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Abstract

Based on the Random Phase Approximation (RPA), RPA renormalization [J. Chem. Phys.

139, 171103 (2013)] is a robust many-body perturbation theory that works for molecules and

materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA

renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies

since the total correlation energy is the sum of a series of independent contributions. The first

order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation

energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-

RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate

numerically that RPA renormalization beyond first-order converges monotonically to the infinite-

order beyond-RPA correlation energy for several model exchange-correlation kernels and that the

rate of convergence is principally determined by the choice of the kernel and spin-polarization of the

ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized

correlation energy corrections, assuming the exchange-correlation kernel and response functions

satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find

that RPA renormalization is typically converged to 1 meV error or less by fourth-order regardless

of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate,

with errors on the order of 10 meV at fourth-order and typically requiring up to sixth-order to reach

1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging

case and require many higher-orders to converge.
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I. INTRODUCTION

The Random Phase Approximation1,2 (RPA) is quickly becoming a standard Density

Functional Theory3,4 (DFT) based correlation method for treating weak interactions in both

molecular and extended systems. RPA is a non-local correlation energy functional that can

be naturally combined with a self-interaction free exchange energy5,6, correctly describes

van der Waals interactions7–12, and is a parameter free method that can be used to assess

the quality of semilocal DFT.13,14 Built on top of a semilocal Kohn-Sham reference, RPA

has proven to be accurate for thermochemistry and kinetics13,15, structural properties16–21,

and is typically an improvement over the semilocal functional used to generate the input

orbitals22. One initial drawback of RPA was its increased computational cost in comparison

to semilocal functionals, though many recent implementations have greatly reduced this

discrepancy.23–27

RPA is not a perfect method, however, and suffers from an overestimation of short-ranged

correlation and too negative a total correlation energy1,8,28. For total energy differences,

RPA tends to underbind due to the imperfect cancellation of short-ranged correlation in

systems with different numbers of electron pairs.13,15,29–31 Covalent bond lengths and lattice

constants are consistently too large18–20,32, even if the errors are small. To fix the short-

ranged correlation errors of RPA, a correction to the correlation energy beyond RPA (bRPA)

is needed and can be obtained from either many-body perturbation theory33–39 (MBPT) or

time-dependent DFT30,40–45 (TDDFT). In this work we will focus on corrections to RPA from

TDDFT due to their efficiency46 and to demonstrate the behavior of RPA renormalization

across the many paradigms of physics and chemistry, from atoms and molecules to periodic

solids. The corrections we will explore come through the addition of an exchange-correlation

(xc) kernel to the Hartree kernel of RPA when determining the interacting density-density

response function.

Kernel corrections to RPA are not without challenges themselves. The exact xc-kernel in

TDDFT is spatially and temporally non-local47,48, and it satisfies different limits in metallic49

and insulating50 systems making it difficult, in theory, to approximate one from the other.

Basis set convergence issues are also problematic for adiabatic, semilocal kernels due to

the divergence of the on-top pair density.30,42,46 Certain kernels can also yield electronic

instabilities, i.e. imaginary excitation energies, and the simplest examples are the well
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known triplet instabilities of time-dependent Hartree-Fock theory.51–54 While instabilities

are somewhat rare for approximate kernels derived from model systems, they can arise for

more rigorous kernels such as the frequency-dependent exact-exchange (EXX) kernel55, even

in the electron gas56. Avoiding this problem in general is difficult since one cannot predict

a priori when instabilities will occur for an arbitrary kernel.

One method that ensures a finite correlation energy for kernels with instabilities is RPA

renormalization39, which naturally screens perturbative approximations for the correlation

energy through its dependence on RPA as a reference system. The first-order approximation

derived from RPA renormalization delivers ∼ 90% of the total correlation energy for a

given kernel45 and provides a systematic many-body framework for introducing higher-order

corrections. Furthermore, RPAr1 was shown in Ref. 56 to explicitly eliminate instabilities

in the correlation energy of the electron gas for rs > 10 and N2 at stretched bond lengths for

the EXX kernel. Thus, at least in its first-order approximation, we can a priori guarantee

the sability of the correlation energy using RPA renormalization with any kernel. For higher-

orders, it remains an open question as to if or how the instabilities will be reintroduced as

one sums the geometric series.

In this work we explore the convergence behavior of higher-order corrections in the RPA

renormalized expansion of the correlation energy beyond first-order. Often many-body per-

turbation theory is taught through the summation of geometric series, though little attention

is paid to whether such series summations actually converge. Here we explore this point

explicitly through the direct summation of different finite orders of RPA renormalization

and by making comparisons to the full infinite-order results obtained from a traditional be-

yond RPA approach. The paper is organized as follows. We first present a brief theoretical

background of the adiabatic connection and RPA in Sec. II, and follow with a discussion of

a systematic feature of RPA renormalized correlation energy corrections and an overview of

the spin-dependence in kernel corrected calculations. Results for the homogeneous electron

gas are presented in Sec. III, as well as results for a variety of real systems. Several first and

second row atoms, open and closed shell small molecules, and extended systems including

insulators, semiconductors, and metals are all included to demonstrate the robust nature of

RPA renormalization. We also highlight the impact that the spin-dependence of the kernel

and that of the ground state makes on the rate of convergence. Finally, a brief discussion

and some conclusions are given in Sec. IV.
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II. ACFD-DFT AND RPA RENORMALIZATION

The adiabatic connection (AC) is a useful tool for understanding many exact properties

of exchange and correlation in DFT.57–59 Introducing a coupling constant λ that scales the

electron-electron interaction in the many-electron Hamiltonian,

Ĥλ = T̂ + V̂ext + λV̂ee , (1)

the Hellman-Feynman theorem facilitates the expression of the exchange-correlation energy

as an integral over the xc potential contribution2 as a function of the scaling parameter λ,

Exc[ρ] =

∫ 1

0

dλUxc[ρ](λ) . (2)

Within the AC framework, the exchange piece is a constant and can be easily separated

from correlation. The total energy is computed as E = EEXX + Ec, where

EEXX[{φ}] = Ts[{φ}] + U [ρ] + Vext[ρ] + EEXX
x [{φ}] (3)

is the Hartree-Fock, or exact-exchange, total energy evaluated using Kohn-Sham (KS) or-

bitals, {φ}. Ts is the orbital-dependent, single-particle kinetic energy, U is the electronic

Hartree repulsion energy, Vext is the single-particle external potential energy which includes

electron-nucleus attraction and nuclear-nuclear repulsion energies, and the functional de-

pendence on the orbitals or the density ρ are indicated for each piece. Several formulas exist

for computing the explicit exchange energy, EEXX
x , e.g. Eqs. (10) & (11) in Ref. 32, with

Eq. (10) being the most commonly implemented.

To obtain an expression for the exact correlation energy, the zero-temperature fluctuation

dissipation theorem (FDT) can be exploited for the correlation potential Uc(λ)2,5,13,60,

Ec[{φ}] =−
∫ 1

0

dλ Im

∫ ∞
0

dω

2π
〈V (χλ(ω)− χ0(ω))〉 (4)

where V is the direct Coulomb (Hartree) interaction, Im indicates the imaginary part, 〈A〉

is the trace of matrix A, and atomic units are used unless otherwise specified. The density-

density response functions χλ and χ0 satisfy the Dyson-like equation

χλ(x, x
′;ω) =χ0(x, x

′;ω) +

∫
dx1dx2 χ0(x, x1;ω)

×
[
Vλ(x1, x2) + fλxc(x1, x2;ω)

]
χλ(x2, x

′;ω) , (5)
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where x = {σ, r} is short for the spin and spatial coordinates, χ0(ω) is the KS response

function, and fxc(ω) is the exact, frequency-dependent exchange-correlation (xc) kernel48.

The Coulomb interaction is linear in the coupling strength, Vλ = λV , and the behavior of the

xc-kernel can be determined from uniform coordinate scaling61. The KS response function

depends on both occupied and unoccupied orbitals, e.g. Eq. (5) in Ref. 62, and therefore

the ACFD-DFT constitutes a fifth-rung functional on “Jacob’s Ladder” of DFT63.

Once the kernel and the KS response function have been computed, the interacting re-

sponse function can be extracted from Eq. (5) and the correlation energy from Eq. (4).

Under periodic boundary conditions, the Fourier transform of Eq. (4) can be represented as

a weighted sum of contributions from wave-vectors q in the first Brillouin zone

Ec[{φ}] =− 1

2π

∑
q

∫ ∞
0

du

∫ 1

0

dλ

× Re 〈V (q) [χλ(q; iu)− χ0(q; iu)]〉 , (6)

where the two-point functions V and χ are now replaced by two-index matrices in the recip-

rocal lattice vector basis, and the frequency integration has been rotated to the imaginary

axis. Unless the spatial, frequency, or reciprocal-lattice dependence is needed, these indices

will be suppressed and are implied from here on. Neglecting the kernel, i.e. fλxc = 0, defines

the RPA response function,

χ̂λ = (1− χ0Vλ)
−1χ0 , (7)

and the RPA correlation energy via Eq. (4)2. Both Eqs. (3) and (4) are typically evalu-

ated non-self-consistently, meaning the set of orbitals {φ} used as input must be generated

with a reference exchange-correlation potential, often from a popular generalized gradient

approximation (GGA) such as PBE64 or a meta-GGA such as TPSS65. For most systems

near equilibrium this reference determinant dependence is fairly weak from one semilocal

functional to another13,21,39,45,46,66, though using a hybrid functional with a large fraction of

exact-exchange can negatively impact results from the ACFD-DFT22.

In order to develop efficient, systematic corrections to RPA from TDDFT, we can recast

the Dyson-like equation for the response function to naturally build in screening from RPA39.

Using RPA as the reference response function, RPA renormalization (RPAr) refactorizes the

Dyson-like equation as

χλ = χ̂λ + χ̂λ f
λ
xc χλ , (8)
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which is equivalent to solving Eq. (5) if the kernel is included to infinite-order, χλ = (1 −

χ0

[
Vλ + fλxc

]
)−1χ0 = (1 − χ̂λfλxc)−1χ̂λ . A key advantage of RPAr, however, is that the KS

response function has been eliminated and perturbative expansions of Eq. (8) to include fλxc

will be automatically screened by use of χ̂λ instead of χ0. Consequently, RPAr is a robust

perturbation theory that avoids the divergence of standard MBPT for zero-gap systems67,68,

in addition to avoiding electronic instabilities that result from having to invert dielectric

functions that include fxc.
39,56 Furthermore, this decomposition of the response function

results in a total correlation energy that is obtained from a sum of separate terms such that

several correlated methods can be computed simultaneously, and the impact of the kernel

compared to RPA is easily extracted in a single calculation.

RPAr to first-order (RPAr1) was shown to deliver robust results for the electron gas

in combination with the EXX kernel56 and for some simple solids when combined with

the NEO kernel45. RPAr has also been applied to molecular systems in combination with

the approximate exchange kernel (AXK) yielding a systematic improvement to RPA for a

variety of basic chemical processes.39 Below we explore the impact of corrections beyond

first-order and discuss the convergence behavior of the RPA renormalized correlation energy

corrections.

A. Finite-order RPAr Corrections

Traditional literature on MBPT and RPA generally convinces us that by summing up

all the terms in a geometric series, one can obtain non-perturabtive approximations for

quantities such as single-particle self-energies69 or two-particle response functions67. From

this standpoint, solution of Eq. (8) would be obtained in an iterative fashion

χ
(0)
λ = χ̂λ (9a)

χ
(1)
λ = χ̂λ + χ̂λf

λ
xcχ̂λ (9b)

χ
(2)
λ = χ̂λ + χ̂λf

λ
xcχ̂λ + χ̂λf

λ
xcχ̂λf

λ
xcχ̂λ (9c)

...

where the right hand side is continually plugged into the left hand side, and the superscript

denotes the iteration as well as the order through which the kernel has been included in

the response function. Repeating ad nauseum leads to the conclusion that this is exactly a
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geometric series expansion in χ̂λf
λ
xc of the exact solution of Eq. (8), χλ = (1 − χ̂λfλxc)−1χ̂λ,

just as RPA is a geometric series in the product χ0Vλ. For this to be true the sum of

finite-order corrections would need to satisfy

∞∑
n=0

(χ̂λf
λ
xc)

nχ̂λ = (1− χ̂λfλxc)−1χ̂λ , (10)

which is challenging to prove in general. Still, we can obtain an nth-order approximation

to the infinite-order response function within RPAr by summing corrections from all lower

orders

χ
(n)
λ = χ̂λ +

n∑
m=1

(
χ̂λf

λ
xc

)m
χ̂λ . (11)

To obtain the total correlation energy we plug Eq. (11) into Eq. (4) and obtain a series

of terms indexed by the number of xc-kernels

Ec[fxc] = ERPA
c + ∆ERPAr1

c [fxc] + ∆ERPAr2
c [fxc] + . . . , (12)

with the RPA correlation energy being the zeroth-order approximation and independent of

the choice of xc-kernel. The n-th order term for a given kernel can be expressed as

∆ERPAr-n
c [fxc] =

∫ 1

0

dλ

∫ ∞
0

du

2π
∆URPAr-n

c,λ [fxc](iu)

= −
∫ 1

0

dλ

∫ ∞
0

du

2π

〈
V (χ̂λ(iu)fλxc(iu))n χ̂λ(iu)

〉
(13)

and the total, infinite-order bRPA correction can be computed as45

∆EbRPA
c [fxc] = Ec[fxc]− ERPA

c

= −
∫ 1

0

dλ

∫ ∞
0

du

2π

〈
V χ̂λ(iu)fλxc(iu)χλ(iu)

〉
, (14)

using Eq. (4) and Eq. (8). The functional dependence of the bRPA corrections is important

to keep in mind, since our results indicate that the behavior of the renormalized correlation

energy shows some sensitivity to the choice of exchange-correlation kernel, and its accuracy

compared to experiment can only be as good as the chosen kernel.

We showed previously that RPAr1 systematically recovers more than 90% of the bRPA

correlation energy for the NEO kernel45, implying that second-order and higher corrections

make up the remaining 10%, provided the series expansion converges. RPAr1 also has
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an analytic λ integral for exchange-like kernels which makes kernel calculations as fast as

RPA39,45. While we have not been able to analytically prove the convergence of the RPAr

series, we demonstrate numerically that it does tend to converge to the infinite-order result

in both model and real solids, as well as for finite systems. This is remarkable for a series

expansion of the correlation energy since traditional MBPT perturbation expansions based

on non-interacting references are not guaranteed to converge at higher orders and the con-

vergence is not necessarily monotonic70–73. Further tests are required to see if this behavior

also holds for systems with explicit instabilities, such as using the EXX kernel in the electron

gas56. As an added bonus, the convergence of RPAr is found to be monotonic from below

for the total correlation energy because each correction is positive, and in practice, smaller

than the previous order.

B. Positivity of RPAr Corrections

The sign of each correction can be understood from the properties of the trace, if the

matrix representations of the response functions and xc-kernel satisfy some reasonable con-

ditions. The even and odd orders of RPA renormalization have slightly different structures,

so we will focus on the first and second-order RPAr corrections as examples, with gen-

eralizations to higher-orders being straightforward. To show the signed character of the

corrections, it is sufficient to analyze the correlation potential contributions from each or-

der of RPAr from Eq. (13) at full coupling and fixed frequency because if the integrand

is non-negative so are the integrals. For the following analysis to hold, the matrix repre-

sentations of the Coulomb interaction, the xc-kernel, and the response function must be

Hermitian and positive-definite, negative-definite, and negative-definite, respectively. If one

of these conditions is not satisfied then the following analysis may not hold, but in practice

we have not found a case where any order of a beyond RPA correction is negative within

RPA renormalization.

Factorizing the Coulomb interaction as V = V
1
2V

1
2 and using the cyclic invariance of the

trace, the RPAr1 correction can be brought to a symmetric form

∆URPAr1
c [fxc] = −〈V χ̂fxcχ̂〉 = −〈V

1
2 χ̂fxcχ̂V

1
2 〉 . (15)

Since fxc is Hermitian negative-definite, its square-root is anti-Hermitian74, and the quantity
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inside of the trace can be factorized to a quadratic form,

−〈V
1
2 χ̂fxcχ̂V

1
2 〉 = −〈

[
V

1
2 χ̂(fxc)

1
2

] [
(fxc)

1
2 χ̂V

1
2

]
〉

= −〈
[
V

1
2 χ̂f

1
2
xc

] [
V

1
2 χ̂(−f

1
2
xc)
]†
〉

= 〈
[
V

1
2 χ̂f

1
2
xc

] [
V

1
2 χ̂f

1
2
xc

]†
〉 . (16)

Equation (16) has the form 〈AA†〉, therefore the trace is guaranteed to be non-negative, and

we have that the first-order RPA renormalized correction is a positive correction to RPA.

For any odd order n = (2m + 1), for m = 0, 1, 2, . . ., the same analysis gives the following

general form

∆URPAr-(2m+1)
c [fxc] = 〈

[
V

1
2 χ̂(fxcχ̂)m(fxc)

1
2

] [
V

1
2 χ̂(fxcχ̂)m(fxc)

1
2

]†
〉 . (17)

For the even orders of RPAr corrections, we can start with the second-order term and

make similar rearrangements except that the RPA response function should be positioned

in the center of the trace,

URPAr2
c [fxc] = −〈V

1
2 χ̂fxcχ̂fxcχ̂V

1
2 〉

= 〈
[
V

1
2 χ̂fxcχ̂

1
2

] [
V

1
2 χ̂fxcχ̂

1
2

]†
〉 . (18)

Instead of factorizing the kernel, the even orders require one to factorize the RPA response

function and the explicit negative sign from the definition of the ACFD correlation potential

also drops out leaving a non-negative trace. The general form for any even order n = 2m

for m = 1, 2, 3, . . . follows from Eq. (13)

URPAr-(2m)
c [fxc] = 〈

[
V

1
2 (χ̂fxc)

m(χ̂)
1
2

] [
V

1
2 (χ̂fxc)

m(χ̂)
1
2

]†
〉 , (19)

and thus any order correction to RPA computed from RPA renormalization will be a positive

correction. Though this analysis does not give any information about the relative sizes of

each order, which would be required to prove convergence of the series, it does establish

that the monotonic convergence we observe in our numerical calculations has an analytical

origin.

This analysis also establishes the systematic nature of the resummations carried out us-

ing RPA renormalization in comparison to traditional MBPT. If the KS response function

is used to compute perturbative corrections to RPA, mixed terms that contain different
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powers of V and fxc will arise, and these terms do not all have the same signed contribu-

tion to the correlation energy. For instance, one of the second-order MBPT contributions

to the response function is χ0Vλχ0f
λ
xcχ0, which leads to the following correlation-potential

contribution

∆U
(2)
c,λ [fxc] ∝− 〈V χ0Vλχ0f

λ
xcχ0〉 . (20)

We can manipulate this trace to a quadratic form,

−〈V χ0Vλχ0f
λ
xcχ0〉 = −λ〈χ

1
2
0 V χ0f

λ
xcχ0V χ

1
2
0 〉

= −λ〈
[
χ

1
2
0 V χ0f

1
2
xc,λ

] [
(−χ

1
2
0 )V χ0(−f

1
2
xc,λ)

]†
〉

= −λ〈
[
χ

1
2
0 V χ0f

1
2
xc,λ

] [
χ

1
2
0 V χ0f

1
2
xc,λ

]†
〉 , (21)

and find that the resulting contribution to the correlation energy will be negative since the

trace and λ are both positive. There are infinitely many of these cross terms that arise in

traditional MBPT due to the expansion of the inverse (1−χ0(V +fxc))
−1, and including them

in an unbalanced way could lead to oscillations in the summation of perturbative contribu-

tions to the correlation energy. Thus without any information on the relative contribution

of each order in traditional MBPT, it is difficult to know if the sum of many corrections will

have a fixed sign.71,75 RPA renormalization eliminates this challenge, however, as it exactly

includes sums over specific subsets of these mixed terms.39 In fact, the resummations of RPA

renormalization to nth-order in the response function are characterized as the exact sum of

contributions from traditional MBPT containing any number of V interactions and only n

fxc interactions. Consequently, as the analysis above demonstrates, this translates into all

possible RPA renormalized contributions having the same sign.

C. Spin Dependence of the Kernel and RPAr

Thus far we have not been explicit with the spin-dependence of the kernel or the response

functions. For RPA, the spin-dependence is unimportant because the Coulomb kernel is

identical for each block of the 2× 2 matrix equation, and so rather than deal with separate

spins, the spin-summed response function can be directly computed and the correlation en-

ergy extracted analogously to the spin-unpolarized case46. This simplification also applies

for xc-kernels that do not have spin-dependent forms and depend only on the total density.
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For spin-polarized systems and kernels that depend explicitly on spin, however, the Dyson

equation becomes a 2 × 2 matrix equation in spin-space that cannot be reduced in dimen-

sionality. Kernels derived from MBPT tend to incorporate spin-dependence naturally, but

building in spin-dependence for model electron gas kernels is more challenging.

For exchange-like kernels, an exact constraint on the spin-scaling of the kernel is inherited

from the spin-scaling of the exchange energy in DFT46

fx,σσ′ [ρα, ρβ] = 2 fx[2ρσ] δσσ′ . (22)

This constraint is automatically satisfied by kernels such as NEO, AXK or the EXX

kernel56,76, however building this feature into other model kernels is less straightforward. In

the construction of the spatially renormalized adiabatic DFT kernels of Olsen and Thyge-

sen, rALDA42,46 and rAPBE44, the authors have relaxed this constraint and instead use a

spin-dependent kernel which satisfies the following condition for spin-unpolarized systems

1

4

∑
σσ′

fx,σσ′ [ρ/2, ρ/2] = fxc[ρ] . (23)

In conjunction with their kernel construction procedure, this constraint ensures that some

of the basis set convergence issues that affect the ALDA kernel are eliminated30,46. Olsen

and Thygesen have demonstrated and discussed that the spin-polarized forms of rALDA

and rAPBE deliver improved atomization and cohesive energies compared to the spin-

independent form, which is a key advantage for choosing these kernels in practical applica-

tions to materials such as metal oxides77. The simplest demonstration of the effect was also

illustrated in Ref. 21 for the atomization of H2 where using the spin-dependent kernel in-

creases the atomization energy by 0.5 eV compared to the spin-independent kernel, resulting

in substantially better agreement with experiment. The impact the spin-dependence of the

kernel has on the convergence of RPA renormalization is not necessarily obvious. We explore

this issue below by comparing the convergence of spin-dependent and independent forms of

the rAPBE kernel for several spin-polarized atoms and small molecules, the ferromagnetic

BCC phase of iron and (0001) surface of cobalt, and the anti-ferromagnetic ground state of

rocksalt NiO78.
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D. Computational Details

Using a modified version of the gpaw code79–81, we have implemented RPA renor-

malization to arbitrary order in conjunction with the spin-dependent (rADFT) and spin-

independent (rADFTns) forms of the exchange-like kernels rALDA and rAPBE, as well as

the spin-independent, static exchange-correlation kernel CP0741. When necessary we use

the notation RPAr@kernel to denote which kernel has been used with RPA renormalization.

The rALDA and rAPBE kernels have been demonstrated to improve upon RPA for energy

differences and structural properties, and preserve the accurate description of dispersion

interactions for atoms, molecules, and solids.19,42,44,46,77 The static CP0741 xc kernel yields

accurate structural properties for bulk solids19, but its impact on energy differences within

the ACFD-DFT remains unexplored.

In addition to specifying the kernel within gpaw, one must specify an averaging scheme

to compute the kernel in the reciprocal lattice basis, since there are multiple ways to extend

homogeneous electron gas kernels to inhomogeneous systems.19,42,43,82 We have implemented

RPAr to be compatible with both the density and wavevector averaging schemes, though

we have used wavevector symmetrization throughout to ensure that the kernel is symmet-

ric in the reciprocal lattice basis because of its computational advantages, as discussed in

Ref. 19. There is the added bonus that the wavevector symmetrization also preserves the

proper divergence behaviors for the “head” and “wings” of the kernel in the q → 0 limit.19

We checked that for MgO the convergence behavior was analogous with either wavevec-

tor or density-based averaging, see Table (S1) in the supporting information83, though the

magnitudes of the correlation energies differ by a few percent19. For a concise and informa-

tive comparison of the various electron-gas model kernels and kernel-averaging schemes see

Ref. 19 and references therein. Calculations were performed within the projector-augmented

wave formalism84 using the 0.9.20000 gpaw datasets, which treat the 4s and 3d shells as a

part of the valence for transition metal atoms, as well as treating the 3p semicore states for

Ni21.

Results for real systems were obtained using PBE orbitals to construct the Kohn-Sham

reference determinant, and gamma-centered Monkhorst-Pack k-point meshes85 were used

throughout. The maximum cutoff for the response function was chosen between 300 and

400 eV, the number of bands was chosen to be equal to the number of plane-waves, and
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the perturbative approach from Ref. 86 was used to treat the divergence of the Coulomb

interaction at small wavevectors. The frequency integral was performed as in Ref. 62 using

a 16 point Gauss-Legendre quadrature, and with a frequency scale of 2 for non-metals,

and 2.5 for metals31. Extrapolation of the correlation energies to the basis set limit were

performed using the Harl-Kresse62 method with at least four cutoffs below the maximum.

The cutoff used to generate the wavefunctions for the response function was 600 eV. Fermi-

Dirac occupations corresponding to an electronic temperature of 0.01 eV were used for all

periodic systems. A Wigner-Seitz truncation scheme87 was used to treat the small wavevector

divergence of the Coulomb interaction in the exchange energy.

For atomic and molecular systems we used rectangular boxes with unequal side lengths to

break spatial symmetry, and extrapolated the correlation energy from calculations at plane-

wave cutoffs of 250 and 300 eV for the response function. These cutoffs were previously shown

to deliver small errors compared to extrapolations with higher cutoffs for RPA31. Larger

plane-wave cutoffs, box sizes, or volume based extrapolations of the correlation energy62

would be needed to obtain fully converged results for each kernel, however the relative

performance of RPAr to the infinite-order method is usually independent of the basis for

cutoffs larger than 250 eV. For atoms, a larger variation in finite cutoff and extrapolated

values can result in slower convergence of RPAr for the extrapolated results. For molecules

and bulk systems the differences between finite cutoff and extrapolated results tends to be

negligible for any k-mesh and cutoffs above 200 eV. The computational settings needed to

reproduce our results have been included in Table (S2) in the supporting information.

Results for the electron gas were obtained using an in-house python code. Gauss-

Legendre quadratures of 12-20 points were used for the frequency and coupling-strength

integration, while the q-integration is implemented using the rectangle method over 0 < q ≤

15 a.u. with 3000 points. The exchange-like NEO kernel45 and the static CP07 exchange-

correlation kernel41 excluding the q → ∞ limit were also implemented in conjunction with

RPAr for the electron gas. We also note that for the electron gas that rALDA and rAPBE

are equivalent77.

Before discussing the results we would like to emphasize a few aspects of the computa-

tional costs associated with finite-order RPAr. As mentioned above, RPAr1 has an analytic

λ integral for exchange-like kernels without spin-dependence, which means that a savings of

Nλ is theoretically achieved for the correlation energy calculation. Given χ0 the calculation
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of the correlation energy typically scales as N3, where N is a measure of system size. The

analytic integral does not reduce the total cost by a factor of Nλ since the construction of

χ0 scales as N4, but in practice reduces the cost by a factor of between two and three in

comparison to the infinite-order method. Higher-orders than RPAr1 do not result in any

formal savings compared to the infinite-order method since a numerical integration over λ

is required in both cases. Furthermore, our brute-force implementation relies on repeated

matrix-matrix multiplications which add to the overhead and increase the cost of finite-order

RPAr beyond that of the infinite-order approach. Still, for the first few orders, the difference

in cost is marginal, with the added benefit that RPA and beyond-RPA results are available

from a single calculation.

III. RESULTS

First we present the convergence behavior of RPA renormalization for the electron gas

and follow with real systems. We demonstrate the rapid convergence for RPAr when spin-

independent kernels are used to compute the correlation energy and highlight the challenges

associated with the spin-dependent kernel that we tested. To demonstrate the robust charac-

ter of the RPAr expansion, we have included results for the first-row, open-shell 2p elements

& Mg, small molecules such as N2, CO and O2 (µB = 2), and extended systems that are

insulators (MgO, NiO), semiconductors (C, Si), and metals (Fe, Rh, Al, Co). We utilize log

plots to analyze the convergence of the RPAr series, Eq. (11), with the conventions that

ERPAr-n
c [fxc] = ERPA

c +
n∑

m=1

∆ERPAr-m
c [fxc] , (24)

and the error of a given order,

∆En
c [fxc] =

n∑
m=1

∆ERPAr-m
c [fxc] −∆EbRPA

c [fxc] , (25)

is the difference between beyond RPA contributions for a given kernel, since the RPA part

drops out. Note that the value at n = 0 in these plots is the log of the total beyond RPA

correction, Eq. (14), by construction.
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FIG. 1. Convergence of RPA renormalization to the infinite-order correlation energy for selected

densities of the electron gas of spin-polarization ξ with the NEO, rALDA and CP07 kernels.

∆Enc =
∑n

i ∆ERPAr-i
c − ∆EbRPAr

c is the error for a given order n of RPA renormalization in

comparison to the infinite-order result. The dashed line corresponds to 1 meV error. For typical

densities between rs = 1 and 10, RPAr converges to meV accuracy between 2nd and 4th order

for each kernel. As the density decreases the convergence slows, and at very low densities (large

rs) the form the xc-kernel makes a noticeable impact on the number of orders needed to reach

convergence.

A. Electron Gas & RPAr Convergence

Figure 1 demonstrates the convergence of the correlation energy per particle for the RPAr

series evaluated with the NEO kernel for both spin-unpolarized and fully polarized limits of

the homogeneous electron gas (HEG) at selected densities. The convergence of the rALDA

and CP07 kernels are also shown for the spin-unpolarized case. We will use the notation

RPAr@kernel to indicate which kernel was used to evaluate the bRPA correlation energy

when needed. Numerical values for each kernel are reported in the supporting information.83

RPAr evaluated with each kernel converges rapidly to the infinite-order result reaching better

than 1 meV accuracy between second and fourth-order for rs between 1 and 10. This is

direct evidence that the short-ranged forces in the HEG can in fact be accounted for with

a relatively low-order expansion in the product χ̂fxc for a wide range of densities. For

RPAr@NEO the convergence is fast for both spin-unpolarized and fully-polarized regimes,
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but as the density decreses so does the convergence rate. This is expected since exchange-

correlation effects are expected to be more important for spin polarized systems and in the

low-density limit. The inclusion of fxc to higher orders is therefore needed as the density

decreases in order to recover the infinite-order result. Even still, the RPAr series is converged

to less than 1 meV error by second-order for rs = 1 and by fourth-order for rs = 10 for all

three kernels.

As the density becomes exceptionally low, the impact that the form of the xc-kernel has

on the convergence of RPAr becomes more apparent. Though NEO, rALDA, and CP07 all

yield similar convergence rates for rs < 10, at rs = 80 the rALDA kernel converges much

more slowly than the other two, requiring terms up to tenth-order to reach less than 1 meV

error. In contrast, the CP07 kernel requires six-orders to reach the same accuracy and the

NEO kernel only three. NEO and rALDA both scale linearly with λ, so the difference in

their convergence behaviors must stem from the actual functional form of fx(q), where the

former is based on a Gaussian form and the latter is a combination of step-functions. NEO

and CP07 are actually quite similar in their functional form, except that CP07 scales non-

linearly with λ, which could be the origin of the slower convergence for CP07 compared to

NEO. The slower convergence of rAPBE compared to CP07 is not limited to the electron

gas, and persists for the spin-unpolarized physical systems we tested.

rs NEO rALDA CP07 Exact

1 435 539 357 517

4 283 404 301 406

10 188 305 244 329

80 56 128 112 154

TABLE I. Beyond-RPA correlation energies (meV/per particle) for the HEG from the infinite-order

method, Eq. (14), with the NEO, rALDA, and CP07 kernels. The exact results were obtained by

subtracting RPA from the PW92 correlation energy for a given rs. NEO is accurate for small rs

where it is exact to second-order, but becomes an underestimate as rs increases, while rALDA and

CP07 remain accurate over a wide range of rs. RPA renormalization is limited in accuracy by the

infinite-order method compared to exact references as discussed in Ref. 45.

For completeness, we report the spin-unpolarized, infinite-order bRPA correlation ener-
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gies for NEO, rALDA, and CP07 in Table I. The exact values were obtained by subtracting

RPA from the PW92 correlation energies. As discussed in Refs. 41, 42, and 45, the perfor-

mance of each kernel varries with rs. NEO is exact in the high-density limit, since it was

energy-optimized to yield the second-order exchange contribution to the correlation energy

of the HEG45,88, while the static CP07 was parametrized to two sum-rules of the HEG41.

rALDA also satisfies one of those sum-rules related to the q → 0 limit of the exact HEG

kernel, but with a linear-scaling in λ unlike the non-linear scaling of CP0742. NEO and CP07

are systematic underestimates for all rs, while rALDA overestimates bRPA correlation in

the high-density limit and underestimates at lower densities. Since RPA renormalization at

low-order systematically underestimates the infinite-order correction, the accuracy of finite-

order RPAr in comparison to an exact reference is bounded by that of the infinite-order

result. We reiterate the point made in Ref. 45 that for kernels with infinite-order results

that overestimate the bRPA correction, RPA renormalization tends to reduce the error com-

pared to the reference, e.g. rALDA for small rs. However, for kernels with infinite-order

results that underestimate a reference bRPA correction, RPAr tends to further increase the

error, e.g. the NEO kernel for moderate to large rs.

B. RPAr Convergence for Physical Systems

For the spin-unpolarized physical systems that we chose, Figure 2 illustrates that the

convergence of RPAr is still fast and analogous to the HEG. Though we have focused on

the rAPBE kernel, RPAr works equally well for rALDA, see Table II for a comparison for

silicon, and we assume the conclusions based on rAPBE for other systems apply equally

to both kernels. Less than 5 meV error is reached for these systems at third-order and

adding the fourth-order correction reduces the error to less than 1 meV. What is most

remarkable about the convergence behavior is that it is independent of the nature of the

KS-orbital spectrum. The convergence is smooth and rapid for everything from atomic

magnesium or molecular carbon monoxide to the three major paradigms of bulk materials;

metals (Fe-FCC, Rh-FCC, Al-FCC, and Al(111)), semiconductors (diamond C and Si), and

insulators (MgO). This independence of the KS gap stems directly from the replacement of

the reference response function χ0 with χ̂, and the renormalization of the KS excitations to

their RPA counterparts when computing the xc-kernel corrections. Spin-polarized systems
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FIG. 2. Convergence of RPA renormalization for real systems near their equilibrium geometries

using the rAPBE and CP07 kernels. For spin-unpolarized systems, convergence to the infinite-

order result is fast and largely independent of the details of the system such as band gap or

dimensionality. For an atom, a molecule, several semiconductors, an insulator, three bulk metals,

and one metallic surface, RPAr is converged to less than 1 meV error by fourth-order.

prove to be more challenging, however, and the convergence of RPA renormalization can be

hampered by the functional form of the kernel.

Figure 3 illustrates the difficulties that an expansion such as Eq. (12) can potentially

encounter and reinforces the functional dependence of beyond RPA correlation within RPA

renormalization. It is worth emphasizing that the extremely slow convergence of RPA renor-

malization for some spin-polarized atomic systems seems to be the exception rather than the

norm, with molecular or extended systems of any spin-polarization all converging at similar

rates with the same kernel. The strength of short-ranged interactions in atomic systems has

always been a challenge for many electronic structure methods, being largely responsible

for the difficulty in predicting accurate total atomization energies89. The additional elec-

trostatic attraction provided by other atoms in a molecule or by the lattice in an extended

system reduces the strength of electron-electron repulsion, making them easier to account

for with an exchange-like kernel, and therefore RPAr tends to converge to 1 meV error or less

between third and sixth order. Further development and implementation of spin-dependent

kernels, such as the NEO kernel, are needed in order to better understand the difficulty that

RPAr faces when combined with spin-dependent kernels.
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(eV/Si2) rALDA rAPBE

n ERPAr-n
c ∆ERPAr-n

c ERPAr-n
c ∆ERPAr-n

c

0 (RPA) –12.1975 0.0000 –12.1344 0.0000

1 –8.6049 3.5926 –8.1521 3.9823

2 –8.4141 0.1908 –7.8980 0.2541

3 –8.3977 0.0164 –7.8716 0.0264

4 –8.3960 0.0017 –7.8682 0.0034

5 –8.3958 0.0002 –7.8677 0.0005

∞ –8.3958 3.8017 –7.8677 4.2667

TABLE II. Comparison of RPAr convergence using rALDA and rAPBE for diamond silicon with

respect to the order of the expansion n. LDA input orbitals were used to compute the rALDA kernel

results, while PBE input orbitals were use for rAPBE. RPAr converges rapidly to the infinite-order

result (Eq. (14)) with both kernels, the error dropping below 1 meV by fourth-order.
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FIG. 3. Convergence of RPA renormalization using the spin-dependent (left) and spin-independent

(right) rAPBE kernel for several first-row atoms with unpaired electrons, oxygen molecule (µB =

2), and ferromagnetic iron in the BCC phase and the Co(0001) surface. For B, C, and O the

convergence of RPA renormalization is extremely slow when combined with the spin-dependent

kernel. For the spin-independent rAPBEns kernel, all systems converge much more rapidly, though

B, C, and O still converge more slowly than the other examples. Other than the open-shell atoms,

the convergence of rAPBE and rAPBEns are similar highlighting a unique challenge of RPAr

combined with these kernels for atomic systems.
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For the spin-dependent rAPBE kernel on the left in Fig. 3, other than nitrogen, the

first-row 2p elements converge extremely slowly. Boron and oxygen require a twelfth-order

approximation to drop below 5 meV error, while carbon still exhibits a residual error of

approximately 40 meV at the same order. Using a linear fit from the log of the errors for

RPAr6 through RPAr12 indicates that carbon requires approximately 32 orders to reach

1 meV error. This extremely slow convergence for these spin-polarized systems with the

spin-dependent rAPBE kernel likely stems from the incomplete cancellation of the exchange

and Coulomb interactions when they are treated independently46. Nitrogen avoids this issue

and converges as rapidly as the closed-shell systems. Since the spin-density of a half-filled

shell is spherical and similar to the total density of a closed-shell system, the underlying

rAPBE kernel is less sensitive to the distinction. For the anti-ferromagnetic ground state of

NiO and the ferromagnetic ground-states of Fe-BCC and the (0001) surface of Cobalt, the

convergence is similar to nitrogen and the spin-unpolarized systems of Fig. 2, with errors on

the order of 1 meV between fifth and sixth order in the expansion.

For these same spin-polarized systems, using the spin-independent kernel (rAPBEns)

results in similar convergence to the spin-unpolarized systems in Fig. 2. As with the spin-

dependent kernel, B, C, and O converge more slowly than the other systems, however errors

below 1 meV are still attained between third and sixth order of RPAr. This remarkable

contrast in the convergence behaviors for these two kernels emphasizes the important fact

that the choice of the exchange-correlation kernel can make a significant impact in the con-

vergence behavior in real systems, just as it did for the low-density limit of the homogeneous

electron gas, but that for systems other than atoms Eq. (11) does tend to converge rapidly.

So far we have presented results for systems near their equilibrium geometries, for

which the RPAr convergence is reasonably smooth and rapid for both an exchange-like

and exchange-correlation kernel. Away from equilibrium, low-order perturbation theory

can diverge if the Kohn-Sham gap goes to zero as it does, for instance, in the dissociation

of homonuclear diatomics. Figure 4 illustrates the convergence behavior of RPA renor-

malization (left) for four stretched bond lengths of dinitrogen (Req = 110 pm), as well as

demonstrates the different magnitudes of each order in the RPAr expansion (right). RPAr

converges rapidly near equilibrium as expected, but as the bond length increases the con-

vergence slows and terms up eight-order are required to reach an error of ∼1 meV or less.

From the right hand plot, it is clear that RPAr1 makes up the dominant contribution of
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FIG. 4. Convergence (left) and bRPA correlation corrections (right) from RPAr for N2 at 4 different

stretched bond lengths with the rAPBE kernel. Near equilibrium (Req=110 pm) RPAr is converged

to less than 1 meV error by fourth order, however convergence slows as R increases and terms up

to eigth order or higher are required as the atoms dissociate. Still, even at double the equilibrium

bond length, by fifth order RPAr is converged to approximately 10 meV error or less. Since RPA is

the underlying approximation, the kernel-corrections from RPAr remain finite even as the molecule

dissociates and the Kohn-Sham gap goes to zero.

the total beyond RPA correlation energy, being on the order of 5.3 eV for all bond lengths.

The contributions of second and higher orders amount to several hundred meV, with the

second-order term dominating this beyond RPAr1 remainder. As the distance between

the nuclei increases the relative contributions from higher-orders increase which causes the

convergence to be slower than at equilibrium, but no divergences are encountered even for

bond lengths that are twice the equilibrium value and the series expansion still adds up to

the infinite-order result. Even though higher-order terms are required at large separations,

the contributions from fifth and higher orders amounts to ∼10 meV, and can barely be

discerned on the scale of the lower-order terms.

IV. DISCUSSION AND CONCLUSIONS

In order to accurately treat short-ranged correlation within the ACFD, an exchange-

correlation kernel should be added to RPA. RPA renormalization provides a systematic
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route to compute such corrections, with the added benefit that both RPA and beyond RPA

contributions to the correlation energy can be computed simultaneously. RPA renormaliza-

tion to first-order had previously been applied to solids and molecules, but the behavior of

higher-orders had yet to be explored. We demonstrated numerically that beyond first-order,

RPAr tends to converge to the infinite-order result for spin-unpolarized systems of any band-

type, be it a molecule, metal, semiconductor, or insulator. For the spin-dependent kernel we

tested, open-shell atoms were the slowest to converge for RPA renormalization likely due to

the introduction of a Hartree-like component in the xc-kernel46. Still, open-shell extended

systems and some open-shell molecules also showed rapid convergence and we consider this

challenge for atomic systems to be an exceptional case. In practice the RPAr series con-

verges to within 5 meV or better of the infinite-order result by fourth-order for many of the

systems we examined here.

Just as Bohm and Pines1 originally used canonical transformations to map the interact-

ing electron problem to one where long and short-ranged forces can be accounted for in a

two-step procedure, RPA renormalization accomplishes the same task via a straightforward

refactorization of the Dyson-like equation for the interacting density-density response func-

tion, Eq. (8). RPA, as the first step in both approaches, covers the long-range interactions

present in a given system. The residual short-ranged forces beyond RPA are represented by

fxc within RPAr and are naturally screened by the RPA response function, Eq. (11). This

screening is tied directly to the monotonic behavior rationalized based on the properties

of the bRPA correlation potential discussed in Section II. RPA renormalization tends to

converge at a slower rate when combined with spin-dependent kernels, though this may be a

limitation of the particular kernel we tested and further exploration of other spin-dependent

kernels is needed to resolve the issue. Overall, however, RPAr provides a systematic frame-

work for approximating exchange-correlation effects in the ACFD-DFT beyond RPA.

We would like to remark on two other aspects of the results that are not central to

the convergence behavior. First, looking at all of the convergence plots as a whole, it is

apparent that the performance of the first-order approximation is very consistent with the

infinite-order approach and yields a roughly equivalent relative error for all of the systems

we investigated. This point can be best understood by comparing the distribution of beyond

RPA corrections at n = 0 for each plot and noting that the distribution of relative errors

for n = 1 is very similar. This underlying systematic character was previously attributed to
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the complete dependence of the RPAr1 correlation energy correction on the RPA response

function39,45. Consequently, it may be possible to design an approximate correction beyond

RPAr1 that also behaves systematically and recovers the missing correlation not captured

in the first order expansion. The second point is, again, that in addition to monotonic

and rapid convergence towards the infinite-order result, RPA renormalization enables the

computation of RPA and a kernel correction simultaneously. Separate calculations for RPA

and a kernel-correction are no longer needed since a single calculation yields both once the

xc-kernel and RPA response function have been computed. The utility of this aspect of

RPAr has yet to be fully realized and we plan to leverage it in our future work.
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