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We study the thermal conductance across solid-solid interfaces as the composition of an inter-
mediate matching layer is varied. In absence of phonon-phonon interactions, an added layer can
make the interfacial conductance increase or decrease depending on the interplay between (1) an
increase in phonon transmission due to better bridging between the contacts, and (2) a decrease in
the number of available conduction channels that must conserve their momenta transverse to the in-
terface. When phonon-phonon interactions are included, the added layer is seen to aid conductance
when the decrease in resistances at the contact-layer boundaries compensate for the additional layer
resistance. For the particular systems explored in this work, the maximum conductance happens
when the layer mass is close to the geometric mean of the contact masses. The surprising result,
usually associated with coherent antireflection coatings, follows from a monotonic increase in the
boundary resistance with the interface mass ratio. This geometric mean condition readily extends
to a compositionally graded interfacial layer with an exponentially varying mass that generates the
thermal equivalent of a broadband impedance matching network.

I. INTRODUCTION

Nanostructured materials offer unprecedented oppor-
tunities for thermal management and energy conversion
by enabling a wider range as well as better control of the
thermal conductivity1–4. Interfaces are central to their
performance since they are scattering centers for heat
carriers whose spatial distribution can be set during fab-
rication and whose dispersion strength can be controlled
by tailoring their physical properties5–8. Nevertheless,
the full potential of this revolution is still to be seen
because there is a gap between our fundamental under-
standing of heat flow across single and multiple interfaces
and the outcome of experimental measurements6. For in-
stance, while many simulations predict an enhancement
of thermal conductance when a thin layer is inserted at
a well bonded interface9–15, only one experiment backs
up that prediction so far16. Other experiments report-
ing conductance enhancement attribute the increase to a
strengthening of the bonds at the boundaries17–19. Ther-
mal interface engineering can be critical to many tech-
nologies like integrated circuits3, phase change memory20

or high power electronics21. A systematic and micro-
scopic understanding of the bridging properties of an in-
terfacial layer would go a long way towards that goal.

Adding an intermediate layer to a well-bonded in-
terface can enhance the conductance in two different
ways. In the harmonic limit, the layer could act as an
impedance matching waveguide (Fig. 1a) that reduces
phonon reflection by destructive interference, similar to
an antireflection coating22. Such a complete quenching
of reflection occurs at a single frequency where the layer
thickness can function as a quarter wave plate. In the
anharmonic regime on the other hand, the layer can act
as a bridge that facilitates frequency up and down con-
version and increases the chances of phonons crossing the

Figure 1. Interface with an added intermediate layer or junc-
tion (bridged interface) a) In the harmonic limit, the layer
behaves like an impedance matcher that increases transmis-
sion by constructive interference while reducing the number of
conducting modes due to energy-momentum conserving con-
straints. b) In the anharmonic limit, the layer behaves as a
bridge for phonon down and up conversion that increases the
chances of phonons crossing the interface.

interface12 (Fig. 1b).

The contribution of each individual effect to the to-
tal enhancement has not been systematically explored
on the same material system. Neither is there a clear cri-
terion to choose the properties of the layer to maximize
the conductance. In a 1D harmonic crystal for instance,
we have established that a conductance maximum oc-
curs when the impedance of the layer is the geometric
mean of the contact impedances22, even in presence of
incoherent interface scattering. This thumb-rule persists
for all lengths except the extreme limit of a single atom,
where the mean generates a resonance that lies beyond
the cut-off frequency and the system is forced to choose
an arithmetic mean instead23,24. However, this result
has not been extended to multiple dimensions and crys-
tal structures. A similar gap exists when phonon-phonon
interactions are included, where it was proposed that the
maximum conductance happens when the layer’s density
of states (DOS) maximizes its overlap with the contact
DOSs. This argument leads to two different criteria to
obtain the maximum: 1) choose the atomic mass of the
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layer close to the arithmetic mean of the contact masses12

and 2) choose the Debye temperature of the layer as the
geometric mean of the contact Debye temperatures11.
This unresolved discrepancy once again reveals our lack
of understanding of the role played by the inserted layer
for a real multidimensional physical system with complex
modes, symmetries, and scattering events.
Design rules to choose the properties of the intermedi-

ate layer that maximize interfacial conductance are still
missing. For instance, although the conductance de-
pends on the thickness22,25, crystallinity26 and bonding
strength27 of the inserted layer, it is not clear how to
choose those properties to maximize the conductance. It
is also unclear how to design the properties of graded lay-
ers. A recent study showed a large enhancement of inter-
facial conductance when the mass of the layer is varied
linearly28. This opens a new gamut of design possibilities
and the potential for further conductance enhancement
needs to be explored.
In this paper we compare the enhancement of conduc-

tance in the harmonic and anharmonic limits and demon-
strate the dominant role of anharmonicity (Sec. II). We
show that adding an intermediate layer can go either
way by increasing or decreasing the conductance when
phonon transport is restricted to the harmonic regime
(Sec. III). In this limit, the conservation of energy
and momentum constrain the number of available trans-
port channels, so the increase in average transmission
per channel must compete with the loss in the num-
ber of transport channels. When anharmonicity is added
(Sec. IV), phonon-phonon interaction relaxes the conser-
vation constraints and decouples the boundaries. Maxi-
mizing the conductance becomes equivalent to minimiz-
ing the sum of individual boundary resistances. For our
particular system, where only mass changes are consid-
ered, we show that the maximum happens when the layer
mass is close to the geometric mean of the contact masses.
As explained earlier, this result would be expected for 1-
D coherent phonon transport at a single frequency. The
surprise however is that the geometric mean ends up
winning even for a 3-D crystal with broad-band phonon
transport across modes and polarizations, including an-
harmonic and diffusive interactions. We can hypothesize
that a bridging layer can in fact be a matching layer if
we compositionally grade it so each slice has an acoustic
impedance that is the geometric mean of its immediate
nearest neighbors. The tendency of the geometric mean
to favor the lower impedance of the pair mathematically
translates to an exponentially varying spatially depen-
dent impedance, with an exponent set by the logarithm
ratio of the two impedances at either end of the layer.

II. HARMONIC VS. ANHARMONIC
ENHANCEMENT OF G

Interface thermal conductance or thermal boundary
conductance is defined as the ratio between the heat flux

crossing an interface over the temperature drop across it,
G = q/∆T . Within the Landauer formalism, the con-
ductance between two contacts at thermal equilibrium
can be expressed as29

G =
1

A

∞∫

0

dω

2π
~ω

∂N

∂T
MT

~ω<<kBT−−−−−−−→ kB
2πA

∞∫

0

dωMT, (1)

where A is the cross sectional area, ~ω is the phonon
energy, N is the Bose-Einstein distribution, kB is the
Boltzmann constant, M is the number of available prop-
agating channels, which we call modes, and T is the av-
erage transmission per mode. In a bulk material, each
mode is a 1D subband generated by a particular polar-
ization and a transverse wavevector, which gives rise to
a quantum of conductance30. The factor MT represents
the sum of all the possible transmissions between the
modes on the left and right contacts. This factor can
be calculated using Non-Equilibrium Green’s Functions
(NEGF) as MT = Trace{ΓlGrΓrG

†
r}, with Gr the re-

tarded Green’s function describing the propagation of
phonon waves in the channel, and Γl,r the broadening
matrix for the left (l) and right (r) contacts30–32. To com-
pare the conductance from Landauer formalism with that
from Non-Equilibrium Molecular Dynamics (NEMD), we
need to take the classical limit of the Bose-Einstein distri-
bution (Eq. 1 with ~ω << kBT ) and we need to subtract
the contact resistance (Appendix B and Fig. 3b). This
value should be the limit of the NEMD conductance as
temperature tends to zero.
Figure 2 plots the harmonic and anharmonic thermal

conductances GB across interfaces with an added inter-
mediate bridging layer or junction, belonging to a face
centered cubic (FCC) crystal structure in one case and di-
amond cubic (DC) in the other. The boundaries between
adjacent materials are assumed to be perfectly abrupt
and the thickness of the junction is taken to be 6 con-
ventional unit cells. For each system, we vary the atomic
mass of the junction mj in between the contact atomic
masses ml and mr. We assume that the crystal struc-
ture, lattice constant a and interatomic force constants
are invariant along the system, so we can isolate the ef-
fect of a change in atomic mass. Some consequences of
relaxing these assumptions are discussed at the end of
each of the following sections. The conductance in the
harmonic regime is calculated from Landauer formalism
in the classical limit using NEGF to obtain MT , while
the conductance in the anharmonic regime is calculated
from NEMD. Note that we report the conductance mea-
sured from the left to the right material including the
contribution from the junction. Thus, the abrupt inter-
face conductance from NEMD is larger than that of the
bridged interface when the junction mass is equal to one
of the contact masses. Those conductance values from
Landauer formalism are equal because the calculations
are harmonic. The details of the simulations are spelled
out in Appendix A.
Figures 2a and 2b suggest that anharmonicity plays a
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Figure 2. Conductance of bridged interfaces as the atomic
mass of the intermediate layer or junction is varied between
the contact masses. The conductance of the abrupt interface
is indicated by the tail of the arrow. In the harmonic limit,
a FCC crystal shows a relative enhancement of conductance
from abrupt to bridged interface a), while a DC crystal shows
the opposite c). In the anharmonic regime b), the conduc-
tance enhancement of a FCC crystal is three times larger than
that of the harmonic limit a). Moreover, the maximum en-
hancement happens when the junction mass is close to the
geometric mean of the contact masses (c) mr = 120 amu
and d) mr = 240 amu). The dashed lines are fourth order
polynomial functions that fit the NEMD data.

key role in the relative enhancement of conductance from
an abrupt (superscript A) to a bridged (superscript B)
interface. The anharmonic simulations show a relative
increase in conductance (∆G = (GB − GA)/GA = 23%
at T = 30 K) three times larger than that of the har-
monic simulations (∆G = 8% at T = 0 K). This dif-
ference can not be explained in terms of the usual lin-
ear increase of conductance with temperature shown by
NEMD simulations of abrupt interfaces (Fig. 3a)9,33,34.
In fact, the maximum conductance of bridged interfaces
increases non linearly with temperature (Fig. 3a), with
a rapid growth at low temperatures. This suggests the
existence of a mechanism that limits the conductance en-
hancement just in the harmonic regime. In Section III,
we explain that the limiting mechanism arises from the
conservation of phonon energy and transverse momen-
tum, which constrains the number of available transport
channels across the interface. We also show that for cer-
tain crystal structures, this mechanism can even destroy
the conductance enhancement of bridged interfaces over
abrupt interfaces (Fig. 2c).

In the limit of zero temperature, the conductances cal-
culated from Landauer and NEMD methods are in excel-
lent agreement (Fig. 3a). The Landauer conductance is
defined using the temperature drop between contacts at
thermal equilibrium GL = q/∆Tc. Therefore, it includes
additional resistances at the contacts that arise from the

Figure 3. a) Conductance of the abrupt interface G
A
MD and

maximum conductance of the bridged interface GB
MD vs. tem-

perature for a FCC crystal calculated from NEMD. The rapid
increase of G

B
MD at low T highlights the important role of

anharmonicity enhancing G
B
MD relative to G

A
MD. b) Temper-

ature profile of the abrupt interface from NEMD. This profile
allows us to include the contact resistances into the NEMD
conductance (Eq. 2), which shows excellent agreement with
our Landauer calculations G

A
L .

implicit scattering assumed to bring the distribution of
phonons back to equilibrium (Appendix B). On the
other hand, the NEMD conductance is defined using the
temperature drop right at the interface GMD = q/∆Ti

(Fig. 3b), so it excludes the resistances at the contacts.
Those resistances cause the temperature drops at the
boundaries of the heat baths (Fig. 3b), where thermal
equilibrium is enforced. When we include the contact re-
sistances into the NEMD conductance (right hand side
of Eq. 2), we get the Landauer conductance

GL = lim
T→0

GMD

∆Ti

∆Tc

. (2)

Figure 3a shows an example of the excellent agreement
of the two conductances once we account for the effects
of the contact resistances.

In the anharmonic regime, our simulations show that
the conductance enhancement is maximum when the
junction mass is close to the geometric mean of the con-
tact masses mj ≈

√
mlmr (Figs. 2b and 2d). This result

is a consequence of the boundary resistance being an in-
creasing function of the mass ratio of the materials at ei-
ther side of the boundary (Sec. IV). Therefore, the sum
of the boundary resistances is minimum when the ratio of
the masses is equal (mj/ml = mr/mj → mj ≈

√
mlmr).

Notably, this is a much more general result than an an-
tireflection coating, which requires in addition a quarter
wave plate to not just minimize but completely eliminate
the sum of the boundary resistances through destructive
interference, that only works at a single frequency for a
homogeneous layer material.
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III. HARMONIC LIMIT: INCREASING
TRANSMISSION VS. DECREASING

CONSERVING MODES

When phonons transit without interacting with each
other, adding an intermediate layer does not necessarily
increase the interfacial conductance (Fig. 2c). This result
challenges our intuition of maximizing wave transmission
at an interface by impedance matching. Recently, we
demonstrated in 1D systems that adding an intermediate
material with impedance equal to the geometric mean of
the contact impedances maximizes the transmission over
the broadband spectrum of phonons and therefore max-
imizes the thermal conductance at the interface22. We
even showed that an impedance of the intermediate layer
between the impedances of the contacts enhances the in-
terfacial thermal conductance22. Based on those results,
we would expect that adding an intermediate material to
either the FCC or DC abrupt interface would enhance the
interfacial thermal conductance. However, Fig. 2 shows
that this hypothesis is not correct. While we see an en-
hancement in the FCC interface we see a decrease in the
DC crystal.
To understand this result, we start by rewriting Eq. 1

to highlight the role of phonon transmission vs. number
of transport channels on the interfacial conductance. G is
related to the factor MT , which represents the sum over
all the possible phonon transmissions between modes of
the left contact, junction and right contact. Due to the
perfectly abrupt nature of the boundaries, the system
is periodic in the transverse direction, so that successful
transmissions must conserve the transverse wavevector
(k⊥). We rewrite MT to highlight the factors contribut-
ing to transport as

MT =
∑

Tk
⊥
6=0

Tk⊥
= Mc




1

Mc

∑

Tk
⊥
6=0

Tk⊥



 = McTc, (3)

where k⊥ varies over the transverse Brillouin zone, the
conserving modes Mc counts the number of nonzero
transmissions or transport channels across the interface,
and Tc is the average transmission over the conserving
modes15. Using these definitions, we can rewrite the con-
ductance as

G = GMc
〈Tc〉ω, (4)

with the contribution to the conductance by the conserv-
ing modes GMc

given by

GMc
=

1

A

∫ ∞

0

dω

2π
~ω

∂N

∂T
Mc

~→0−−−→ kB
2πA

∫ ∞

0

dωMc (5)

and 〈Tc〉ω = G/GMc
.

To calculate Mc numerically, we find the propagat-
ing modes of the bulk left contact (Ml), junction (Mj)
and right contact (Mr) by calculating MT from NEGF
for each homogeneous material, where Tk⊥

= 1 for each

mode and 0 otherwise. Then, the conserving modes are
computed from

Mc(ω) =
∑

k⊥

min [Ml(ω, k⊥),Mj(ω, k⊥),Mr(ω, k⊥)]

(6)
Note that Mc is a concept similar in spirit to the dif-
fuse mismatch model35, since it depends only on the bulk
properties of each individual material. Also note that we
are assuming that tunneling across the junction is negli-
gible, which is reasonable for junctions larger than four
atomic layers. This assumption allows us to consider
only transmissions involving propagating channels of the
junction.
The relative enhancement in the conductance of a

bridged (superscript B) interface compared to that of an
abrupt (superscript A) interface depends on the interplay
between increasing the transmission and decreasing the
conserving modes. Figure 4 compares the relative change
in conductance, conserving modes and transmission us-
ing

GB

GA
=

[

GB
Mc

GA
Mc

] [〈TB
c 〉ω

〈TA
c 〉ω

]

, (7)

with Mc for the abrupt interface defined analogous to
Eq. 6, but the minimum is taken only over the contact
modes. For the FCC crystal (Fig. 4a), the increase in
transmission is enough to counter balance the decrease
in modes. However, for the DC crystal (Fig. 4b), the
decrease in modes dominates and pushes the conduc-
tance of the bridged interface below that of the abrupt
interface. Figure 4 shows that the transmission ratio
〈TB

c 〉ω/〈TA
c 〉ω is larger than one for both systems, so it

is trying to enhance GB/GA, while the conductance ra-
tio due to the conserving modes, GB

Mc
/GA

Mc
, is less than

one for both systems, so it is trying to abate GB/GA.
Thus, adding the intermediate layer enhances the trans-
mission of individual phonons, as expected from our in-
tuition of impedance matching, but it also decreases the
number of available transport channels to cross the in-
terface. That is, the interplay between transmission and
number of modes is a competition between increasing the
value of individual transmitting channels vs. decreasing
the number of them.
Note that the minimum conductance ratio GB/GA of

the DC system happens when the transmission ratio is
a maximum (≈ 1.12). This value is similar to the max-
imum transmission ratio of the FCC system (≈ 1.15).
However, the minimum ratio of conductance due to the
conserving modesGB

Mc
/GA

Mc
is around 0.8 for the DC sys-

tem and 0.9 for the FCC system. Therefore, GB
Mc

/GA
Mc

is the key factor to distinguish between the maximum
and minimum conductance of the FCC and DC systems
respectively.
We can design an intermediate bridging layer at an

abrupt interface to improve the impedance matching and
increase the mode averaged transmission; however, it is
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Figure 4. In the harmonic limit, the conductance of a bridged
interface results from an interplay between increasing the
transmission 〈Tc〉ω due to decreasing the “mismatch” at each
boundary and decreasing the number of conserving modes due
to a new restriction on the conservation of momentum coming
from the intermediate material.

important to note that an added layer always decreases
the number of modes available for transport. This is a
consequence of the need to conserve phonon energy and
transverse momentum in three materials instead of two,
which implies taking the minimum over three quantities
instead of two (Eq. 6). The extra constraint is more
noticeable around frequencies where Mj < min(Ml,Mr).
For instance, Fig. 5b shows a reduction of the conserving
modes of the bridged interface relative to those of the
abrupt interface around 4 and 6× 1013 rad /s. Note that
at low frequencies, the acoustic branches of the lightest
material dominate the conserving modes andMA

c ≈ MB
c .

Thus, at low temperatures we expect GB > GA for both
crystal structures, FCC and DC, since 〈TB

c 〉ω > 〈TA
c 〉ω .

Figure 5. Available modes for the contacts and junction, and
conserving modes of the bridged and abrupt interface. Adding
the junction puts an extra constraint on the conserving modes
that hurts Mc and decreases the number of available modes.
We plot the cases in which GMc

is minimum: mj = 96 amu
for FCC crystal and mj = 50.4 amu for the DC crystal.

As long as the system remains periodic in the trans-
verse direction, i.e. invariant lattice constant and per-

fectly abrupt boundaries between adjacent materials, the
concepts developed in this manuscript apply. However,
when the transverse symmetry assumption is relaxed, for
example when the lattice constants are not the same or
when there are random defects or interatomic mixing
at the interface, phonons can change their momentum
when they cross the interface. Therefore, the conserving
modes do not represent anymore the available transport
channels or modes across the interface. The number of
transport channels is intimately related to the properties
of the individual boundaries between adjacent materials,
like the degree of interatomic mixing. In that case, con-
servation of energy allows us to define an upper bound
for MT 15,

MTB(ω) ≤ min(Ml(ω),Mj(ω),Mr(ω)) = MB
min, (8)

which can be used as a measure of the number of trans-
port channels. Similar to the conserving modes, the min-
imum of the modes always decreases when a junction is
added to an abrupt interface, because we are taking the
minimum of three quantities instead of two (Fig. 5).
The conserving modes Mc and minimum of the modes

Mmin can be convenient starting points to look for junc-
tion materials that could enhance interfacial conduc-
tance. For instance, the combinations of materials that
maximize Mc or Mmin should be more amenable to in-
creases in interfacial conductance.

IV. ANHARMONIC LIMIT: DECREASING
BOUNDARY RESISTANCE VS. INCREASING

JUNCTION RESISTANCE

When phonons interact with each other during trans-
port across the junction, for instance through anhar-
monic terms in the channel potential, they change their
energy and momentum. This process relaxes the conser-
vation constraints in the harmonic limit and decouples
the system resistance as the sum of boundary resistances
plus a junction resistance

R = Rlj +Rj +Rjr . (9)

The added intermediate layer will enhance the inter-
facial conductance when the system resistance (Eq. 9)
is less than the resistance of the abrupt interface be-
tween the left and right contacts, Rlr, that is when
R = Rlj + Rj + Rjr < Rlr. The validity of this in-
equality depends on how fast the boundary resistances
decrease as the mismatch of the materials decreases.
Figs. 2b and 2d suggest that the maximum conduc-

tance, or minimum resistance, happens when the junction
mass is close to the geometric mean of the contact masses.
A similar result in terms of impedances was found for the
analog one dimensional system, where phonon transport
was elastic but incoherent22. The key element behind
the result was that each boundary resistance is an in-
creasing function of the impedance ratio of the materials



6

at either side of the boundary. Thus, minimizing the
sum of resistances requires equating the impedance ra-
tios (Zj/Zl = Zr/Zj → Zj =

√
ZlZr). Inspired by this

result, it is tempting to suggest that G is a function of
the mass ratio alone. Unfortunately this is not true be-
cause heavier materials yield lower conductances due to
their smaller cut off frequencies, which can be seen by
rewriting Eq. 1 as

G =
kB
2πA

ωmin〈MT 〉ω, (10)

with ωmin the minimum cut off frequency of the contacts
ωmin = min(ωcl, ωcr) and

〈MT 〉ω =
1

ωmin

∫ ∞

0

dωMT. (11)

Although the boundary conductance is not a function
of the mass ratio alone, the conductance over the fre-
quency cut-off G/ωmin is. Figure 6a shows that 〈MT 〉ω
is only a function of the mass ratio for both the anhar-
monic and harmonic limits. The anharmonic data results
from combining Eq. 10 with the boundary conductance
extracted from our NEMD simulations. The data from
the boundary between left contact and junction (red tri-
angles) is a little larger than that from the boundary be-
tween junction and right boundary (blue triangles) be-
cause the temperature is greater at the left boundary.
The harmonic data comes from the Landauer conduc-
tance after we have subtracted the contact resistances
(Appendix B). If that is not the case, we obtain the
dashed line in Fig. 6a, which is bounded for unity mass
ratio due to the resistances at the contacts.

Figure 6. a) 〈MT 〉ω, plotted per conventional unit cell, is a
function of the mass ratio for abrupt interfaces. b) Junction
mass mj that leads to minimum resistance vs. right contact
mass mr while keeping the left contact mass fixed. The mass
follows closely the geometric mean of the contact masses.

Replacing the boundary resistances (R = 1/G) from
Eq. 10 into Eq. 9 and using 〈MT 〉ω from Landauer (solid
line in Fig. 6a), we numerically find the junction mass
that maximizes interfacial conductance as a function of
the ratio of the contact masses (solid line Fig. 6b). The
noise in the plot is caused by the interpolation error in
〈MT 〉ω. The fair agreement of this curve with the results
from NEMD simulations (Figs. 2b and d) suggests that

the knowledge of the harmonic boundary conductance is
enough to approximate the junction mass that maximizes
the conductance. Nevertheless, one of the reasons behind
the discrepancy is the flattening of the curve around the
peak (Figs. 2b and d, Appendix A and Fig. 8), which
combined with the uncertainty of the NEMD results pro-
duces a corresponding spread in the maximum. In fact,
the large spread of the conductance maximum and its
relative insensitivity around that point with changes of
junction mass is quite convenient for engineering, as it
widens our choice of bridging masses that yield an over-
all large conductance.
The solid curve on Fig. 6b follows closely the geomet-

ric mean of the contact masses (dashed line) due to the
dominant dependance of G on the mass ratio. The de-
viations from this mean arise from the dependence of
G on the overall phonon cut-off frequency ωmin, which
adds a more complicated mass dependence. We can bet-
ter understand the trend of maximum conductance by
minimizing Eq. 9

∂R

∂mj

=
2πAcu

kBωcr

[
Flj

2
√
mjmr

−
√

mj

mr

ml

m2
j

F ′
lj

︸ ︷︷ ︸

term α

+
1

mr

F ′
jr

]

︸ ︷︷ ︸

term β

= 0.

(12)
To obtain Eq. 12 we use ml < mj < mr, Eq. 10,
Flj = 〈MT (ml/mj)〉−1, Fjr = 〈MT (mj/mr)〉−1, F ′

the derivative of F with respect to mj and we neglect
∂Rj/∂mj . We also express the cut off frequencies of
the junction ωcj and right contact ωcr in terms of the

cut off frequency of the left contact (ωcj = ωcl

√

ml/mj,

ωcr = ωcl

√

ml/mr). This is possible because the ma-
terials are identical except for the atomic mass, so the
dispersion is a copy of the same function expanded or
contracted along the frequency axis. Acu is the area
of the conventional unit cell that converts the value of
〈MT 〉ω per conventional unit cell in Fig. 6a to per me-
ter squared. When the ratio between the contact masses
is close to one, choosing the junction mass close to the
geometric mean of the contact masses maximizes the con-
ductance (Fig. 6b). In that case,

√

mj/mr ≈ 1, Flj ≈ 0
and Eq. 12 reduces to the terms α and β. This expres-
sion is minimum when mj ≈

√
mlmr. As the ratio of the

contact masses increases, the junction mass that max-
imizes the conductance remains close to the geometric
mean. This happens because the deviation of the second
term relative to the term α, caused by

√

mj/mr < 1,
is balanced to some extent by the increase of Flj on the
first term (note that F ′ is negative).
To minimize the resistance, 1) we assume the bound-

ary resistances are in series, 2) we show the boundary
conductance is an increasing function of the mass ratio,
and 3) we conclude that the minimum resistance hap-
pens when the mass ratios are equal. This strategy can
be used beyond systems with perfect boundaries where
only the mass is allowed to change. We expect the same
minimization outcome, mj ≈ √

mlmr, when interatomic
mixing is added at the boundaries. Mixing can ether
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suppress5 or enhance12,13,15 each boundary conductance.
Either way, we still expect a similar increasing trend of
〈MT 〉ω with mass ratio dictated by the frequency mini-
mum of the modes Mmin instead of the conserving modes
Mc

15. By analogy, if we only allow changes of the in-
teratomic force constants by varying the ǫ parameter of
the Lennard-Jones potential, we expect minimum resis-
tance when ǫj ≈

√
ǫlǫr. Although the force constants and

masses have opposite effects on the cut off frequency, we
still expect 〈MT 〉ω to be an increasing function of the ǫ
ratio. When we allow changes of both the masses and
force constants, a similar analysis suggests that the min-
imum resistance happens when mj/ǫj ≈

√

mlmr/ǫlǫr.
Further studies are necessary to confirm our hypothe-
ses and to extend it to matrix versions of m and ǫ for
anisotropic systems.

We expect further enhancement of the conductance be-
tween the contacts by stacking several intermediate thin
layers whose atomic masses change in an exponential
fashion. This result follows from choosing the mass of
each layer as the geometric mean of the masses of the
adjacent layers. Each geometric mean choice minimizes
the sum of the boundary resistances adjacent to a partic-
ular layer. A similar conjecture has been demonstrated
for 1D incoherent systems15.

The assumption that anharmonicity allows us to split
the system resistance as the sum of resistances (Eq. 9) is
supported by our simulations. Figures 6 and 8 compare
quantities obtained from NEMD simulations of the whole
interface, which include the correlation between the two
contact-layer boundaries, with quantities obtained by
manipulating results from NEGF simulations on a sin-
gle independent boundary. The similarity between the
〈MT 〉ω trends in Fig. 6a suggests that the 〈MT 〉ω ex-
tracted from NEMD at each layer-contact boundary is
mostly independent of the other boundary. Thus, the
boundary resistances (Eq. 10) are independent of each
other. Those independent resistances can be added to
obtain the total resistance according to the temperature
profile used to define them, where the total temperature
drop across the interface is the sum of the drop at each
boundary plus the drop at the intermediate layer. The
similarity of the trends of G vs. mj in Fig. 8 suggests
that the correlation of the two interfaces is playing a min-
imal role and that the trend of G vs. mj is well described
by the sum of independent boundary resistances. Further
simulations to better quantify the degree of independence
of the boundary resistances are presented in Appendix A.

Although our simulations provide strong evidence in
favor of the assumption of splitting the total resistance
as a sum of resistances (Eq. 9), the fundamental process
behind this behavior is still not well understood. In par-
ticular, the bulk mean free path of most of the phonons
in each material composing the interface is larger than
the length of the intermediate layer. This suggests that
phonon-phonon interaction should play a negligible role
defining the conductance of the system. Nevertheless,
Fig. 2a and 2b show that the trend of G vs. mj in the

anharmonic limit is different from that in the harmonic
limit. Thus, it is clear that phonon-phonon interactions
can be critical to phonon transport even across an inter-
mediate layer thinner than the mean free path, but more
research is necessary to understand the mechanism for
this phenomenon.

V. CONCLUSION

We study the enhancement of thermal conductance
when a thin film layer or junction is inserted at an abrupt
interface. Our simulations show three times larger en-
hancement when the harmonic approximation is relaxed,
which highlights the important role of phonon-phonon
interactions in this transport process. In fact, in the har-
monic limit, adding a junction to the abrupt interface
does not necessarily enhance the conductance. The result
depends on the interplay between 1) increasing the trans-
mission by improving the “matching” of the contacts and
2) decreasing the number of available transport channels
that conserve energy and transverse momentum. When
anharmonicity kicks in, the conservation constraints are
relaxed and the resistance of the system can be split into
the sum of boundary resistances. The resistance is min-
imized when the junction mass is the geometric mean
of the contact masses, which follows from the increasing
trend of the boundary resistance with mass ratio. The
strategy to find the maximum conductance can be used
beyond systems with perfect interfaces where only mass
is changing. We hypothesize that for a graded junction
the geometric mean result generalizes to an exponential
progression of masses that can push the enhancement be-
yond that of a single layer. This paper exemplifies the
powerful combination of Landauer and NEMD to study
the harmonic vs. the anharmonic contributions to ther-
mal conductance.
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Appendix A: Simulation Details

We calculate the thermal conductance between the
left and right contacts of abrupt and bridged interfaces
(Fig. 7). For each system, the crystal structure, lattice
constant a and interatomic force constants are invariant.
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The boundaries between adjacent materials are perfectly
abrupt. The junction is six conventional unit cells long
and the junction atomic mass mj is varied between the
contact atomic masses ml and mr. We simulate inter-
faces on FCC and DC crystal structures. For the DC

Figure 7. Lateral view of the abrupt and bridged interfaces
simulated in this work. Each ball represents a primitive unit
cell.

interfaces, the interatomic force constants are calculated
from the Stillinger-Weber interatomic potential for Si37.
This potential describes the energy in terms of two and
three body potentials and includes interatomic force con-
stants up to the second-nearest neighbors. The equilib-
rium lattice constant for this structure is a = 5.431 Å
at T = 0 K. The mass for the left contact is chosen as
the silicon mass ml = 28 amu and the right contact mass
is chosen as mr = 84 amu, which is close to the mass
of germanium. The conductance for the abrupt interface
calculated from Landauer or harmonic NEGF in the clas-
sical limit is GA = 260.1 MWm−2 K−1 (Fig. 2c). This
value is in good agreement with reported conductance
values GA = 276.6 MWm−2 K−1 at T = 300 K15 and
GA = 280 m−2 K−113, which belong to abrupt interfaces
with contact masses ml = 28 amu and mr = 72 amu.
Our value is smaller because of the heavier mass on the
right contact, which reduces the available phonon spec-
trum for conduction.
For the FCC interfaces, the interatomic force constants

are calculated from the Lennard-Jones potential with pa-
rameters ǫ = 0.0503 eV, σ = 3.37 Å, and a cutoff distance
of 2.5σ. This potential includes interactions up to the
fifth-nearest neighbors and is chosen to be identical to
that used by English et al.

12 to have a point of reference
for benchmarking. The equilibrium lattice constant for
this structure is a = 5.22 Å at T = 0 K. The mass of the
left contact is fixed to ml = 40 amu, while the mass of
the right contact is varied from 40 amu to 240 amu. For
Fig. 2a and b, Fig. 3, Fig 4a and Fig. 5a, mr = 120 amu.
For Fig. 2d, mr = 240 amu. From harmonic NEGF in the
classical limit, the conductance for the abrupt interface is
GA = 59.3 MWm−2 K−1. This is in excellent agreement
with the conductance from NEMD at T = 2 K including
the contact resistances GA = 61.0 MWm−2 K−1.
For the NEGF simulations, we take advantage of the

transverse symmetry of the systems. We calculate MT
in transverse wave-vector space (k⊥− space) to simplify
the 3D problem into a sum of 1D independent problems.
The transverse Brillouin zone was split into 50× 50 grid
points for both the FCC and DC crystals.
For the NEMD simulations we use the LAMMPS MD

simulator on a system with 10 × 10 × 62 conventional
unit cells and a time-step of 2 fs. We impose periodic
boundary conditions over x and y directions and set the
atomic layers at the two ends of the system as walls. Heat
is added to the system from the left edge and removed
from the right edge using the Langevin thermostat. The
baths temperatures are set to Tbath = (1 ± 0.1)T with
a time constant of 1.07 ps over blocks of 10 unit cells
length. This setup for the thermostat is done to ensure
sufficient phonon-phonon scattering that prevents size ef-
fects. On the computations at very low temperatures
(T = 2 K), significant size effects can arise due to the
lack of phonon thermalization. T = 2 K corresponds to
the non-dimensional temperature kBT /ǫ = 0.003, which
is about 1% of the melting temperature. At such tem-
perature, atomic displacements are small and atoms be-
have almost harmonically. Thus, phonon interactions due
to anharmonicity are small and phonon termalization is
small. To obtain enough thermalization in our system,
we increase the size of each thermal bath. We test for
size effects by changing the cross section to 15× 15 and
20×20, varying the length of the domain to 100 unit cells
and decreasing the thermostat time constant to 0.54 ps.
No significant change in the thermal boundary conduc-
tance is noticed. We also test for size effects on a bridged
interface. Table I shows that the relative change of con-
ductance, when the cross-sectional area and length of the
simulation domain increase from 10× 10 to 15× 15 unit
cells squared and from 60 to 120 unit cells respectively, is
less than 2.1%. Considering that the standard deviation
of the reported conductance values is about 1% (Table I),
we can conclude that our results do not suffer from sig-
nificant size effects.

Area (uc2) 10× 10 10× 10 15× 15 15× 15

Length (uc) 60 120 60 120

T = 2 K 80.63 ± 0.78 81.96 81.70 82.32

T = 15 K 105.38 ± 1.17 106.91 105.80 107.51

T = 60 K 147.43 ± 1.94 147.06 145.04 147.22

Table I. Size effects on the thermal conductance of a bridged
interface obtained with NEMD. The junction mass is mj = 60
amu, the contact masses are ml = 40 amu and mr = 120
amu and the conductance is given in MWm−2 K−1. Each
column represents a different simulation domain with area
and length given in unit cells squared (uc2) and unit cells
(uc) respectively. The standard deviation of five independent
calculations is the value after ±.

To prevent changes of pressure as the temperature
varies from affecting thermal transport at the interface,
we account for the thermal expansion of the system. We
perform equilibration runs under zero pressure at differ-
ent temperatures using the isothermal-isobaric ensemble
(NPT). The results are used to find the dependence of
the lattice constant with temperature, which is fitted to
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a third order polynomial function:

a(T ) = 5.2222+0.0004T+10−6
T

2−4×10−9
T

3 Å. (A1)

Atoms are first equilibrated under the microcanonical
ensemble (NVE) for 4 ns. Next, heat is added to the
system for 10 ns to achieve steady state. Then, the tem-
perature is recorded for 6 ns to ensure a proper statisti-
cal average. From the temperature profile, we estimate
the thermal boundary conductance dividing the heat flux
over the temperature drop, which arises from a linear fit
of the temperature at each lead extrapolated to the in-
terface.

Most of the conductance values from NEMD reported
in this paper are averages over five independent calcula-
tions whose initial condition is generated randomly. The
maximum conductances reported as asterisks on Fig. 6b
are the maximum of fourth order polynomial functions
used to fit the NEMD data.

The discrepancy in Fig. 6b between the maximum con-
ductance of the bridged interface extracted from NEMD
and the one predicted from Landauer can be attributed
to the flattening of the G vs. mj curve around the maxi-
mum. Figure 8 shows the region (shaded area) where the
enhancement of conductance is within 5% of the maxi-
mum enhancement. In that region, it is difficult to pin-
point the exact location of the maximum due to the un-
certainty of the NEMD results. Nevertheless, the overall
shapes of the Landauer and NEMD curves used to predict
the maximum are in excellent agreement (Fig. 8). The
different height between the curves is a consequence of
the larger boundary conductances obtained with NEMD
simulations (Fig. 2b). The Landauer curve does not in-
clude the intrinsic resistance of the junction. Thus, its
similarity with the shape of the NEMD curve in Fig. 8
suggests that individual boundaries play a dominant role
in the maximization process. Thus, the quality of the
conductance enhancement depends mostly on our ability
to decrease the sum of the boundary resistances.

To further measure the degree of independence of the
two layer-boundary conductances, we compare the con-
ductance extracted from a simulation containing a single
independent boundary with that extracted from a simu-
lation containing two boundaries (Tab. II). Each NEMD
simulation is labeled by the masses of the materials in-
volved in the interface. For example, 40-60 refers to an
abrupt interface with left contact mass ml = 40 amu
and right contact mass mr = 60 amu, while 40-60-120
refers to an interface with ml = 40 amu, intermediate
layer mass mj = 60 amu and mr = 120 amu. Table II
indicates that the relative difference between the bound-
ary conductances with and without intermediate layer
is less than 15%. Considering that the standard devia-
tion of the calculations is about 5%, these values support
the assumption that the resistances of each boundary are
mostly independent of each other.

Figure 8. Conductance vs. junction mass for different right
contact masses. a) mr = 120 amu, b) mr = 180 amu,
c) mr = 240 amu. The shaded area shows the masses
whose NEMD conductance enhancement is within 5% of the
maximum enhancement. The Landauer curves come from
Eq. 9−Rj using 〈MT 〉ω from Landauer (solid line Fig. 6b).

Conductance at the 40-60 boundary

System 40-60 40-60-120 40-60-180 40-60-240

Mean 519.96 597.41 532.46 482.99

Std. 8.77 28.76 5.71 30.73

Conductance at the 40-80 boundary

System 40-80 40-80-120 40-80-180 40-80-240

Mean 224.01 253.06 230.09 211.29

Std. 5.02 6.97 7.50 23.11

Table II. Thermal conductance in MWm−2 K−1 from NEMD
for a 40-60 and a 40-80 boundaries at 30 K. The values in the
left column are extracted from simulation containing a single
boundary while the values in the other columns come from
simulations containing two boundaries. The labels refer to
the masses of the materials in the system, e.g 40-60-120 have
ml = 40 amu, mj = 60 amu and mr = 120 amu. Std. refers
to the standard deviation of the mean conductance value over
five independent calculations.

Appendix B: Contact Resistance

According to Landauer theory, the conductance of a
device in between two contacts at thermal equilibrium is
defined by Eq. 1. When the device and the contacts are
made of the same material, the transmission T equals
one. In that case, we get the upper limit of conduc-
tance, which is proportional to the quantum of conduc-
tance times the number of propagating channels30. Since
T = 1, there can not be any resistance associated with
the flow of phonons inside the device. Therefore, the
maximum conductance measures the resistance at the
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contacts. This resistance arises from the implicit scat-
tering processes that have to happen at the contacts,
to bring the flowing phonons back to an equilibrium
distribution30. The diffusive nature of those scattering
processes allows us to split the resistance associated with
the maximum conductance into the sum of the resistances
at the contacts. Since for a homogeneous material those
resistances should be equal, we can define the contact
conductance in the classical limit as

Gc =
2kB
2πA

ωc〈M〉ω, (B1)

with ωc the cut off frequency of the material and

〈M〉ω =
1

ωc

∫ ∞

0

dωM. (B2)

The conductance from Landauer theory GL is the par-
allel of the device conductance Gd with the contact con-
ductances Gl and Gr, so the device conductance is given
by

Gd =

(
GlGr

Gl+Gr

)

GL

(
GlGr

Gl+Gr

)

−GL

. (B3)

CombiningGd with Eq. 10 we extract the 〈MT 〉ω referred
as Landauer-Rcontacts in Fig. 6a. The method presented
here is one way to approximate the contact resistances.
Other approximations have been presented, which in-
clude an analogy to the four probe measurements13,38.
From the temperature profile of the NEMD simulations

when T → 0 (Fig. 3b), we can estimate the contact resis-
tances, which are related to the temperature drops at the
edges of the heat baths. At the contacts or heat baths,
every time step the velocities of the atoms are rescaled
to a thermalized distribution, which emulates phonon-
phonon scattering processes bringing the region back to
equilibrium. Everywhere else, phonons do not interact
because the low temperature makes the system harmonic.
Therefore, once a phonon leave the contacts it can not
relax its energy creating a non equilibrium distribution
everywhere outside the bath regions. The temperature
plotted in Fig. 3b is a representation of the total kinetic
energy of the region with an equilibrium distribution.
The conductance measured from NEMD uses the tem-

perature drop at the interface (∆Ti), while the one mea-
sured from Landauer uses the temperature drop at the
contacts (∆Tc). Since the heat flux (q = G∆T ) crossing
the system is the same, we can relate the conductances
from the two methods with Eq. 2. Using this relation, we
found excellent agreement between the results from Lan-
dauer and NEMD (Fig 3a). Another example supporting
this relationship is shown in our recent work34.
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