analytical model, which helps de-
velop physical intuition on the diffraction problem. For
metal grid reflectors at a dielectric boundary, using a
transmission line analogy, an effective conductivity ten-
sor can be defined as: σt = f(Zm + fZg)

−1, where f
is the filling factor and Zm (Zg) is the impedance ten-
sor of metal (gap) region [44]. For the metallic segment,
the impedance tensor written in x− y coordinate system
can be calculated as: Z−1m = Mασ

pM−1α , where Mα

is the 2D rotation matrix and σp is the principal con-
ductivity tensor with its nonzero elements given in Eq.
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FIG. 2: (a) The schematic representation of ellipse major-axis rotation in the fields scattered of microribbon array. The angular
detuning and frequency dependence of the (b) power, (c) absolute rotation angle (in degrees), and (d) absolute ellipticity (in
degrees) of the reflected field for RA with α = 0◦, L = 6µm, and f = 0.5. (e), (f), and (g) are similar to (b), (c), and (d),
respectively, for the transmitted field. In (c) and (d), the black dashed, red solid, and purple dotted lines denote data points
corresponding to ψr = 90◦, Er

x = Er
y , and |∆θr| = 90◦, respectively, obtained with the analytical method. In (f) and (g), green

dot-dashed lines show the analytical results for ψt = 0◦. The black arrows denote the fundamental plasmon frequency obtained
from the analytical model. The analytic expressions clearly reproduce the key features in full-wave numerical results.

(4). Note that for the array configuration, x and y axes
are chosen to be parallel and perpendicular to the strips.
Thus, depending on the patterning angle, α, these axes
may not coincide with the crystal principal directions; see
Fig. 2(a). The coupling impedance tensor, which mod-
els the gap portion, is computed through Zg = i

ωCc x̂x̂,

where, Cc = 2ε0L
π ln (csc (π (1− f) /2)) denotes the near-

field coupling capacitance and L is the grid period [45].
With the homogenized-surface description of the RA at

our disposal, the scattered amplitudes of the patterned
surface are obtained as [37]:

rx = −Σ−1
[
σtxx(2Y0 + σtyy) + σtxy(2Y0 tan θ0 − σtxy)

]
,

ry = −Σ−1
[
σtyy(2Y0 + σtxx) + σtxy(2Y0 cot θ0 − σtxy)

]
,

tx = Σ−1
[
2Y0(2Y0 + σtyy − σtxy tan θ0)

]
,

ty = Σ−1
[
2Y0(2Y0 + σtxx − σtxy cot θ0)

]
,

(6)

where, Σ = (2Y0 +σtxx)(2Y0 +σtyy)− (σtxy)2. These quan-
tities are substituted in Eqs. (1) and (2), to compute the
scattered power and rotation angle of the RA.

For the array geometry, we first consider the simplest
setup: ribbons are patterned along the crystal high-
symmetry directions (α ∈ {0◦, 90◦}) and the incident
field has polarization parallel (θ0 = 90◦) or perpendicular
(θ0 = 0◦) to the ribbon axes. In terms of ellipticity and
rotation angle, the array response resembles the homo-
geneous surface with θ0 ∈ {0◦, 90◦}, as scattered fields
exhibit neither polarization rotation nor linear-elliptic
polarization conversion. The scattered power, however,

deviates from that of the 2D surface. For parallel polar-
ization, the reflected (transmitted) power decreases (in-
creases) almost uniformly with patterning, in accordance
to the reduced filling factor of the ribbons. For perpen-
dicular incidence, however, the reflected (transmitted)
spectra manifests a peak (dip) due to excitation of the
localized plasmons.

Next, we proceed to the case where θ0 /∈ {0◦, 90◦},
while the array is still assumed to be cut along the high-
symmetry axes, i.e., α ∈ {0◦, 90◦}. We discuss mainly
the case where, α = 0◦, for which the conductivity ele-
ments are simplified to: (σtxx)

−1
= (fσpxx)

−1 − (iωCc)−1,
σtxy = σtyx = 0, and σtyy = fσpyy. As shown in Figs. 2(b)
and (e), the power spectrum for θ0 ∈ (0◦, 90◦), still ex-
hibit the plasmon resonance, although its strength, in
terms of the reflection peak or transmission drop de-
creases with angular detuning. Focusing on the charac-
teristic angles, the reflected field ellipse undergoes major
axis rotation as large as 90 degree at pairs of angular de-
tuning and frequency which satisfy the following relation:

tan2 θ0 =
cosψr − |rx/ry|
cosψr − |ry/rx|

, (7)

where rx and ry are given in Eq. 6. As shown in
the Figs. 2(c) and (d), the frequency for which ∆θr =
90◦, increases with angular detuning, until it reaches a
point where the reflected field acquires circular polar-
ization. Quantitatively, the latter can be tracked with
the following criteria: <{ry/rx} = 0 and |= {rx/ry}| =
tan θ0, corresponding to 90 degree phase retardation
and amplitude-equality of the reflected field components
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(b) ellipse rotation angle (in degrees),
and (c) ellipticity (in degrees) as func-
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tively, for the transmitted field of the
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along the two coordinate axes. For the transmitted wave,
as illustrated in Figs. 2(f) and (g), the field maximum ro-
tation occurs at plasmon resonance. Furthermore, irre-
spective of θ0, transmitted field remains linearly polar-
ized at the plasmon frequency, for which the equivalent
condition reads as: ={ty/tx} = 0, with tx and ty as given
in Eq. 6.

As a final remark in this section, we emphasize that
various configurations may be adopted to enhance the
linear birefringence through coupling parallel and per-
pendicular responses of the RA. These include scenarios
when (1) ribbons are patterned along the crystal axes,
but illuminated with θ0 /∈ {0◦, 90◦}, (2) incident field is
polarized along the principal axes, but the array is cut
with α /∈ {0◦, 90◦} or (3) a hybrid scheme of (1) and (2)
is incorporated. Although, our discussion so far covers
mostly scheme (1), the analytical framework developed
here can be used for other configurations as well. As
we shall discuss in the following section, these schemes
provide additional degrees of freedom in tuning the op-
erating point of metadevices based on these anisotropic
surfaces.

Tunability of the linear birefringent effect – To assess
the impact of anisotropy on the electromagnetic response,
we define γ = (Dx −Dy) /(Dx + Dy) as a measure to
quantify the degree of anisotropy in the material. We
vary γ by increasing Dx or Dy, while leaving the sum
unchanged: Dx + Dy = 200 GHz/Ω. γ = 0 implies
the isotropic material, while |γ| = 1 denotes extreme
anisotropy where conductivity is zero along one of the
crystal axes. We stress that the γ-factor depends pri-
marily on the Fermi level and crystal effective masses,
quantities which can be tuned in experiments with elec-
trostatic gating [22], in-situ doping [46], or strain engi-
neering [47].

According to Figs. 3(a) and (d), the plasmon resonance
exhibit a blue shift as γ approaches unity. Furthermore,
a red shift in plasmon frequency can be observed with

increasing the patterning angle. These trends are con-

sistent with
√
Dx cos2 α+Dy sin2 α dependence, calcu-

lated using the plasmon dispersion of the anisotropic ho-
mogeneous surface in quasi-electrostatic limit [19, 33].
Comparing the reflected mode results in Figs. 2(c) and
(d) with those in Figs. 3(b) and (c), it is apparent that
the frequency range at which linear-circular polarization
conversion takes place, can be widely tuned with modu-
lation of the anisotropy parameter and angular detuning.
Furthermore, from panels (d)-(f) of Fig. 3, the transmit-
ted field polarization, although exhibit nonzero rotation,
it remains linear at plasmon frequencies. The tunability
of the plasmon resonance with γ and patterning angle,
thus, renders the RA configuration a dynamic polariza-
tion rotator in the transmitted mode.

Conclusion – In summary, through full-wave calcula-
tion and intuitive analytical formulation, we discuss lin-
ear birefringence in ribbon array of anisotropic 2D ma-
terials. We found, relative to the extended surface, that
both phase retardation and amplitude attenuation of the
scattered field can be altered more drastically in the ar-
ray geometry. This includes scenarios where the array
exhibits linear-circular polarization conversion in its re-
flected mode, while concurrently, acts as a polarization
rotator in the transmitted mode. The wide tunability
of the array’s response, with simultaneous control of an-
gular detuning and anisotropic Drude weights, renders
anisotropic ribbon array as viable platforms to be used
in dynamic metadevices.
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