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In graphene, out-of-plane (flexural) vibrations and static ripples imposed by the substrate relax
the electron spin, intrinsically protected by mirror symmetry. We calculate the relaxation times in
di↵erent scenarios, accounting for all the possible spin-phonon couplings allowed by the hexagonal
symmetry of the lattice. Scattering by flexural phonons imposes the ultimate bound to the spin
lifetimes, in the ballpark of hundreds of nano-seconds at room temperature. This estimate and
the behavior as a function of the carrier concentration are substantially altered by the presence of
tensions or the pinning with the substrate. Static ripples also influence the spin transport in the
di↵usive regime, dominated by motional narrowing. We find that the D’yakonov-Perel’ mechanism
saturates when the mean free path is comparable to the correlation length of the height profile. In
this regime, the spin-relaxation times are exclusively determined by the geometry of the corrugations.
Simple models for typical corrugations lead to lifetimes of the order of tens of micro-seconds.

I. INTRODUCTION

Since the injection and detection of spin currents was
experimentally demonstrated,1 graphene is considered as
a very appealing element in spintronics2 devices. The
spin polarization of the currents is expected to survive
over long distances due to the weakness of the spin-orbit
coupling3 and almost complete absence of nuclear mag-
netic moments. However, experimental studies yield spin
di↵usion lengths several orders of magnitude shorter4–6

than early theoretical predictions.7–9 Recent years have
witnessed a fast development of the field. On the the-
oretical side, new models of spin relaxation have been
proposed, including the exchange interaction with local
magnetic moments,10,11 a fast spin dephasing due to the
accumulation of pseudospin-related geometrical phases,12

or the inclusion of spin-precession processes during reso-
nant scattering.13 Experimental e↵orts have been focused
on the e�ciency of spin injection14,15 and the isolation
of the samples from the environment.16–18

The spin-relaxation processes in graphene involve
inter-band transitions between states of opposite parity
with respect to mirror (z ! �z) reflection, which make
them intrinsically weak. These processes can be assisted
by disorder in some cases; for example, resonant impu-
rities induce a local sp3-like distortion of the lattice, hy-
bridizing ⇡ and � electronic states.19 This is a partic-
ular example of the Elliot-Yafet mechanism,20 in which
the spin-relaxation times are proportional to the elastic
scattering times, dominating charge transport. This con-
trasts with the D’yakonov-Perel’ mechanism,21 in which
this relation is reversed due to a motional narrowing pro-
cess. The interplay between charge and spin di↵usion in
graphene has been an object of debate since the first
studies on this material.5,6,22

Corrugations and thermal vibrations in the out-of-
plane direction, on the other hand, break explicitly the
mirror symmetry, mixing electronic states with opposite
parity. In this Letter, we evaluate the spin lifetimes lim-
ited by this unavoidable source of relaxation. Our analy-
sis contains all the possible spin-lattice couplings allowed
by symmetry in weakly corrugated graphene layers. We
find that the scattering with flexural phonons limits the
spin-relaxation times down to ⌧s ⇠ 100 ns in suspended
samples. We also discuss the deviation from the usual
D’yakonov-Perel’ mechanism in the di↵usive regime, of
relevance in epitaxial graphene.

II. SPIN-LATTICE COUPLING

We consider the low-energy description of graphene
⇡-electrons around the two inequivalent corners of the
hexagonal Brillouin zone, K±. The Hamiltonian reads
as H = ~ vF ⌃ · k + HSO, with vF ⇡ 106 m/s. The
first term describes the Dirac bands, where the opera-
tors ⌃ = (±�x,�y) are Pauli matrices acting on the sub-
lattice degrees of freedom of the spinor wave function.
The second term accounts for relativistic (spin-orbit) ef-
fects. In corrugated samples, it can be generically writ-
ten as HSO = ±��z sz + Hs-l, where the first term is
the intrinsic Kane-Mele coupling,23 si being Pauli ma-
trices associated with the spin degree of freedom; the
strength of this coupling is of the order of µeV,3 so it
will be neglected from now on. The second term rep-
resents the coupling between the electron spin and the
lattice degrees of freedom due to the breakdown of the
mirror symmetry. These couplings appear as invariants
of the C6v point group symmetry of the lattice; the most
generic Hamiltonian reads24
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where h (x) is the height profile and the bar stands for
complex conjugation, ⌃̄ = (±�x,��y). The first two
terms can be interpreted as spin-dependent hopping pro-
cesses resulting from virtual transitions into the �-bands.
The first one acquires the form of the usual Bychkov-
Rashba coupling,25 whereas the second term resembles
the form of a Dresselhaus coupling.26 The last term in
Eq. (1) can be understood as a spin-dependent correction
to the crystal field. A tight-binding calculation24 gives
(in units of ~ vF ) �BR,� ⇠ 5 ·10�4; �D is much weaker, it
appears only when considering hoppings beyond nearest
neighbors.

The spin-phonon coupling can be derived from Eq. (1)
by promoting the height profile to a dynamical variable.
Following the standard quantization procedure, we iden-
tify the Fourier components of the out-of-plane displace-
ments with the flexural phonon operators as

h (q) �!
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h
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where ⇢ ⇡ 7.6 · 10�7 kg m�2 is the carbon-mass density.
We consider only long-wavelength modes, so we neglect
inter-valley scattering and the contribution from the opti-
cal branch. The dispersion relation can be written as27,28
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The anharmonic coupling with the in-plane modes lin-
earizes the dispersion relation at low momenta, introduc-
ing a cut-o↵29 in the quadratic dispersion of the bending
modes. In this expression  ⇡ 0.8 eV represents the
bending rigidity24 of the graphene membrane. Tensions
breaking the full-rotational symmetry produce the same
e↵ect. For simplicity, we consider the case of an isotropic

tension of the form # = Ku, where K ⇡ 21 eV Å
�2

is
the 2D bulk modulus30 and u is the strain of the lattice;
we define then qc =

p
Ku/. In supported samples, the

interaction with the substrate introduces an additional
momentum scale � ⇡ 0.1 Å�1 associated with the pin-
ning lengths.31

III. SPIN RELAXATION DUE TO FLEXURAL
PHONONS

We consider first the spin lifetimes limited by electron-
phonon scattering in the absence of other sources of disor-
der. In the spirit of Matthiessen’s rule, the spin lifetimes
limited by each of the couplings separately are combined
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FIG. 1: Spin relaxation rates due to the scattering by flexural
phonons as a function of a) carrier concentration (where T =
300 K) and b) temperature (where ✏F = 0.1 eV, corresponding
to the vertical dashed line in a).

in a single relaxation rate. A Fermi’s golden rule calcu-
lation gives
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In the derivation of Eq. (4) we have employed a quasi-
elastic approximation, i.e., we have neglected the phonon
contribution in the energy-conservation constrain pro-
vided that T ⌧ TF ⌘ ✏F /kB for the usual dopings,
where ✏F = ~vF kF is the Fermi energy measured with
respect the Dirac point. This approximation assumes
that the disorder induced by thermal phonons can be
treated as a static perturbation, as the energy exchanged
in an electron-phonon collision is much lower than the
electronic energies themselves. Notice also that the ��-
coupling preserves the chirality of the wave function, so
this channel is absent under the backscattering condition,
q = 2kF .
The spin-relaxation rates evaluated from Eq. (4) are

shown in Fig. 1. In the free-standing case (black con-
tinuous curve) the spin lifetimes are limited to a few
hundreds of nano-seconds. Tensions (green dotted and
red dashed curves) and the interaction with the sub-
strate (blue dashed-dotted curve) suppress the contribu-
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tion from flexural modes at the lowest momenta, modify-
ing also the dependence on the carrier concentration as it
is shown in panel a. The two di↵erent regimes shown in
panel b are determined by the Bloch-Grüneisen temper-
ature, TBG = ~!2k

F

/kB , which is, at most, a few hun-
dreds of mK. In the experimentally most relevant regime,
T � TBG, the spin-relaxation rates in suspended samples
are given by the expression
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where ⌫ = 0, 1 corresponds to the free-standing (qc ⌧
2kF ) and strained cases, respectively. The e↵ective spin-
phonon coupling reads �̃
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At low temperatures, T ⌧ TBG, the spin-relaxation
rates behave as ⌧

�1
s ⇠ T

3/2 (T 4) in the free-standing
(strained) case, whereas they are exponentially sup-
pressed in pinned samples.

IV. SPIN DIFFUSION LIMITED BY STATIC
RIPPLES

We consider now a disordered graphene sample sup-
ported on a substrate, in which spin di↵usion is assisted
by motional narrowing. The competition between the
two relevant length scales in the problem, namely, the
electrons’ mean free path, `, and the height-height cor-
relation length imposed by the interaction with the sub-
strate, L, is illustrated in Fig. 2 a. The curvature of
the sample is approximately uniform within a region of
characteristic size L. The electrons experience an e↵ec-
tive exchange field that makes the spins to precess with a
characteristic Larmor frequency of !L ⇠ �BR/~, where
�BR ⇠ �BR

phh2i/L2. The precession axis depends on
the direction of motion, so momentum scattering ran-
domizes the process when L > `. In between scattering
events, the electron spin precesses an angle � ⇠ ⌧!L,
where ⌧ = `/vF is the scattering time. After a time t,
and assuming that the process is Markovian, the preces-
sion angle is approximately � (t) ⇠ p

t/⌧ ⇥ ⌧!L. On the
contrary, if L . `, then the precession is randomized by
the fluctuations of the spin-orbit coupling itself. Within
a region of size L the spin precess an angle � ⇠ L!L/vF ,
so after a time t we have � (t) ⇠ p

tvF /L⇥ L!L/vF . If
we define the characteristic time scale of spin relaxation
as � (t = ⌧s) ⇠ 1, then from the previous arguments we
obtain
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FIG. 2: a) Scheme of the motional narrowing in the
D’yakonov-Perel’ (left) and fluctuations-dominated regimes
(right). b) Diagrams corresponding to the second order cor-
rection to the di↵usion pole. The latin labels specify the spin
projection with respect to the z-axis.

The usual scaling ⌧

�1
s / ⌧ of the D’yakonov-Perel’

mechanism saturates for scattering times larger than
L/vF , for which the spin di↵usion assisted by motional
narrowing ceases to depend on the elastic scattering
characteristics.32 Next, we derive this qualitative result
from a more rigorous diagrammatic calculation.33

A. Formalism

In the di↵usive regime, the dynamics of the disorder-
averaged spin density along the out-of-plane direction –
⇢↵ ⌘ 1

2Tr [s↵⇢̂], where ⇢̂ is the density matrix operator–
is described by

✓
@t �Dr2 +

1

⌧↵

◆
⇢↵ = 0, (9)

where D = v

2
F ⌧/2 is the di↵usion constant. We assume

that the dominating disorder potential v (r) determin-
ing the elastic scattering time ⌧ is diagonal in spin and
valley/sublattice degrees of freedom and its tail is much
shorter than the typical distance between scattering cen-
ters. Hence, we can consider a gaussian distribution for
disorder realizations characterized by correlators of the
form

hv (r1) v (r2)i = ~
2⇡�F ⌧

�

(2) (r1 � r2) . (10)

where �F = kF / (2⇡~vF ) is the density of states (per spin
and valley) at the Fermi level.
In the ladder approximation,34 the spin-relaxation rate

⌧

�1
↵ is given by the correction to the di↵usion pole of the
↵-triplet mode of the 2-particle correlation function (dif-
fuson), which can be evaluated from the zero-frequency,
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FIG. 3: Spin-relaxation rates as a function of ⌧�1 = vF /`
evaluated from Eqs. (13)-(10). The result in the first line of
Eq. (16) corresponds to the continuous black line.

zero-momentum ladder insertion35 Pi j i0j0 as
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In this expression the sum is performed over the projec-
tions of the electron spin with respect to the quantization
axis. This correction arises from the space-dependent
spin-lattice coupling, which is treated in perturbation
theory. The diagrams for Pi j i0j0 to the lowest order in
�BR are shown in Fig. 2 b. The dashed lines correspond
to the height-height correlation function hh (r1)h (r2)i,
the interaction vertex is the Bychkov-Rashba coupling,
the dotted lines are the disorder correlators in Eq. (10),
and the straight lines are disorder-averaged Green func-
tions within the Born approximation,
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The calculation is highly simplified if we neglect inter-
band transitions leading to Elliot-Yafet-like contribu-
tions, which are expected to be parametrically small for
usual dopings.22 The final result reads ( 2
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where
D
|h (q)|2

E
is the correlation function in momentum

space,
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A being the area of the sample.
The height-height correlations are strongly influenced

by the method of growth. We generalize the expression in
Eq. (10) for the disorder correlator in order to take into

account the existence of correlations below a given length
scale, L. The simplest height-height correlation function
describing the presence of ripples can be written as

hh (r1)h (r2)i = h

2
0 e

� |r1�r2|2

L2
, (15)

where h0 ⇡ 0.3 nm corresponds to the characteristic
height of the ripples and the correlation length, L ⇡ 25
nm, is a measure of their typical lateral size.36 By per-
forming the Fourier transform and plugging the result
into Eq. (13) we get
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The results in the asymptotic regimes coincide with our
estimates in Eq. (8) up to numerical factors.37 The spin
lifetimes in the limit L . ` are of the order of ⌧s ⇠ 10
µs. Notice that this estimation only includes the spin-
orbit coupling of carbon atoms. The substrate itself can
enhance substantially the strength of the spin-orbit cou-
pling, leading to much shorter spin-relaxation times.

B. Discussion

Our formula in Eq. (13) can be applied to the study
of spin relaxation in epitaxial graphene.15,38 The cor-
relator used in the derivation of Eq. (16) describes a
noise-induced roughening of the epitaxial growth fronts,
which is a scale-invariant (self-a�ne) random process.39

In graphene samples, however, a preferential periodicity
has been systematically observed,36 described by a cor-
relation function of the form39

hh (r1)h (r2)i = h

2
0 e

� |r1�r2|2

L2 J0

✓ |r1 � r2|
�

◆
, (17)

where J0 (x) is a Bessel function of the first kind. Fig-
ure 3 shows the spin-relaxation rate as a function of the
inverse of the scattering time for di↵erent values of �.
There are still two asymptotic regimes dominated by mo-
mentum scattering (D’yakonov-Perel’ mechanism) and
height fluctuations, regardless of the actual value of �.
Note, finally, that the analysis presented here for static

ripples can be easily generalized to static in-plane strains,
as the same symmetry analysis can be applied, and only
the coupling constants need to be recalculated. In-plane
strains are the main source of scattering in high mobility
encapsulated graphene samples,40 and it can be expected
that they will also provide un upper limit to spin di↵u-
sion. The main di↵erence is that for clean encapsulated
samples, in-plane strains show long-range correlations,
which decay as a power law instead of the behavior con-
sidered in Eqs. (15)-(17). A detailed analysis of this case
is beyond the scope of this paper.
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V. CONCLUSIONS

In summary, we have analyzed the role of lattice cor-
rugations and thermal out-of-plane vibrations in the spin
transport of graphene. Flexural phonons give rise to a
temperature-dependent contribution to spin relaxation;
for the usual carrier concentrations, the spin lifetimes
are of the order of 0.1 � 1 µs at room temperature, de-
pending on the amount of strain in the sample and the
interaction with the substrate. Static ripples also a↵ect
the spin transport in the di↵usive regime. In the limit
L . `, the spin lifetimes are exclusively determined by
the geometry of the corrugations. The subtraction of
the e↵ect of the contacts in the analysis of the Hanle-
precession curves41,42 makes possible to study these re-

laxation mechanisms in graphene-based spin valves. It is
worth noting that the intrinsic limits in the spin relax-
ation time imposed by corrugations in CVD graphene cal-
culated here are still longer than the relaxation times ob-
served in the best BN-encapsulated graphene samples,43

⌧s ⇡ 1 ns.
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16 M. H. D. Guimarães, P. J. Zomer, J. Ingla-Aynés, J. C.
Brant, N. Tombros, and B. J. van Wees Phys. Rev. Lett.
113, 086602 (2014).

17 M. Gurram, S. Omar, S. Zihlmann, P. Makk, C. Scho-
nenberger, and B. J. van Wees, Phys. Rev. B 93, 115441
(2016).

18 M. Drogeler, C. Franzen, F. Volmer, Tobias Pohlmann,
L. Banszerus, M. Wolter, K. Watanabe, T. Taniguchi, C.
Stampfer, and B. Beschoten, NanoLett. 16, 3533 (2016).

19 A. H. Castro Neto and F. Guinea, Phys. Rev. Lett. 103,
026804 (2009).

20 P. G. Elliot, Phys. Rev. 96, 266 (1954); Y. Yafet, Solid

State Physics (Academic, New York, 1963).
21 M. I. D’yakonov and V. I. Perel’, Sov. Phys. Solid State

13, 3023 (1971); M. I. D’yakonov, Spin Physics in Semi-
conductors (Springer, Berlin, 2008).

22 H. Ochoa, A. H. Castro Neto, and F. Guinea, Phys. Rev.
Lett. 108, 206808 (2012).

23 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
(2005).

24 H. Ochoa, A. H. Castro Neto, V. I. Fal’ko, and F. Guinea,
Phys. Rev. B, 86, 245411 (2012).

25 Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039
(1984); E. I. Rashba, Phys. Rev. B 79, 161409(R) (2009).

26 G. Dresselhaus, Phys. Rev. 100, 580 (1955).
27 N. A. Viet, H. Ajiki, and T. Ando, J. Phys. Soc. Japan 63,

3036 (1994).
28 B. Amorim and F. Guinea, Phys. Rev. B 88, 115418

(2013).
29 From Ginzburg criterion we have qc =

p
3kBTK/8⇡2;

see K. V. Zakharchenko, R. Roldán, A. Fasolino, and M.
I. Katsnelson, Phys. Rev. B 82, 125435 (2010).

30 Changgu Lee, Xiaoding Wei, Je↵rey W. Kysar, and James
Hone, Science 321, 385 (2008).

31 S. Viola Kusminskiy, D. K Campbell, A. H. Castro Neto,
and F. Guinea, Phys. Rev. B 83, 165405 (2011).

32 V. K. Dugaev, E. Ya. Sherman, and J. Barnas Phys. Rev.
B 83, 085306 (2011).

33 A. A. Burkov and Leon Balents, Phys. Rev. B 69, 245312
(2004); A. A. Burkov, Alvaro S. Núñez, and A. H. Mac-
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