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We study the quantum dynamics of Majorana and regular fermion bound states coupled to a
quasi-one-dimensional metallic lead. The dynamics following the quench in the coupling to the lead
exhibits a series of dynamical revivals as the bound state propagates in the lead and reflects from
the boundaries. We show that the nature of revivals for a single Majorana bound state depends
uniquely on the presence of a resonant level in the lead. When two spatially separated Majorana
modes are coupled to the lead, the revivals depend only on the phase difference between their
host superconductors. Remarkably, the quench in this case effectively performs a fermion-parity
interferometry between Majorana bound states, revealing their unique non-Abelian braiding. Using
both analytical and numerical techniques, we find the pattern of fermion parity transfers following
the quench, study its evolution in the presence of disorder and interactions, and thus, ascertain the
fate of Majorana in a rough Fermi sea.

Introduction.—One of the most intriguing features of
a topological phase is the emergence of low-energy quasi-
particles with fractional quantum numbers. Two exam-
ples of this fractionalization are solitons with fractional
charge1,2 and Majorana bound states (MBS) with non-
Abelian exchange statistics3,4. The MBSs are of partic-
ular interest due to their potential application in topo-
logical quantum computation5. While the existence of
these fractional excitations has been proposed theoret-
ically in many systems6–18, the experimental effort for
their realization and detection is still the subject of vig-
orous current research. Recently, a number of groups
have reported observing signatures of MBSs19–23. How-
ever, these experiments are spectroscopic in nature24

and, thus, do not provide evidence of their non-Abelian
statistics. In order to do so, one needs to perform a suit-
able interferometry25–29, which is typically harder to do.

In this Rapid Communication, we propose a fermion-
parity interferometry based on the quantum dynamics of
bound states after a quench couples them to a metal-
lic lead. The dynamics of the ground state after such
a quench shows revivals30,31 at integer multiples of re-
turn time τ = 2`/vF , where ` is the length and vF the
Fermi velocity of the lead. Some aspects of such quench
dynamics have been recently studied32–40. In our case,
after the quench the bound state leaks out to the lead on
a timescale 1/Γ = 2~EF /λ2 where EF is the lead Fermi
energy and λ is the quenched coupling33. The resulting
wavepacket propagates in the lead at a velocity ∼ vF and
returns to the original position at time τ . At this time
it tunnels back to the original bound state, simultane-
ously balanced with the leakout, thus partially reviving
the original state. For Γτ � 1, the revivals are the main
aspect of the dynamics as the bound states shuttle back
and forth along the lead. Thus, they may be intuitively
expected to provide a setting for such an interferometry
on the bound states and reveal their exchange statistics.

Motivated by this observation, we consider a lead cou-
pled to one or two such bound states and study the

quantum dynamics after a quench in the tunneling ampli-
tudes. Remarkably, we find a unique pattern of fermion
parity transfers accompanying the revivals of MBSs, due
to their nonlocal encoding of fermion parity. For regular
fermion bound states (including Andreev bound states),
fermion parity is encoded locally and no fermion par-
ity transfers occur. We present analytical solutions for
an effective low-energy theory of the quench dynamics
of Majorana and regular fermion bound states. We also
report numerical solutions to a full lattice model, which
allow us to study the effects of potential disorder and
local interactions in the lead.

In all cases, we find unique dynamical signatures of
MBSs. The quench dynamics of MBSs in the lead effec-
tively performs a fermion-parity interferometry, revealing
their non-Abelian braiding. In the presence of disorder
and interactions in the lead, this pattern is eventually
washed out after several return cycles. Nevertheless, the
pattern of fermion parity transfers remains robust, thus
providing a smoking gun for MBS detection.

Low-energy effective theory.—Our interferometer is
composed of a system (s) in a gapped phase hosting reg-
ular or Majorana bound states, and a metallic lead (l)
joined after a quench in a tunneling region (t), with the
time-dependent Hamiltonian H(t) = Hs + Hl + Ht(t).
The MBS γνa (γ2

νa = 1
2 ) at endpoint a of superconduc-

tor ν contributes to the mode expansion of the electron
operator the term uνa(x)γνa, where the eigenfunction
uνa(x) ∝ e−x/ξνei(φν+ηa)/2 with x the position, ξν the
coherence length, φν the phase of the superconductor,
and ηa = 0 (π) at the right (left) endpoint, a = I (II).

For simplicity, we model the lead with spinless
fermions, neglecting any spin dynamics. In the case of
MBS arising in spin-filtered nanowires7,14,15, this is a
good approximation as long as there are no magnetic
impurities in the lead. In our low-energy theory, the lead
degrees of freedom are the right- and left-moving modes,
ψR and ψL, with Hamiltonian (in units of lattice spacing

a = ~ = 1) Hl = −ivF
∫ `

0
(ψ†R∂xψR − ψ

†
L∂xψL)dx. We
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FIG. 1. (color online) Top: schematic of the system; one
or both tunnel couplings, λI/II(t), are switched on at t =
0. Bottom: Coupling of Majorana bound states to the lead,
shown in its Majorana basis as two independent Majorana
chains. The resonant lead with odd number of sites (a,b) and
the off-resonant lead with even number of sites (c,d) couple
to Majorana bound states γI and γII in superconductors with
phase difference ∆φ = 0 (a,c) and ∆φ = π (b,d).

now “unwrap” the lead coordinate x ∈ [0, `] 7→ [−`, `] by
mapping ψR(x) 7→ ψ(x), ψL(x) 7→ ψ(−x) to find Hl =

−ivF
∫ `
−` ψ

†∂xψ dx. Equivalently, in the Majorana basis,

ψ = 1√
2
(γ1 + iγ2), we have Hl = − i

2vF
∫ `
−`(γ1∂xγ1 +

γ2∂xγ2) dx. Thus, the lead is composed of two indepen-
dent Majorana chains. In this low-energy theory, the
existence of a resonant zero-energy level is accounted for
in the boundary condition ψ(x + 2`) = ζψ(x), where
ζ = +1 (−1) when there is a (no) resonant level.

Since the system is gapped, at low energies we need
only consider the contribution of the bound states to the
tunneling Hamiltonian. Of course, all states in the super-
conductor couple to the lead; however, as we discuss in
conclusion, these states do not contribute to the physics
of parity switching at return times. For regular fermions,
dνa, Ht(t) =

∑
νa λνa(t)d†νaψ(xa) + h.c., where xa is the

tunneling site in the lead and λνa the corresponding tun-
neling amplitude. For the MBS γνa, the tunneling term
Ht(t) in the lead Majorana basis is

iλνa(t)

[
sin

φν + ηa
2

γ1(xa)− cos
φν + ηa

2
γ2(xa)

]
γνa.

(1)
The quench is assumed to be sudden, λνa(t) = λνaθ(t).

The phase φν + ηa of one of the superconductors at
a single contact point can always be gauged away by
mapping ψ 7→ e−i(φν+ηa)/2ψ. Thus, the dynamics only
depends on the relative phase ∆φ between the supercon-
ductors. Moreover, as illustrated in Fig. 1, for a resonant
lead coupled to two superconductors, the MBSs couple
to the opposite (same) Majorana chains in the lead for
∆φ = 0 (π). By contrast, for an off-resonant lead, the
situation is reversed. Thus, there are two cases to con-
sider, in which one or two MBSs couple to a single lead
Majorana chain. We shall now study these cases in detail.

MBS parity transfer.—First, let us consider the lead
coupled at xI = 0 to a single MBS, γI ≡ γ, with tunneling
amplitude λ. The tunneling Hamiltonian is found by
setting φν + ηa = 0 in Eq. (1) to be iλγγ2(0). Thus, γ1

is a free mode, and the other equations of motion are

i∂tγ2(x, t) = −ivF∂xγ2(x, t)− iλγ(t)δ(x), (2)

i∂tγ(t) = iλγ2(0, t). (3)

In order to account for revivals we model the scattering
off the bound state as a time-periodic perturbation. This
is consistent with the linear continuum model since in this
approximation all the lead modes propagate at the Fermi
velocity, so they all scatter in regular intervals of return
time. Thus, at x = 0− and for 0 < t < τ , we have a free
field γ2(0−, t) =

∑
ω e
−iωtγ20(ω) ≡ γ20(t), where γ20(ω)

are the modes of the unperturbed lead with energy ω.
The solution is given by

γ(t) = fbt/τc(t; τ) γ(0) + F [γ20], (4)

where F is a functional of γ20 only. Denoting Γ =
λ2/2vF , the envelope functions f0(t; τ) = e−Γt and, as-
suming Γτ � 1, f1(t; τ) = −2ζΓ(t−τ)e−Γ(t−τ), f2(t; τ) =
−2Γ(t− 2τ)[1− Γ(t− 2τ)]e−Γ(t−2τ).

The fermion parity of the host superconductor is
P (t) ≡ 〈2iγ′γ(t)〉, where γ′ is the spatially separated
MBS partner of γ, which remains static. For 0 < t < τ ,
P (t) = e−ΓtP (0), and is revived for τ < t < 2τ as

P (t)/P (0) = −2ζΓ(t− τ)e−Γ(t−τ), Γτ � 1. (5)

The maximum revival value is |P (τ+1/Γ)/P (0)| = 2/e ≈
0.73. Remarkably, the sign of the fermion-parity revival
depends on ζ: in a resonant lead it reverses. This pat-
tern continues following each revival with the sign of the
maximum parity switching at odd multiples of τ .

For a regular fermion bound state, d, the equations
of motion are found by replacing γ2 → ψ, γ → id in (2)
and (3). Similarly, the solution is d(t) = f(t) d(0)−iF [ψ0]
with a free field ψ0(t). Thus, the occupation of the bound
state N(t) ≡ 〈d†(t)d(t)〉 = e−2ΓtN(0) decays for 0 < t <
τ , and is revived for τ < t < 2τ as N(t) ≈ 4Γ2(t −
τ)2e−2Γ(t−τ) with a maximum value N(τ + 1/Γ)/N(0) =
4/e2 ≈ 0.54, irrespective of ζ. The fermion parity of the
host system, P (t) = 1− 2N(t), is independent of ζ.

Therefore, the pattern of fermion parity transfers be-
tween the MBS and the lead upon revivals is a unique
signature of MBSs. This is our first main result.

MBS fermion parity interferometry.—It may appear
too difficult to observe such a pattern of fermion parity
transfers since tuning a lead level to be resonant requires
a high degree of resolution. However, as we now show,
the fermion parity transfers between two MBSs coupled
to the lead is a robust signature of their non-Abelian
exchange regardless of the nature of the lead.

For simplicity, we will assume here the phase difference
between the host superconductors ∆φ = 0 or π as in
Fig. 1. For ∆φ = 0 in a resonant lead (ζ = +1), and for
∆φ = π in the off-resonant lead (ζ = −1), the two MBSs
γI and γII couple to different lead Majorana modes, γ1

and γ2. Thus, our previous analysis shows that fermion
parity is switched at return time τ only when ζ = +1.
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FIG. 2. (color online) Fidelity after the quench λ = 0.5w at
t = 0 couples a lead to a single SSH chain with m = 0.8w (a),
one Kitaev (b), and two Kitaev chains with gap ∆ = 0.3w,
∆φ = π (c) and ∆φ = 0 (d). The disorder strength W =
0.2w and the shaded areas show the standard deviation in
the disorder average.

The new cases are when both MBSs are coupled to the
same lead Majorana mode, γ2, i.e. ∆φ = 0 in the off-
resonant lead, and ∆φ = π in the resonant lead. Then
the equations of motion are

i∂tγ2 = −ivF∂xγ2 − iλIγIδ(x)− iλIIγIIδ(x− `), (6)

and i∂tγI = iλIγ2(0), i∂tγII = iλIIγ2(`). To proceed,
we need to modify our previous calculation slightly to
account for the scattering off the second MBS at odd
multiples of τ/2. This can be done straightforwardly,
and for the simple case λI = λII = λ, the result is a
decay for 0 < t < τ/2, γa(t) = f0(t; τ/2) γa(0) + F [γ20],
followed by a revival for τ/2 < t < τ (assuming Γτ � 1),

γI(t) = f1(t; τ/2) γII(0) + F [γ20], (7)

γII(t) = ζf1(t; τ/2) γI(0) + F [γ20]. (8)

Thus, the relative sign of exchange depends on ζ. Pro-
jected to the subspace spanned by γR,L, the effec-

tive evolution operator for ζ = −1 is
√
|f1|U−, where

U− = e
π
2 γIIγI is the non-Abelian Ising braid operator6,41.

Hence, the state of MBSs at τ/2 is a superposition of
two states in which both MBS fermions parities are un-
changed or switched. By contrast, for ζ = +1, the pro-
jected evolution operator is

√
|f1|U+, where U+ = γII+γI

satisfies U2
+ = 1 as in an Abelian braiding. In this

case, the state of MBSs at τ/2 is a superposition of
two states in which one or the other MBS switches its
fermion parity. Proceeding to τ < t < 3τ/2, we find
γa(t) = ζf2(t; τ/2) γa(0) + F : upon revival, fermion par-
ities switch only for ζ = −1.

We conclude that at odd multiples of return time, the
fermion parities of γI and γII are (not) switched, regard-
less of the details of the lead, when ∆φ = 0 (π). This is
our second main result.

Numerics and effects of disorder and interactions.—
In order to confirm and extend our results beyond the
clean, non-interacting low-energy limit, we now study the

quench dynamics of the many-body system in a lattice
model numerically.

We model the system as a one-dimensional chain with
Hamiltonian Hs =

∑
s

(
wsd

†
sds+1 + ∆dsds+1 + h.c.

)
,

where d†s is the system fermionic creation operator at site
s, ws = w+(−1)sm is the hopping amplitude with m the
bond modulation, and ∆ = |∆|eiφ is the superconduct-
ing pairing. This Hamiltonian includes the Su-Schrieffer-
Heeger (SSH) model1 with m 6= 0,∆ = 0, which supports
regular fermion bound states (solitons), and the Kitaev
model7 with m = 0,∆ 6= 0, which supports MBSs, at the
chain’s endpoints. We take

Hl = w

N−1∑
r=1

(
c†rcr+1 + h.c.

)
+

N∑
r=1

Vr

(
nr −

1

2

)

+ U

N−1∑
r=1

(
nr −

1

2

)(
nr+1 −

1

2

)
, (9)

for the lead, where c†r is the fermionic creation opera-
tor at site r, nr = c†rcr is the number operator, U the
interaction strength, and Vr the potential disorder with
a uniform distribution over [−W/2,W/2] and disorder
strength W . The lead is (off-)resonant for (even) odd N .
The tunneling Hamiltonian is Ht(t) =

∑
rs λrs(t)d

†
scr +

h.c., with λrs(t) the quenched tunneling amplitude be-
tween the system site s and the lead site r.

As a first measure of the quench dynamics, we com-
pute the dynamical fidelity, or the Loschmidt echo42–44,
F(t) = |〈Ψ(0)|Ψ(t)〉|2, where |Ψ(t)〉 is the many-body
ground state of the system. For this calculation, we set
U = 0 and diagonalize the Hamiltonian exactly. The
ground state overlaps can then be calculated using the
Onishi formula45,46.

A sampling of our results are shown in Fig. 2 for a dis-
order strength W = 0.2w. For a single soliton, Fig 2(a),
the fidelity is revived at integer multiples of τ . However,
for a single MBS and a resonant lead, Fig. 2(b), the fi-
delity exhibits a dip at odd multiples of τ . This is in
agreement with the pattern of fermion parity transfers,
since fermion parities are switched. At disorder strength
larger than the level spacing, the distinction starts to
disappear; however, the MBS even-odd effect can still be
seen in the first few revivals since the signal is averaged
over a minimum and a maximum at odd return times.

For two MBSs, Fig. 2(c,d), our numerics again con-
firm the even-odd effect at return time: in contrast to
∆φ = π, the parities are switched at odd multiples of τ
for ∆φ = 0 and, instead of a maximum, the fidelity shows
a dip. The structure around τ/2 depends on the resonant
nature of the lead: or MBSs with ∆φ = π coupled to
a resonant lead, the total fermion parity is switched at
τ/2 and, thus, we expect fidelity to show a dip; owever,
for MBSs with ∆φ = 0 coupled to an off-resonant lead,
the state at τ/2 has an amplitude

√
|f1|/2 to be in the

original state, yielding a maximum fidelity 1/e, consis-
tent with our numerics. We note that, MBSs are more
robust against potential disorder than the SSH solitons.
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FIG. 3. The parity P (r, t) to the left of a cut between sites r and r + 1 in the lead after a quench λ = w at t = 0 couples the
lead to two Kitaev chains with gap ∆ = 0.5w and ∆φ = 0 (a,b), ∆φ = π (c), and to two SSH chains with m = 0.8w (d,e). The
lead interaction strength U = 0.5w in (b) and (e). The insets show magnified regions for comparison.

We have confirmed that the revival pattern of MBSs in
fidelity remains robust over several return cycles for rel-
atively high disorder strengths, W . 0.5w.

Indeed the pattern of fermion parity transfers can
be directly observed in our numerics. As a second
measure, we calculate the fermion parity, P (r, t) =
〈Ψ(t)|(−1)Nr |Ψ(t)〉, where Nr is the total number opera-
tor to the left of a cut between sites r and r+1 in the lead.
Since the total fermion parity is conserved, P (ra, t) for
the case with two tunneling contacts at endpoints ra di-
rectly measures the fermion parity of the systems hosting
the bound states at endpoint a. For this calculation we
use the time-dependent density-matrix renormalization
group method47,48, which allows us to study the effects
of disorder and interactions. For a single bound state,
we have checked that the fermion parity is switched at
odd multiples of τ only for the single MBS coupled to the
resonant lead.

Fig. 3 summarizes our numerical results for fermion
parity transfer for two bound states. In agreement with
our analytical solutions, the fermion parity of the MBSs
is switched at odd multiples of τ when ∆φ = 0 and
not so when ∆φ = π regardless of the nature of the
lead. By contrast, the fermion parity of the SSH solitons
does not switch. For U = 0.5w, the pattern of fermion
parity transfer for the MBSs decoheres over a few re-
turn cycles. The SSH solitons, on the other hand, are
much less affected. This is consistent with the idea that
the fermion parity transfers manifest subtle interference
paths of MBSs, which are more prone to decoherence
by local interactions. We note, however, that the same
switching pattern is observed as in the noninteracting
case, albeit in an increasingly incoherent fashion.

Concluding remarks.—Our fermion parity interferom-
etry can distinguish MBSs from other fermionic bound
states, including Andreev bound states. To see this, note
that fermion parity transfers occur due to the nonlocal
encoding of fermion parities in spatially separated MBSs.

For an Andreev bound state γE at energy E, the fermion

parity 1− 2ρE〈γ†EγE〉 (ρE is the density of states) is lo-
cal. Thus, like regular fermions, Andreev bound states
would not show fermion parity transfers in our scheme.
We have indeed confirmed this numerically.

We also considered a lead with multiple channels49 and
confirmed that as long as the notion of a return time
is meaningful, the pattern of fermion parity exchanges
continues to hold.

Spatially separated MBSs have a tunneling time 1/ε
with energy splitting ε ∼ e−`/ξ. Thus, our fermion par-
ity interferometry would work for 1/Γ � τ � 1/ε. The
upper limit is not challenging since high `/ξ can be large.
Restoring units of ` in micron, vF in eVÅ, λ in meV, and
a in Å, the timescales are 1/Γ ∼ (vF /λ

2a) × 10−9s and

τ ∼ (`/vF ) × 10−11s; thus, λ & λ∗ = 10vF /
√
`a. These

values can vary significantly depending on the realization
scheme. For typical solid-state parameters, λ∗ ∼ 10meV,
but it can be lowered for smaller vF and larger a. For ex-
ample, in nano-patterned metallic surfaces50, λ∗ < 1meV
can be easily achieved. In cold-atom realizations51,52,
with vF ∼ 10−2cm/s, a ∼ 100nm, and λ ∼ 1kHz, we
have 1/Γ ∼ 10−4s � τ ∼ 10−2s. We further discuss
experimental feasibility in49.

We have investigated the quench dynamics of a topo-
logical system coupled to a Fermi sea. We have found
that the lead can serve as an interference medium reveal-
ing the non-Abelian exchange statistics of MBSs through
a unique pattern of fermion parity transfers. Remarkably,
this pattern remains the same in the presence of moder-
ate interactions and disorder in the lead. We note that
unlike effective braiding of MBSs54, the exchange in our
setup proceeds via the real-space paths of the lead chan-
nels. Our findings can lead to viable interferometers for
the smoking-gun detection of Majorana bound states.
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Phys. Rep. 435, 33 (2006).
44 S.-J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010).
45 N. Onishi and S. Yoshida, Nucl. Phys. 80, 367 (1966).
46 R. Balian and E. Brezin, Il Nuovo Cim. B 64, 37 (1969).
47 S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
48 S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401

(2004).
49 See Supplemental Information.
50 K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C.

Manoharan, Nature 483, 306 (2012).
51 A. Micheli, A. J. Daley, D. Jaksch, and P. Zoller, Phys.

Rev. Lett. 93, 140408 (2004).
52 C. V. Kraus, S. Diehl, P. Zoller, and M. A. Baranov, N. J.

Phys. 14, 113036 (2012).
53 W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and

M. Greiner, Nature 462, 74 (2009).
54 B. van Heck, A. R. Akhmerov, F. Hassler, M. Burrello,

and C. W. J. Beenakker, N. J. Phys. 14, 035019 (2012).


