
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Scanning tunneling potentiometry, charge transport, and
Landauer's resistivity dipole from the quantum to the

classical transport regime
Dirk K. Morr

Phys. Rev. B 95, 195162 — Published 30 May 2017
DOI: 10.1103/PhysRevB.95.195162

http://dx.doi.org/10.1103/PhysRevB.95.195162


Scanning Tunneling Potentiometry, Charge Transport and Landauer’s Resistivity
Dipole from the Quantum to the Classical Transport Regime

Dirk K. Morr
University of Illinois at Chicago, Chicago, IL 60607, USA

Using the non-equilibrium Keldysh formalism, we investigate the spatial relation between the
electro-chemical potential measured in scanning tunneling spectroscopy, and local current patterns
over the entire range from the quantum to the classical transport regime. These quantities show
similar spatial patterns near the quantum limit, but are related by Ohm’s law only in the classical
regime. We demonstrate that defects induce a Landauer residual resistivity dipole in the electro-
chemical potential with the concomitant spatial current pattern representing the field lines of the
dipole.

Visualizing charge transport at the nanoscale is not
only of great fundamental interest to understand and
explore the crossover from quantum to diffusive trans-
port, but also important for the continued miniatur-
ization of electronic circuits. While spatial imaging of
charge currents at the meso-scale has been achieved us-
ing scanning probe microscopy1–10, scanning tunneling
potentiometry11–14 (STP) [see Fig. 1(a)] has been em-
ployed to gain insight into nature of charge transport
at much smaller length scales down to the nanometer
scale15–18. This has led to the observation of Landauer’s
residual resistivity dipoles19,20 near step edges15,17,18.
The question, however, arises of whether one can gain
direct insight into the spatial form of the current den-
sity – or more generally the current patterns – from the
electrochemical potential. While in the limit of classi-
cal, diffusive transport, the relation between these two
quantities is established by Ohm’s law, most materials
of interest possess sufficiently long mean free paths such
that they lie between the classical and quantum trans-
port limits. In this regime, the relation between the lo-
cal electro-chemical potential and the current density is
unknown and identifying it is therefore crucial for visual-
izing the spatial flow of currents at the nanometer scale.

In this article, we provide this missing link by identify-
ing the relation between the spatial form of the electro-
chemical potential, µe(r) as determined via STP and the
spatial current pattern, Ir,r′ , over the entire range from
the quantum to the classical transport regime. Using
the Keldysh Green’s function formalism21–23, we demon-
strate that near the quantum limit, the spatial form of
µe(r) is similar to that of Ir,r′ , such that the electro-
chemical potential can be employed to spatially image the
current pattern. On the other hand, we show that Ohm’s
law can only be used in the classical limit to directly de-
duce the local current density Ir,r′ from the spatial form
of µe(r). Moreover, we demonstrate that the evolution of
µe(r) between the quantum and classical limit is reflected
in changes of an effective Fermi distribution function. We
show that defects induce a Landauer’s residual resistiv-
ity dipole in µe(r) and that the concomitant spatial form
of Ir,r′ is that of field lines associated with the presence
of a dipole. Finally, we demonstrate that µe(r) changes
sharply at interfaces or step edges accompanied by large

FIG. 1. (a) Schematic representation of STP: when the STP
tip is above at site r of the network, its potential V (r) is
adjusted such that there is a zero net current flowing between
the tip and the network. (b) Network of electronic sites that
are connected by electronic hopping (solid black lines) and
coupled to two narrow leads. (c) µ(r) along the middle row
of the network in (b) for different values of ζ. Inset: Fermi
surface of the network.

scale spatial oscillations. These results identify the rela-
tion between the electrochemical potential and the local
flow of charges over the entire range from quantum to
classical transport.

To investigate the form of local potential µe(r), its
relation to the spatial current pattern, and its evolu-
tion from the quantum to the classical limit, we con-
sider a network of electronic sites that are connected
by hopping elements as shown in Fig. 1(b)24–29. These
sites can represent atoms, molecules or quantum dots;
for the present purpose we assume that they possess
only a single electronic level. The network is coupled
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to two leads, and described by the Hamiltonian H =
H0 +Hdef +Hph +Hc +Htun +Htip +Hlead, where

H0 =
∑
r,r′,σ

(−t− µδr,r′) c†rσcr′σ

Hdef =
∑
R,σ

U0c
†
R,σcR,σ

Hph = g
∑
r,σ

c†rσcrσ
(
a†r + ar

)
+ ω0

∑
r,σ

a†rar

Hc = −tc
∑
j,σ

(
c†Rj ,σ

dRj ,σ + c†Lj ,σ
dLj ,σ +H.c.

)
Htun = −ttip

∑
σ

c†rσfσ + f†σcrσ . (1)

Here, c†rσ(cr′σ) creates (annihilates) an electron with spin
σ at site r in the network, −t is the electronic hopping
between nearest-neighbor sites, and µ is the chemical
potential. Hdef describes the electronic scattering off
non-magnetic defects located at sites R, and Hph repre-
sents the interaction of the electrons with local Einstein
phonon modes of energy ω0. Hc describes the coupling
of the network to the left and right leads, and Htun rep-
resents the tunneling of an electron from the tip to a site
r in the network. Finally, Htip and Hlead describe the
electronic structure of the tip and the leads, respectively.
Below, we assume the wide-band limit for both with a
constant density of states N0 = 1/t and set µ = 0 yield-
ing the Fermi surface shown in the inset of Fig. 1(c). We
had previously shown24 that by increasing g, one can tune
the network’s transport properties from the quantum to
the classical limit. Here, the quantum limit, g = 0, de-
scribes a fully coherent system with an infinitely large
elastic mean free path, ξ = ∞, while the classical limit
is obtained for g → ∞ with ξ ≈ a0. To investigate the
crossover from quantum to classical transport, we employ
the high-temperature approximation kBT � ~ω0

24,30

where the strength of the electron-phonon interaction is
characterized by a single parameter, ζ = 2g2kBT/(~ω0)
with ζ = 0 and ζ → ∞ corresponding to the quantum
and classical transport limits, respectively.

When different chemical potentials, µL,R are applied to
the left and right leads, a non-zero current flows through
the network. The resulting spatial current pattern, Ir,r′
inside the network can be computed using the non-
equilibrium Keldysh Green’s function formalism21–24. At
the same time, the current between the STP tip and a
site r in the network in the weak tunneling limit is given
by25

Itip(r) = −2
gse

~
N0t

2
tip

∫ ∞
−∞

dω

2π

{
ImG<(r, r, ω)

2

+ntipF [ω − eV (r)] ImGr(r, r, ω)
}

(2)

where G<,r(r, r, ω) are the full local lesser and retarded

Green’s functions, ntipF is the Fermi distribution function

FIG. 2. Network with Nx = Ny = 11: normalized µe(r)/µmax
e

for (a) ζ = 0.01t2, (b) ζ = 0.5t2, and (c) ζ = 500t2, and (c)-(e)
corresponding normalized current pattern Ir,r′/Imax for T =
0, tc = t and µL,R = ±0.05t. (g) µe(r) in a classical resistor
network connected to two narrow leads. (h) Ir,r′ obtained
from (b) using Ohm’s law with constant σ0. µe(r) at sites
L,R in (a) and (b) has been divided by a factor 15 and 4,
respectively, for clarity.

of the tip, and V (r) is the potential in the tip with respect
to the network [for a detailed discussion of G<(r, r, ω),
see Ref.24]. To obtain the electro-chemical potential,
µe(r) = eV (r) via STP, V (r) is adjusted at every site
r such that Itip(r) = 0.

In Fig. 1(c), we present the evolution of µe(r) along
the center row of the network in Fig. 1(b) with increas-
ing ζ. In the non-interacting quantum limit, ζ = 0, the
chemical potential abruptly changes at the lead-network
interface, and is constant inside the network. This inter-
face resistance limits the network’s conductance to the
quantum of conductance24. With increasing ζ, the re-
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sulting electronic dephasing leads not only to a varying
µe(r) inside the network, but also to an evolution in its
spatial form, as shown in Figs. 2(a) - (c). To investigate
the relation between µe(r) and the corresponding spatial
current pattern, Ir,r′ we plot the latter in Figs. 2(d) -
(f) (for details of its calculation, see Ref.24). For large
ζ, the spatial form of µe(r) [Fig. 2(c) for ζ = 500t2]
and of Ir,r′ are that of a classical resistor network31, for
which µe(r) is shown in Fig. 2(g). In this case, µe(r)
and Ir,r′ (both obtained within the Keldysh formalism)
are related by Ohm’s law, Ir,r′ = σ(r, r′)[µe(r)− µe(r′)],
with the link conductivity between two neighboring sites
being constant, i.e., σ(r, r′) = σ0. In the opposite limit
of small ζ, i.e., near the quantum limit, µe(r) [Fig. 2(a)]
shows a spatial form that is very similar to that of Ir,r′
[Fig. 2(d)], implying that µe(r) can be used to spatially
image regions of large current density. However, neither
in this limit, nor in the crossover region between quan-
tum and classical transport [as exemplified by ζ = 0.5t2,
Figs. 2(b) and (e)] are µe(r) and Ir,r′ related by Ohm’s
law with a constant σ0. To demonstrate this, we present
in Fig. 2(h) a spatial plot of Ir,r′ obtained from µe(r) in
Fig. 2(b) [for intermediate ζ = 0.5t2] using Ohm’s law
with a constant σ0. Not only does the resulting Ir,r′ not
obey the continuity equation, but its spatial form is also
qualitatively different from that of the actual current pat-
tern shown in Fig. 2(e). We therefore conclude that the
spatial current pattern Ir,r′ can only be extracted from
µe(r) via Ohm’s law in the classical transport regime.

Further insight into the nature of the local potential
can be gained by considering a graphical solution of the
condition Itip(r) = 0 from Eq.(2). To this end, we present
in Fig. 3(a) a plot of ImG<,r for site 5 in Fig. 1(b) and
ζ = 0.1t2. A closer analysis of Eq.(2) reveals that V (r)
(for which Itip(r) = 0) is determined by the condition
that the area between −ImGr and ImG</2 for µR < ω <
eV (r) (blue area) be equal to the area under ImG</2
for eV (r) < ω < µL (green area). To provide a phys-
ical interpretation of this result, we define an effective
out-of-equilibrium Fermi distribution function n̄F in the
network via G<(r, r, ω) = −2in̄F (ω)ImGr(r, ω). In equi-
librium, n̄F is the conventional Fermi distribution func-
tion. In Fig. 3(b) we present n̄F at sites 1-4 in Fig. 1(b)

for small ζ = 0.01t2, together with ntipF . As the network
is out-of-equilibrium, n̄F is modified from its equilibrium
form in the energy range µR < ω < µL and varies greatly
inside the network. For µR < ω < eV (r), ntipF = 1 > n̄F ,
and these states carry a current from the tip into the
network. On the other hand, for eV (r) < ω < µL, one

has ntipF = 0 < n̄F , and hence these states carry a cur-
rent that flows from the network into the tip. For an
appropriately chosen V (r), these two counterpropagat-
ing currents [as represented by the blue and green areas
in Fig. 3(a)] cancel, such that Itip(r) = 0, as previously
also pointed out in Ref.25. Moreover, while n̄F exhibits a
strong energy dependence between µL and µR for small
ζ, this dependence becomes weaker with increasing ζ,
until n̄F (r, ω) = n̄0F (r) is essentially constant for large ζ.

FIG. 3. (a) ImGr,< at site 5 [see Fig. 1(b)] for µL,R = ±0.5t
and ζ = 0.1t2. (b) n̄F for µL,R = ±0.5t and ζ = 0.0001t2

at sites 1-4 in Fig. 1(b) and ntip
F (dashed line).(c) Evolution

of n̄F with increasing ζ at site 1. (d) n̄F in the large ζ limit
(ζ = 100t2).

While the same qualitative evolution occurs at all sites
in the network, n̄0F (r) in the limit ζ → ∞ depends on
the location inside the network, as shown in Fig. 3(d).
At the same time, ImGr(r, ω) becomes nearly indepen-
dent of energy for µR < ω < µL, such that the graphic
solution for finding V (r) discussed above now allows us
to directly relate n̄0F and µe(r) via

µe(r) = µR + n̄0F (r) (µL − µR) (3)

The above discussion shows that the spatial dependence
of µe(r) is a truly non-equilibrium phenomenon, as it
is spatially constant and equal to the network’s uniform
chemical potential in equilibrium where µL,R = 0. µe(r)
should also not be interpreted as representing a local
equilibrium value, since the strong dependence of n̄F on
energy [see Figs. 3(b) and (c)] implies that n̄F cannot be
described by an equilibrium Fermi distribution function
with a renormalized temperature or chemical potential.

We next investigate the behavior of µe around defects,
and to this end consider a network connected to wide
leads [see Fig. 4]. In Figs. 4(a) and (b) we present the
spatial form of µe(r) and corresponding Ir,r′ near the
ballistic quantum limit for a wide-lead network without
a defect. The current shows a very weak variation in
magnitude inside the network, with the largest changes
occurring along the edges, while the potential exhibits
a variation across the network that is much more uni-
form than in the narrow lead case [see Fig. 2(a)]. The
addition of a non-magnetic defect in the center of the net-
work leads to significant changes in µe(r) and Ir,r′ [see
Figs. 4(c) and (d)] that extend throughout the entire net-
work, and are predominantly confined to the lattice diag-
onal. This is a direct consequence of the Fermi surface’s
large degree of nesting [see Fig. 1(c)] and a Fermi ve-
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FIG. 4. Network connected to wide leads with µL,R = ±0.05t.
(a) Normalized µe(r) and (b) Ir,r′ for ζ = 0.01t2. (c) - (f)
Normalized µe(r) and Ir,r′ for a network with a defect of
U0 = t located at the center [as indicated by an open white
circle in (c)] and (c),(d) ζ = 0.01t2, and (e),(f) ζ = 0.2t2.
µe(r) at the defect site in (c) has been divided by a factor 3
for clarity.

locity along the diagonal direction in the Brillouin zone.
With increasing ζ , the effects induced by the defect in
µe(r) and Ir,r′ are reduced in amplitude [see Figs. 4(e)
and (f)], and become spatially more confined to the im-
mediate vicinity of the defect, indicating the crossover
from non-local transport in the quantum limit, to local
transport in the classical limit24.

To visualize the formation of a residual resistivity
dipole19,20, we present in Figs. 5(a) and (b) the changes
induced in the electro-chemical potential, ∆µe(r), and in
the spatial current pattern, ∆Ir,r′ , respectively, by plac-
ing three defects [see small white circles in Figs. 5(a)] in
the center of the network. The spatial form of ∆µe(r)
reveals the dipole nature of the induced changes, with
an enhancement (suppression) of µe(r) towards the lead
with the higher (lower) chemical potential, thus demon-
strating the existence of a defect-induced residual resis-
tivity dipole. Interestingly enough, the spatial form of
∆Ir,r′ [see Fig. 5(b)] is that of field lines associated with
the presence of a dipole. This becomes particulary evi-
dent when we indicate the regions with the largest ∆µe(r)
(see white ellipses next to the defects) in the plot of

FIG. 5. Network connected to wide leads with three de-
fects [as indicated by open white circles in (a)] of scattering
strength U0 = 3t. (a) Normalized ∆µe(r) and (b) ∆Ir,r′
for ζ = 0.5t2. (c) Normalized µe(r) for a network with
Nx = Ny = 21 and different chemical potentials in the
left (µ = +t) and right (µ = −t) parts of the network,
µL,R = ±0.01t and ζ = 0.1t2. (d) Line cut of µe(r) along
the center row of (c).

∆Ir,r′ . We therefore conclude that the relation between
the defect-induced changes in µe(r) and Ir,r′ is that of
dipole charges and their associated field lines. Finally, to
explore the form of µe(r) near interfaces or step edges, we
apply different chemical potentials to the left (µ = +t)
and right (µ = −t) parts of a network. The resulting
µe(r) shown in Fig. 5(c) and (d), exhibit not only as ex-
pected a sharp drop at the center of the network where
the change in chemical potential occurs, but also spatial
oscillations that extend all the way back to the leads.
This is reminiscent of the spatial oscillations found near
step edges in18. With increasing ζ, this sharp drop is
smoothed out, leading to a mare gradual variations of
µe(r) across the network [Fig. 5(d)].

In summary, we identified the spatial relation between
the electrochemical potential and the current patterns
over the entire range from quantum to classical trans-
port. These two quantities show similar spatial patterns
near the quantum limit, but are related by Ohm’s law
only in the classical regime. We showed that defects in-
duce a Landauer residual resistivity dipole in µe(r), with
the spatial form of the concomitant ∆Ir,r′ representing
the field lines associated with the dipole. A similar ap-
proach might be used to investigate the relation between
heat currents and local temperature measurements out-
of-equilibrium32,33.
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