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Specific heat has had an important role in the study of superfluidity and superconductivity, and
could provide important information about the fractional quantum Hall effect as well. However,
traditional measurements of the specific heat of a two-dimensional electron gas are difficult due
to the large background contribution of the phonon bath, even at very low temperatures. Here,
we report measurements of the specific heat per electron in the second Landau level by measuring
the thermalization time between the electrons and phonons. We observe activated behaviour of
the specific heat of the 5/2 and 7/3 fractional quantum Hall states, and extract the entropy by
integrating over temperature. Our results are in excellent agreement with previous measurements
of the entropy via longitudinal thermopower. Extending the technique to lower temperatures could
lead to detection of the non-Abelian entropy predicted for bulk quasiparticles at 5/2 filling.

Introduction — An ultra clean two dimensional elec-
tron gas (2DEG) exposed to high magnetic fields and low
temperatures plays host to a rich array of phases, includ-
ing the intrinsically topological fractional quantum Hall
(FQH) states. The ν = 5/2 FQH state is of particular
interest, since it is believed to obey non-Abelian statis-
tics [1, 2]. Unfortunately, fabrication of devices to study
the FQH states, such as quantum point contacts and
interferometers, often degrades the quality of the sam-
ple, rendering the 5/2 FQH effect unobservable. In cases
where studies have been performed, their interpretation
is difficult due to our incomplete understanding of the
detailed physics of the quantum Hall edge. In this pa-
per, we introduce a new technique to probe the bulk of
the 5/2 FQHE, avoiding the edge entirely. In particular,
we report measurements of the specific heat at ν = 5/2,
which, unlike transport, is sensitive to the total density
of states (DOS). Moreover, one of the signatures of a
non-Abelian system is an excess ground state entropy
SNA = kBNqp ln d, where Nqp is the number of quasipar-
ticles and d is the quantum dimension (equal to

√
2 for

the conjectured non-Abelian Pfaffian and anti-Pfaffian
states at 5/2) [3, 4]. In principle, this entropy could be
detectable in the specific heat in the low temperature
limit [3].

Measurement of the specific heat of a 2DEG within
a heterostructure is difficult because it is dwarfed
by the contribution of the substrate. Earlier studies
[5–7] applied conventional measurement techniques to
multiple quantum well structures to boost the relative
contribution of the electronic signal. In a more recent
tour de force study, Schulze-Wischeler et. al. [8] applied
a phonon absorption technique to determine the specific
heat in the FQH regime, albeit in arbitrary units. Our
experiment similarly uses the weak electron-phonon cou-
pling at low temperature to thermally isolate the 2DEG
(on sufficiently short timescales), however we make use
of in situ Joule heating and extract an absolute value for
the specific heat. Furthermore, we use a Corbino disk,

in which no edges connect the inner and outer contacts
and we can be certain that we are probing the bulk
of the 2DEG [9]. The radial symmetry of the Corbino
geometry also simplifies analysis, since we can neglect
the Nernst, Ettingshausen and thermal Hall effects,
which can strongly affect the temperature distribution
in Hall and van der Pauw samples [10].

Experimental Overview — Our experimental protocol
consists of three conceptual parts, which are performed
in an interlaced fashion in order to minimize effects of
drift. The first is to measure the conductance of the
sample, G, as a function of electron temperature, Te,
using an excitation small enough that Te remains close
to the refrigerator temperature, T0. At certain filling
factors and temperatures, we find that G is highly tem-
perature sensitive and thus can act as a thermometer for
the 2DEG. Next, we apply a singled-sided square wave
at several kHz with a large (typically millivolt-scale)
bias Vhigh which both heats the electrons and allows us
to measure the 2DEG conductance, as shown in Fig 1B.
The thermal time constant, τ , can then be extracted
from an exponential fit to the conductance transient
response as shown in Fig 1C. This may be done either
for the turn-on portion, as presented in the main body
of the letter, or as the electrons cool down again (using
a small, but non-zero bias for Vlow), as discussed in
the supplemental material [11]. Finally, we apply a
series of DC biases to the sample, while measuring its
conductance. Using the calibration of G(Te), we deduce
the electron temperature as a function of applied DC
power and phonon temperature. From this we extract
K, the total thermal conductance between the electronic
system and the environment. The total heat of the
system can then be found from the relation C = Kτ [12].

Experimental details — All measurements presented
in this letter were performed in a GaAs/AlGaAs het-
erostructure with quantum well width 30 nm, elec-
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FIG. 1. (A) Experimental scheme. A square wave voltage
bias is applied between the gold contacts (yellow) to heat the
2DEG (red) above the lattice temperature of the GaAs wafer
(blue). The resulting current is measured across a 1 kΩ re-
sistor to ground, using a voltage preamplifier and a digitizer.
(B) Example time traces showing the measured current re-
sponse. Each trace was obtained by averaging approximately
106 iterations. (C) Zoomed in plot of the conductance tran-
sient. Exponential fits are shown by the solid black lines, and
corresponding values of τ are given for each curve.

tron density ne ≈ 3.06 × 1011 cm−2 and wafer mobil-
ity 2.5× 107cm2/V · s measured at 0.3 K. The Corbino
device was defined by a central contact with outer ra-
dius r1 = 0.25 mm and a ring contact with inner radius
r2 = 1.0 mm. Full fabrication and characterization de-
tails can be found in reference [13].

Values of K are extracted from square wave response
data. First, G(T0, P ) is determined from the average of
Imeas/Vhigh after the thermal transient - for example, be-
tween t = 15 µs and t = 47 µs in Fig. 1B. Then, a smooth
cubic spline interpolation is fit to Tph vs. G in the low
power limit, where Te ' T0, and used to find Te(T0, P )
for higher heating powers. Finally, we calculate K from
the slope of Te vs P for P small enough to only raise the
electron temperature by a few millikelvin. Further ex-
perimental details, including a correction factor for the
Corbino geometry, are provided in the supplemental ma-
terial [11].

The same data set used to find K is also used to find
τ . As shown in Fig. 1B, a transient is seen after the
bias is turned on, but not when the voltage is turned
off (since there is no voltage to convert the conductance
into a current). Figure 1C shows an expanded view of
the transient, after correction for possible LRC transients
[11]. The fitted time constant is shorter at higher power,
since the 2DEG reaches a higher temperature and there-
fore has a higher energy emission rate. In order to find
τ(Te), we associate each measured time constant to the
electron temperature inferred from the final conductance
it reaches after several microseconds.

Results— We focus on several filling factors in the SLL
that are marked on Fig. 2A, which shows the sample’s
conductance at base temperature. Most of these filling
factors are weakly-gapped FQH states, however we also
measured at ν = 2.57 where we observed a markedly in-
creasing conductance with decreasing temperature. At
lower temperatures, a reentrant integer quantum Hall
state, is often observed [14, 15] at that same filling fac-
tor. Select results in high filling factors (ν > 10) are
presented in the supplemental material [11], with details
to be presented in a separate publication.

Thermal conductance to the environment— Our re-
sults for K are shown in Fig. 2B. The trend is similar for
all of the filling factors shown, although ν = 2.57 exhibits
a somewhat higher value of K throughout the tempera-
ture range below 100 mK. The magnitude of K is sev-
eral orders of magnitude larger than would be expected
according to Wiedemann-Franz law (K = 12GL0T ≈
10 fW/K, where L0 is the Lorenz number and the factor
of 12 arises from geometric considerations), effectively
ruling out diffusion of charged quasiparticles to the con-
tacts as a dominant cooling mechanism. Within the tem-
perature range of our experiment, our results are instead
consistent with cooling by phonon emission, although in
principle we cannot rule out thermal transport by neutral
quasiparticles [16].

At B = 0, the problem of electron-phonon power emis-
sion has been studied theoretically by Price and others
[17, 18], and good experimental agreement was found by
Appleyard et. al. [19]. Using that model, we would
expect K = 370 T 4 [nW/K] for our sample geometry,
which is roughly two orders of magnitude lower than
what we observe. However, this is consistent with the en-
hancement of CF-phonon scattering (relative to electron-
phonon scattering at B = 0) seen in experiments measur-
ing power emission power[20], phonon-drag thermopower
[21] and phonon-limited mobility [22], as well as a theo-
retical treatment of CF-phonon interactions [23]. Fitting
K ∝ Tn, we find n ' 3.4 (indicated by the dashed black
line in figure 2c), which is between the value n = 4 in
the model by Price [17] and n = 3 in the hydrodynamic
model put forward by Chow et. al. [20]. Both of those
models used a flat (metallic) DOS for the 2D electrons,
and would have to be modified to take into account the
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FIG. 2. (A) Conductance at base temperature. Arrows indi-
cate filling factors where measurements of τ , K and C were
performed. (B) K vs Te for several filling factors in the SLL.
Legend is provided in panel (C). The inset shows the same
data on a log-log scale with lines, at arbitrary vertical po-
sitions, indicating slopes of 3 (dotted), 3.4 (dashed) and 4
(dot-dashed). (C) Thermal relaxation time τ measured as
a function of Te (as calculated from conductance measure-
ments). Data from multiple phonon temperatures have been
binned based on Te in 5 mK bins and averaged.

gapped DOS at FQH states.

Thermal relaxation time — Figure 2b shows τ as a
function of electron temperature for each state. These
are, to our knowledge, the first direct measurements of
electron-phonon energy relaxation times in the quantum
Hall regime below 100 mK. Previous estimates of a T 4

or T 3 dependence for τ were based on measurements of
DC electron-phonon energy emission rates and assumed
linear behaviour of C(T ) as calculated for a 2DEG at
zero field [20, 24, 25]. Since we are measuring at (or
near) gapped states, we do not expect C(T ) to be linear
and we do not attempt to fit τ(T ) with simple power
law. While τ is monotonically decreasing in all cases,
there are clear differences between filling factors. The
thermal relaxation time at ν = 5/2 is slower than those
at ν = 7/3 and ν = 8/3, which are in turn slower than
at ν = 2.57 and ν = 14/5. The apparent differences
in τ may be due to differences in the charge, size and
screening of quasiparticles at each filling factor.

Specific heat — The electronic heat capacity is now
given by C = Kτ . Fig. 3C shows the calculated spe-
cific heat, c ≡ C/kBNe, where Ne is the total number of
electrons in the Corbino disk. For comparison, we also
show conductance vs. temperature plots at each filling
factor in Fig. 3A. We begin our analysis by considering
the specific heat of a fermi liquid, given by

c =
πm∗kBT

3h̄2nq
, (1)

where m∗ is the effective mass of the fermions and nq
is the number of quasiparticles. Using the band mass of
GaAs, m∗ = 0.067me, and nq = ne, we obtain the spe-
cific heat at B = 0 as shown by the dotted lines in Fig 3B.
The observed specific heat is much larger - in fact, it
agrees in magnitude with c for a fermi liquid of free elec-
trons (m∗ = me, the dotted line in each panel of Fig 3B).
This is in order-of-magnitude agreement with both the-
ory [26] and experiments [27, 28] that have shown com-
posite Fermions at half-filling to have an effective mass
close to that of free electrons. However, the specific heat
at each filling factor increases rapidly in the region from
50 to 100 mK, exhibiting a strong deviation from linear
(fermi-liquid like) behaviour, as expected for a gapped
DOS. For simplicity, we may consider the specific heat
for a system of fermions with a toy DOS g(ε) given by
two flat regions separated by a gap ∆, with the fermi
level exactly halfway between the two levels. From this
model we obtain, in the low temperature limit,

c =
2kBg0

ne

(
∆2

4kBT
+ ∆ + 2kBT

)
e−∆/2kBT , (2)

which is the equation used to fit the black curves in
Fig. 3B. In principle, the effective mass of the quasipar-
ticles is given by m∗ = πh̄2g0, and is found be 1.4me

at 5/2 and 2.1me at 7/3. However, such analysis should
only be taken as a rough estimate, since it is based on a
simplified model of the DOS. Given the limited tempera-
ture range of our data set, a generic Arrhenius behaviour
also fits well to the data and yields a similar value for the
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FIG. 3. (A) Conductance vs. temperature for several states in the SLL. (B) Specific heat vs. temperature at the same set of
filling factors. Fits to equation 2 are shown by the solid black lines, and the resulting ∆’s are given on each plot, while g0kB/ne

= 0.18, 0.12, 0.16 and 0.25 K−1 for ν = 14/5, 2.57, 5/2 and 7/3, respectively. The dotted line is the specific heat for free 2D
electrons (m∗ = me), while the dashed line is the specific heat for 2D electrons in GaAs at zero field (m∗ = 0.067me). The fit
at ν = 14/5 is of lower quality than the others, and is discussed further in [11].

gap energy [11]. Interestingly, standard Arrhenius fits to
the conductance yield significantly smaller gap energies
- specifically, ∆5/2 = 103 mK and ∆7/3 = 131 mK [11].
The discrepancy can be understood by considering more
detailed models of conductance, such as the saddle point
model proposed by d’Ambrumenil et. al [29]. In their
framework, the naive Arrhenius fit to conductance sys-
tematically underestimates the true energy gap. Using
their recipe to estimate the true gap from conductance,
we obtain ∆5/2 = 300 mK and ∆7/3 = 330 mK, in good
agreement with the results from specific heat.

Entropy — The entropy of a 2DEG can also be
accessed by measuring the longitudinal thermopower,
Sxx, which is related to entropy by the relation
Sxx = −S/(|e|ne) in the clean limit [4]. In order to com-
pare our results to existing thermopower data, we extract
the entropy as a function of temperature using the for-
mula

S(T )− S0 =

∫ T

T0

C

T ′
dT ′, (3)

with T0 being the lowest temperature at which we mea-
sured C. In figure 4, we plot S(T )− S0, calculated from
our measurements of C by numerical integration along
with thermopower data obtained by Chickering et. al.
(figure 2 of ref [27]). The data from these two com-
pletely different techniques are in excellent agreement,
suggesting that both do indeed measure the entropy of
the electron system in the SLL.

FIG. 4. Entropy as determined from longitudinal ther-
mopower data [27] and from integration of our specific heat
measurements. The thermopower data is offset such that
S − S0 = 0 at the lowest temperature for which we mea-
sured C. The offsets are S0 = 0.58 and S0 = 0.26 for ν = 5/2
and ν = 7/3, respectively, as shown by the scale bars on the
figure.

The apparent activation-like behaviour at ν = 2.57
can also be understood by looking at longitudinal ther-
mopower data. Chickering et. al. observed a step in Sxx,
corresponding to onset of the re-entrant state and super-
linearly increasing Sxx at higher temperature [27]. We do
not observe the onset of the reentrant state itself, how-
ever, we do see superlinear (activation-like) behaviour of
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c, in qualitative agreement with the thermopower result.
Conclusion — We have directly measured the electron-

phonon energy relaxation rate and phonon emission
power for several filling factors in the SLL. We observe
clear variation in thermal relaxation times between
filling factors, with ν = 5/2 in particular cooling more
slowly than the other fractions in the SLL. We extract
the specific heat for each filling factor, and find the
expected activation behaviour. Our results quantita-
tively agree with the entropy inferred from thermopower
data, consistent with both techniques independently
measuring the entropy of the 2DEG in the SLL. Further
measurements at lower temperatures could be used to
search for the non-Abelian entropy, and perhaps identify
the degeneracy temperature for non-Abelian anyons at
5/2.
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