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1Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics,
University of Maryland, College Park, Maryland 20742- 4111 USA

2Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
3Nordita, Center for Quantum Materials, KTH Royal Institute of Technology
and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden

(Dated: April 5, 2017)

We study the effects of short-range interactions on a generalized three-dimensional Weyl
semimetal, where the band touching points act as the (anti)monopoles of Abelian Berry curva-
ture of strength n. We show that any local interaction has a negative scaling dimension −2/n.
Consequently all Weyl semimetals are stable against weak short-range interactions. For sufficiently
strong interactions, we demonstrate that the Weyl semimetal either undergoes a first order transition
into a band insulator or a continuous transition into a symmetry breaking phase. A translational
symmetry breaking axion insulator and a rotational symmetry breaking semimetal are two promi-
nent candidates for the broken symmetry phase. At one loop level, the correlation length exponent
for continuous transitions is ν = n/2, indicating their non-Gaussian nature for any n > 1. We also
discuss scaling of thermodynamic and transport quantities inside the broken symmetry phases.

Introduction: There is tremendous ongoing interest in
three dimensional, gapless topological systems [1–6]. An
interesting class of such systems is described by the iso-
lated nodal points of time reversal or inversion symme-
try breaking materials, where two non-degenerate bands
touch [7–25]. These points are known as Weyl points,
which act as the (anti)monopoles or (anti)hedgehog
of Abelian Berry curvature. For a general monopole
strength n (with only n = 1, 2, 3 in crystalline systems),
the dispersion relations around the nodal points acquire
the form ε±(k) ∼ ±

√
v2k2

z + α2
nk

2n
⊥ , which can be ob-

served in ARPES experiments [22, 23], where k2
⊥ = k2

x +
k2
y, and ± respectively denote the conduction and valence

bands [9–11]. Notice that only the conventional Weyl
point with n = 1 features linear dispersion along all three
spatial directions. A general Weyl semimetal (WSM)
gives rise to n Fermi arcs as the topologically protected
zero energy surface states that can be seen in Fourier
transformed STM [24]. Currently, there are proposals
for double WSMs in HgCr2Se4 [9, 10], SrSi2 [12], ferro-
magnetic phase of pyrochlore iridates [15], and time re-
versal symmetry breaking, chiral superconducting states
of 3He-A [17], URu2Si2, UPt3 [18] and SrPtAs [19], and
triple WSMs in molybdenum mono-chalcogenide com-
pounds A(MoX)3 (A=Rb, Tl; X=Te) [25]. There is also
growing interest in understanding the effects of interac-
tions on topological semimetals [26–47]. However, the
effects of generic short-range interactions on the global
phase diagram of a general WSM are not well under-
stood yet and we investigate this problem in the current
Letter.

At the generalized Weyl point, the density of states
(DOS) vanishes as %(E) ∼ |E|2/n, leading to a negative
scaling dimension −2/n for all local four-fermion inter-
actions. Consequently, we find that all WSMs are sta-
ble against infinitesimally weak, short-range interactions.

Notice that local interactions are marginal perturbations
for n → ∞, as this hypothetical limit corresponds to
linearly dispersing one-dimensional chiral fermions with
constant DOS. The perturbative renormalization group
(RG) calculations can thus be controlled by the param-
eter ε = 2/n (about n → ∞), following the spirit of
ε-expansion [48]. From the RG analysis, we establish
that a WSM with n ≥ 1 can undergo a continuous quan-
tum phase transition (QPT) into either a translational
symmetry breaking axion insulator (AI) or a rotational
symmetry breaking, gapless nematic phase. To one loop
order, the correlation length exponent (CLE) for contin-
uous QPTs is given by ν = n/2. Therefore, strongly in-
teracting general WSMs with n > 1 can support rare ex-
amples of non-Gaussian itinerant quantum criticality in
three dimensions. We also find a limited parameter space,
where sufficiently strong interactions can drive a first or-
der QPT between a band insulator (BI) and the WSM,
and there is no symmetry distinction between these two
phases. Our main findings regarding the global phase di-
agram of an interacting WSM are illustrated by two types
of phase diagrams displayed in Fig. 1. We also elucidate
the nature of low energy excitations inside the broken
symmetry phases (BSPs), and their imprints on experi-
mentally measurable quantities. Altogether we here de-
velop a new unified field theoretic description (such as
the ε-expansion in terms of monopole charge n) of in-
teracting general WSMs that manifests intriguing con-
fluence of nodal topology of Weyl femrions, exotic bro-
ken symmetry phases (such as AI and nematic orders),
emergent quantum critical phenomena across continuous
QPTs, and fluctuation driven first order transition.

Model : All kinds of Weyl excitations can be ob-
tained from an appropriate two-band model H =∑

k ψ
†
k [N(k) · σ] ψk, after suitably choosing the

spin/pseudospin vector N(k), where ψ>k = (ck,↑, ck,↓) is
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FIG. 1: Representative phase diagrams of an interacting Weyl
system. Here λks (with k = 2, 3, 4) are dimensionless interac-
tion couplings for Weyl fermions [see Eqs. (3) and (4)] and λ
is that for critical excitations, residing at the WSM-BI QCP
(blue dot), located at m(= ∆/EΛ) = 0, the dimensionless
band parameter, where EΛ is the ultraviolet energy cutoff
of critical excitations. For weak interactions, the transition
between WSM and BI across the black solid lines is always
continuous. By contrast, sufficiently strong interactions can
either (a) eliminate the direct WSM-BI transition through
nucleation of a BSP (see the lower panel of Fig. 2 for possible
BSPs) or (b) cause a direct first order transition (across the
dashed line) between the WSM and BI [obtained from Eq. (6)
for n = 1]. We emphasize that no symmetry is spontaneously
broken across the direct WSM-BI transitions. The BI-BSP
as well as WSM-BSP transitions are continuous. The red
dot represents a multicritical point, where WSM, BI and BSP
meet. The direct first order transition between WSM and BI,
shown in panel (b), can also be eliminated by a BSP phase.
We here do not consider possible Mott localization of Weyl
fermions for very large interactions. Panel (a) is schematic,
and panel (b) for n = 2, 3 are similar to the one shown above.

a two component spinor, ck,α is the fermion annihilation
operator with momentum k and (pseudo)spin projection
α =↑, ↓, and σ are Pauli matrices [49, 52]. For our discus-
sion of the low energy physics, it is sufficient to consider
the following continuum model of a general WSM

Hn = αnk
n
⊥ [σ1 cos(nφk) + σ2 sin(nφk)] + σ3(Bk2

z + ∆),
(1)

where φk = tan−1(ky/kx), and we have set ~ = 1, lattice
spacing a = 1. For example, α1 bears the dimension
of Fermi velocity, while α2 and B have the dimensions
of mass, and in this notation N1(k) = αnk

n
⊥ cos(nφk),

N2(k) = αnk
n
⊥ sin(nφk), N3(k) = Bk2

z + ∆. The sign
of ∆ does not change any underlying symmetry, but it
gives rise to two distinct physical states. While ∆ < 0
corresponds to the WSM phase, ∆ > 0 leads to a BI
(either Chern or trivial). The QCP between these two
phases is located at ∆ = 0.

The low-energy physics of Weyl fermions is captured
by a four-component spinor Ψ>k =

(
cK+k,↑, cK+k,↓,

c−K+k,↑, c−K+k,↓
)
, after linearizing the theory around

right (+) and left (−) handed Weyl nodes, respectively lo-
cated at ±K, with K = (0, 0,

√
−∆/B). We find the low

energy Hamiltonian for a general WSM with a monopole
charge n to be [52]

Hn
W = αnk

n
⊥ [Γ01 cos(nφk) + Γ02 sin(nφk)] + Γ03vzkz,

(2)
where vz = 2

√
−B∆, Γjk = iγjγk and γ0 = τ1 ⊗ σ3,

γ1 = τ1 ⊗ σ2, γ2 = τ1 ⊗ σ1, γ3 = τ2 ⊗ σ0. The Pauli
matrices τµ operate on the chirality index ±. Notice
that [Hn

W , γ5] = 0, where γ5 = τ3 ⊗ σ0. Thus, Hn
W

possesses an emergent U(1) chiral symmetry generated
by γ5, which captures the translational symmetry of the
decoupled Weyl fermions [50]. Now we analyze the form
of effective short-range interactions by considering two
types gapless excitations, present inside WSM and at the
QCP separating WSM and BI (see Fig. 1).

Interacting WSM : In a WSM generic short-range in-
teractions can be described by sixteen interaction terms

HW
int = gµν

∫
d3x

(
Ψ†τµ ⊗ σνΨ

)2
, where µ, ν = 0, 1, 2, 3.

Eight of these couplings describe intranode or forward
scattering, while the other eight correspond to internode
or back scattering processes. After accounting for emer-
gent chiral symmetry and rotational symmetry in the xy
plane (generated by Γ12), and invoking the Fierz con-
straint [51, 52], we find that the effects of generic short-
range interaction on a WSM can be addressed with only
four independent coupling constants. We choose the in-
teracting Hamiltonian as

Hint =

∫
d3x

{
g0

(
Ψ†Ψ

)2
+ g4

[(
Ψ†γ0Ψ

)2
+
(
Ψ†Γ05Ψ

)2]
+

2∑
j=1

[
g2

(
Ψ†Γ0jΨ

)2
+ g3

(
Ψ†Γ3jΨ

)2]}
. (3)

The scaling dimension of quartic interactions is [gj ] = − 2
n

(following the scaling of DOS). Thus, sufficiently weak
short-range interaction is an irrelevant perturbation for
any n. Here, g0, g2 and g3 correspond to forward scatter-
ing, while g4 represents backscattering.

Broken symmetry phases: On the other hand, a gen-
eral WSM can become unstable toward the formation of
(i) a translational or chiral symmetry breaking AI or (ii)
a rotational symmetry breaking nematic phase at strong
coupling [gray region in Fig. 1(a)], thereby eliminating
the direct WSM-BI transition. As shown below the cor-
responding WSM-BSP QPTs turn out to be continuous.

The AI order parameter hybridizes Weyl nodes of
opposite chiralities (signifying breakdown of transla-
tional symmetry), giving rise to a complex Dirac mass
HAI = ∆AI [γ0 cos θ + Γ05 sin θ] [27, 30–35, 38, 42–
44]. Within the mean-field picture, the uniformly gapped
quasi-particle spectra become E = ±[α2

nk
2n
⊥ + v2k2

z +
|∆AI |2]1/2 [53]. The U(1) Goldstone mode describing
the fluctuations of θ is known as the axion field, and it
couples to the external electromagnetic field as θ E ·B.

By contrast, a nematic order parameter does not mix
two nodes and preserves the chiral symmetry. Due to
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the rotational symmetry breaking in the xy plane, any
nematic order splits a Weyl node of strength n into n
copies of simple Weyl nodes with unit monopole charge.
However, the order parameter can couple to the right and
left handed Weyl fermions with opposite or same signs,
respectively giving rise to (a) an axial nematic (AN) or
(b) a regular nematic (RN) phase. The respective cou-
plings between Weyl fermions and AN/RN order param-
eter fields are given by

HAN/RN = ∆AN/RN

[
Γ13/01 cos θ + Γ23/02 sin θ

]
.

Inside the AN phase, the emergent simple left (L) and
right (R) handed Weyl nodes are respectively located

at k⊥(∆AN ) =
[
α−1
n ∆AN

]1/n
and φk = φjk ≡

θ+mjπ
n ,

where j = R,L, mL = 1, 3, · · · , 2n − 1 and mR =
0, 2, · · · , 2n− 2. In contrast, the splitting of Weyl nodes
near left and right chiral points are identical inside the
RN phase, and given by k⊥(∆RN ) and φLk or φRk , de-
pending on the sign of ∆RN [54]. Notice that both in-
sulating and nematic orders suppress low energy DOS.
While AI produces a hard gap in the quasi-particle spec-
trum, nematic orders cause power-law suppression of
DOS %(E) ∼ |E| 2n +1 → |E|2 for n > 1, whereas they
only renormalize the location of Weyl nodes, without al-
tering the power-law dependence of DOS for n = 1 [55].
It is worth pointing out that the internal angle θ in AI,
AN or RN phases in general gets locked by the crystal
symmetry into a preferred set of values, which can only
be found after incorporating higher gradient terms in the
continuum Hamiltonian Hn

W . Next we demonstrate the
competition among these orders using RG analysis.

RG analysis: Recall that local interactions are
marginal perturbations ([gj ] = 0) when n → ∞, and
RG analysis can be controlled by the parameter ε = 2/n.
By integrating out the fast modes belonging to the shell
Ece

−l <
√
ω2 + v2k2

z < Ec and 0 < k⊥ < ∞, and sub-
sequent rescaling according to ω → e−lω, kz → e−lkz,
k⊥ → e−2l/nk⊥ and Ψ → e(3+ 2

n )l/2Ψ, we obtain the fol-
lowing RG flow equations

βλ0 = −ελ0 +O (λiλj/n) ,

βλ2
= −ελ2 + λ2

+ − λ2
3 + λ0(λ3 − λ+) +O (λiλj/n) ,

βλ3
= −ελ3 + (2λ3 − λ0)(λ3 − λ+) +O (λiλj/n) ,

βλ4
= −ελ4 + (λ+ − λ3)2 +O (λiλj/n) , (4)

to the leading order in ε, where λj = gj (Ec)
ε
/(4π3αεn)

for j = 0, 2, 3, 4 are dimensionless coupling constants,
λ+ = λ2 + λ4, βx = dx

dl and Ec is the ultraviolet energy
cut-off for Weyl fermions. The contributions ∼ 1/n cap-
ture the sub-leading divergence, which of course vanish
for the special limit n→∞ [52].

The RG flow equations support following fixed points
in the four dimensional space of (λ0, λ2, λ3, λ4). The at-
tractive fixed point located at (0, 0, 0, 0) represents sta-
ble non-interacting WSM phase. For n → ∞ other
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FIG. 2: Top: Schematic RG flow diagram in the (λ2, λ3, λ4)
space. Here, blue, magenta and red dots respectively rep-
resents fully stable and unstable bi-critical point (BCP),
and QCPs. Bottom: Representative cuts of phase diagram,
depicting the instability of WSM toward broken symmetry
phases [gray region in Fig. 1(a)] through continuous quantum
phase transitions (across solid green lines) at strong coupling,
as obtained by solving the RG flow equations (4) for n = 1.
The phase boundaries for n = 2(3) are shown by dashed (dot-
ted) lines. Across the blue line system undergoes a first or-
der transition between two distinct broken symmetry phases.
Thus, with increasing density of states onset of broken sym-
metry phases occurs at weaker interactions. Phase diagram in
(λ2, λ3) plane is similar to the one shown in (λ4, λ3) plane. At
very strong interactions there can also be Mott localization of
Weyl fermions which is not considered here.

two fixed points (repulsive or QCPs) are located at
(a) = (0,−1, 2, 1) ε4 , describing a continuous QPT into
the AN phase, and (b) = (0, 1, 0, 1) ε4 , which, on the other
hand, possesses an O(4) symmetry (since λ2 = λ4 and
λ0 = λ3 = 0 at this QCP). When n → ∞, the in-
plane kinetic term ∝ kn⊥ drops out of Hn

W . The resulting
Hamiltonian (effectively one-dimensional) anticommutes
with Γ01, Γ02, γ0 and Γ05, giving rise to a spurious O(4)
symmetry, which is actually absent for any WSM with
finite n. After accounting for the subleading 1/n correc-
tions [52], the flow equations still support only two QCPs
and the new location of QCP (b) is given by

(b) ≈
(

0,
1

4
− 0.33

n
δn,2p −

0.28

n
δn,2p+1,

0.94

n
δn,2p+1,

1

4
− 0.17

n
δn,2p +

0.12

n
δn,2p+1

)
ε, (5)

where p is an integer. Upon investigating the flow of var-
ious order parameter susceptibilities, we find this QCP
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describes a continuous QPT to the AI phase. We note
that the 1/n corrections do not alter the nature of QCP
(a), apart from causing a non-universal shift in its loca-
tion [52, 56]. A fully unstable fixed point seprates the
domain of attraction of these two QCPs [magenta point
in Fig. 2(upper panel)]. A schematic RG flow diagram
and the resulting cuts of phase diagram in various cou-
pling constant planes are shown in the upper and lower
panels of Fig. 2, respectively.

Next we discuss the scaling phenomena at these two
QCPs. From the leading order ε-expansion we find the
CLE at each QCP to be ν−1 = ε. The fact that the CLE
is equal at all QCPs is a consequence of leading order per-
turbative analysis. CLEs at different QCPs are expected
to become different once the higher order corrections are
taken into account. Notice that we recover mean-field
exponent ν = 1

2 for n = 1 WSM [48]. By contrast, for
n = 2 and 3, we respectively obtain ν = 1 and 3/2, sug-
gesting that general WSMs with n > 1 can support rare
examples of non-Gaussian QCPs in three dimensions. As
a direct consequence of non-Gaussian criticality, for ex-
ample the spectral gap in the AI phase (∆AN ) does not
posses any logarithmic correction for any n > 1 [52].

First-order transition: Finally, we address the ef-
fects of generic short range interactions in the vicinity
of WSM-BI QCP, located at ∆ = 0. The analysis is
carried out for two-component critical excitations (ψ)
for which local interactions are captured by four terms

H1
int = g̃µ

∫
d3x

(
ψ†σµψ

)2
, where µ = 0, 1, 2, 3. Due to

the Fierz identity of Pauli matrices [52], only one of the
four coupling constants is independent, which we choose
to be g̃3. At the non-interacting QCP, the spectra of criti-
cal excitations are E(k) = ±

√
α2
nk

2n
⊥ +B2k4

z , giving rise
to strong anisotropy between in-plane and out-of-plane
response functions for any n and the low-energy DOS

%(E) ∼ |E| 4−n
2n . The scaling dimension of the coupling

constant [g̃3] = − 4−n
2n suggests that weak short-range in-

teraction is an irrelevant perturbation at the WSM-BI
QCP for any n < 4, thus only renormalizing the phase
boundary between the WSM and BI [see Fig. 1(b)].

The effect of electronic interaction at the WSM-BI
QCP can quantitatively be demonstrated from the fol-
lowing dimensionless mean-field free-energy density [52]

F =
Σ2

2g̃3
−
∫

d3k

(2π)3

√
α2
nk

2n
⊥ + (Bk2

z + ∆ + Σ)
2
, (6)

obtained after Hubbard-Stratonovich decoupling the
four-fermion interaction in favor of a bosonic field
Σ = 〈Ψ†σ3Ψ〉 and subsequently integrating out critical
fermions. We numerically minimize the free-energy to ar-
rive at the phase diagram, shown in Fig. 1(b), for n = 1.
The salient features of the phase diagram can be appreci-
ated by expanding the free energy in powers of ρ, yielding

f ≈
[
m2

2λ
+ f0(n)

]
+ ρ

[m
λ

+ f1(n)
]

+
∑
j∈p

ρjfj(n), (7)

after shifting ρ + m → ρ, which contains all odd powers

of ρ, where λ = g̃3E
4−n
2n

Λ /an, ρ = Σ/EΛ, f = FanE
− 4+3n

2n

Λ

and an = [2nα
2/n
n B1/2(2π)2]. For weak enough interac-

tion (no condensation of ρ), profile of f contains a single
global minima and the second term in Eq. (7) defines the
phase boundary m = −λf1(n) between the WSM and BI,
without altering the nature of the transition. However,
beyond a critical strength of interaction (λ > λ∗ ∼ 4−n

2n ),
ρ field acquires an expectation value and all odd powers
of ρ in the free-energy become important, and f contains
two inequivalent local minima. Consequently the direct
transition between the WSM and BI at strong coupling
becomes a fluctuation driven first order transition [57].
As shown in Fig. 1(a), the direct transition between the
WSM and BI can be eliminated by an intervening BSP
(the gray region). The BI-BSP transition is continuous.

Conclusions: To summarize, we have shown that a
strongly interacting general WSM can either undergo
continuous QPTs into a translational symmetry breaking
AI or a rotational symmetry breaking nematic (namely
AN) phase or be separated from a symmetry preserving
BI by a first order transition, as shown in Figs. 1 and
2. Using a perturbative RG analysis controlled via an
ε = 2/n-expansion, with n being the monopole charge
of the Weyl point, we establish that the CLE at the
WSM-BSP QCPs is ν = 1/ε, suggesting non-Gaussian
quantum criticality for any n > 1 [58]. All BSPs can
display true long range order and undergo genuine ther-
mal phase transition to WSMs. While the specific heat
in a general WSM scales as Cv ∼ T

2
n +1, inside the ne-

matic phase Cv ∼ T 3. Consequently the Grüneisen ra-
tio (ΓG) in the WSM and nematic phase respectively di-

verges as ΓG ∼ T−( 2
n +2) and T−4. By contrast, at the

WSM-BI QCP Cv ∼ T
4+n
2n and ΓG ∼ T−

4+3n
2n . For small

frequencies (Ω) the dynamic conductivity (σ) scales as

σzz ∼ Ω
2
n−1 and σjj ∼ Ω for j = x, y, with σxx = σyy

(due to rotational symmetry in the xy plane) inside the
WSM phase. But, in a nematic phase σjj ∼ Ω for
j = x, y, z, with σxx 6= σyy due to the lack of rotational
symmetry. In contrast, the conductivity for AI phase
shows activated behavior. Therefore, onset of either AI
or gapless nematic phase can be identified through vari-
ous thermodynamic and transport measurements.

Application of external strain can further enrich the
phase diagram of interacting Weyl materials. For ex-
ample, when external strain is weak it couples with the
nematic order as an external field and splits Weyl node of
strength n into n copies of simple Weyl points with n = 1.
Subsequently, such nematic WSM can undergo a contin-
uous QPT into an AI phase for strong backscattering, as
suggested by the phase diagram in Fig. 2. Detailed anal-
ysis of the interplay of strain and electronic correlations
in Weyl materials is left for future investigation.
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