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We study Floquet topological phases in periodically driven systems that are protected by “time
glide symmetry”, a combination of reflection and half time period translation. Time glide symmetry
is an analog of glide symmetry with partial time translation replacing the partial space translation,
and hence, is an intrinsically dynamical symmetry which may be engineered in periodically driven
systems by exploiting the controllability of driving. We present lattice models of time glide sym-
metric Floquet topological insulators in two and three dimensions. The topological numbers char-
acterizing those Floquet topological phases are derived from the half period time evolution operator
along with time glide operator. Moreover, we classify Floquet topological phases protected by time
glide symmetry in general dimensions using a Clifford algebra approach. The obtained classification
table is similar to that for topological crystalline insulators protected by static reflection symmetry,
but shows nontrivial entries in different combination of symmetries, which clarifies that time glide
symmetric Floquet topological phases are a distinct set of topological phases from topological crys-
talline insulators. We also classify Floquet topological phases with “time screw symmetry,” defined
as a two-fold spatial rotation accompanied by half-period time translation.

I. INTRODUCTION

The discovery of topological insulators has revived the
prominence of topology in the frontier studies of elec-
tronic systems1,2. A major driving force behind this new
wave of development is the realization that symmetries
can lead to new topologies. For instance, although a two-
dimensional time-reversal-symmetric band insulator nec-
essarily carries a vanishing Chern number, they can still
carry a nontrivial Z2-valued topological invariant and ex-
hibit the quantum spin Hall effect. As these novel topo-
logical distinctions are only well-defined in the presence
of certain symmetries, they are generally referred to as
‘symmetry-protected topological phases’ (SPTs), and are
now known to exist for both fermionic and bosonic sys-
tems with a variety of different symmetries3–5.

Recently, it has been realized that such topologi-
cal ideas can also be applied to the study of strongly
out-of-equilibrium dynamics. In particular, much fo-
cus has been placed on Floquet systems – quantum sys-
tems coupled to time-periodic classical drives – as their
phases, defined as classes of long-time behavior, can be
systematically studied through the single-period system
evolution6–9. General classification results for Floquet
systems of non-interacting fermions with on-site symme-
try groups have been obtained in Ref.10. They are found
to be generally classified in the same way as the cor-
responding equilibrium systems in the same symmetry
class (so called tenfold-way classification11–13), but with
a generalization that takes into account the absence of
the notion of ground states in a Floquet system.

At a first glance, such similarity between Floquet and
static problems may not be unexpected, as in the pres-
ence of a Floquet band gap one can define an effective
Floquet Hamiltonian and classify it using equilibrium
techniques. Yet, such interpretation does not accurately
describe the obtained Floquet classification, as intrin-
sically dynamical phases, which showcase robust topo-

logical properties despite a topologically trivial Floquet
Hamiltonian, have been discovered. This is exemplified
by the ‘anomalous Floquet Anderson insulators’, which
are (2+1)D systems that, despite a vanishing bulk Chern
numbers, host protected chiral edge modes8,9. More re-
cently, it has also been realized that analogous chiral Flo-
quet phases exist for bosonic spin systems, and their clas-
sification is distinct from any previously-known equilib-
rium phases14. Furthermore, periodically driven systems
with strong interactions constrained by symmetries were
shown to host a new class of “Floquet” SPTs. These
Floquet SPTs are characterized by pumping of equilib-
rium SPT phases to the surface in each cycle, which
were studied in one dimension15–18 and also in higher
dimensions19,20. These discoveries demonstrate that Flo-
quet systems are capable of hosting novel topological
phases with no equilibrium counterparts.

So far, studies on topological Floquet phases have
focused on how conventional symmetry classes, which
have played a key role in the classification of equilibrium
phases, can lead to novel topological dynamics. A natu-
ral next step forward is to turn our focus from topology
to symmetry – what are the symmetries that are unique
to Floquet systems, and what are the new phases, if any,
that they lead to?

The goal of this work is to initiate the analysis of
this problem. We will focus exclusively on ‘dynamical
symmetries’ which are unique to Floquet systems21–23.
Such symmetries are defined using the discrete time-
translation invariance Floquet systems, and can be un-
derstood as the space-time analogs of nonsymmorphic
spatial symmetries. For instance, we say the system
possesses a ‘time-glide’ symmetry if the instantaneous
Hamiltonian Ĥ(t) satisfies R̂Ĥ(t)R̂−1 = Ĥ(t + T/2),

where R̂ is a spatial reflection and T denotes the Flo-
quet period. It is compatible with a Floquet system as
acting it twice gives Ĥ(t) = Ĥ(t+ T ), the defining rela-
tion of Floquet problems. Similarly, one can define the
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‘time-screw’ symmetry via ĈnĤ(t)Ĉ−1
n = Ĥ(t + T/n),

where Ĉn denotes the n-fold spatial rotation. Generally,
a Floquet system will be symmetric under a space-time
symmetry group featuring nontrivial combination of spa-
tial and temporal operations, similar to how crystals are
classified by space groups.

Here, we will take a first step towards understand-
ing the topological consequences of dynamical symme-
tries in Floquet systems. Specifically, we will focus on
free-fermion problems symmetric under either a time-
glide or a time-screw squaring to a discrete time transla-
tion. Such systems represent the simplest setting which
demonstrates the existence of new phases arising from
dynamical symmetries. We find that their topological
characterization cannot be readily interpreted as analogs
of equilibrium phases. In particular, Floquet topological
phases with time-glide is shown to be distinct from con-
ventional topological crystalline insulators protected by
static reflection symmetry24–26.

This paper is organized as follows: In Sec. II, we
will first develop intuition for the definition and con-
sequences of dynamical symmetries by studying explicit
(2+1) and (3+1)D lattice models, where we also present
explicit derivation of the topological invariants charac-
terizing their phases. In Sec. III C, we will extend the
discussions to (d+1)D dimensions, and obtain the gen-
eral classification results analogous to the ten-fold way
classification. We will conclude in Sec. IV by discussing
various directions for future works.

II. TIME-GLIDE SYMMETRIC FLOQUET
TOPOLOGICAL PHASES

We study noninteracting periodically-driven systems
with “time glide symmetry”. The time glide symmetry
is an intrinsically dynamical symmetry which is a com-
bination of a reflection symmetry and half time period
translation, and is written as

MTH(k, t)M†T = H

(
Ri(k), t+

T

2

)
. (1)

Here, Ri denotes a reflection along the ith direction.
Due to the dynamical nature of the time-glide symme-
try, the presence or absence of time glide symmetry can
be controlled by designing suitable drivings. In the fol-
lowing, we show examples of Floquet topological phases
protected by the time-glide symmetry.

A. 2D model of Floquet topological phase with
chiral symmetry and time glide symmetry

First we consider a two-dimensional periodically driven
system with chiral symmetry and time-glide symmetry
defined on a stack of 1D chains as follows. The Hamilto-

FIG. 1. Schematic picture of the 2D model with chiral sym-
metry and time-glide symmetry. The model consists of a two
step drive, denoted by A and B. Solid and dotted lines repre-
sent static hoppings with t and t′, respectively. Blue arrows
represent alternating hoppings with the amplitude it (−it)
along (opposite to) the direction of the arrow.

nian is given by

H(t) = Hintra +Hinter, (2)

where Hintra and Hinter denote intrachain and interchain
couplings, respectively, and are given by

Hintra = t
∑
i,j

c†i,j+1ci,j + h.c., (3)

and

Hinter(t) = t′
∑
i,j

c†2i+2,jc2i+1,j

+ itη(t)
∑
i,j

(c†2i+1,2j+1c2i,2j + c†2i+1,2jc2i,2j+1

+ c†2i,2j+1c2i+1,2j+2 + c†2i,2j+2c2i+1,2j+1) + h.c.,

(4)

with

η(t) =

{
+1, (0 ≤ t < T

2 )

−1. (T2 ≤ t < T )
(5)

Here, ci,j denotes the annihilation operator of an electron
at the jth site in the ith chain. In the momentum space
representation, this Hamiltonian reads

H(k, t) = 2tσx cos
ky
2

+ 2tη(t)σyτy sin
ky
2

+ t′τx cos kx + t′τy sin kx, (6)

where Pauli matrices σi, τi act on the sublattice within
the chain and two chains in the unit cell, respectively.
Note that the lattice constant along the y-direction is 2.
This two-step drive is schematically illustrated in Fig. 1.
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FIG. 2. Quasienergy spectrum of the 2D model with chi-
ral symmetry and time-glide symmetry. The spectrum is
obtained for a cylinder geometry with the open boundary
along the y direction with Ly = 20 sites and the periodic
boundary along the x direction. We used the parameters:
t = 1, t′ = 0.5,Ω = 2. Note that quasienergies in the “first
Brillouin zone” are E/Ω ∈ [−0.5, 0.5] .

The above Hamiltonian H(t) preserves the chiral sym-
metry as

ΓH(t)Γ = −H(−t), Γ = σzτz, (7)

where sites with Γ = +1 and Γ = −1 are illustrated with
white and black dots in Fig. 1. In particular, the driv-
ing at a time slice does not satisfy the chiral symmetry
because ΓHA/BΓ 6= −HA/B , where we write HA = H(t)
for 0 ≤ t < T/2 and HB = H(t) for T/2 ≤ t < T .
Nonetheless, it satisfies the chiral symmetry as a whole
function of t as ΓHAΓ = −HB . In addition to the chiral
symmetry, H(t) preserves the time glide symmetry as

MTH(kx, ky, t)M
†
T = H

(
−kx, ky, t+

T

2

)
, MT = τx.

(8)

In particular, MTHAM
†
T = HB holds.

Periodically driven systems with time-dependent
Hamiltonian H(t) with a period T are described by Flo-
quet Hamiltonians HF obtained by Fourier transforma-
tion along the time-direction as

(HF )mn =
1

T

∫ T

0

dtei(m−n)ΩtH(t)−mΩδmn, (9)

where Ω = 2π/T and m,n are Floquet indices.
The eigenvalues of Floquet Hamiltonian are called
quasienergy and allow us to capture the dynamics of pe-
riodically driven system in terms of a band picture. The
chiral symmetry constrains that the quasienergy spec-
trum ε(kx) shows chiral partners at ε(kx) and −ε(kx).
In particular, states at ε = 0,Ω/2 are special because
they can be chiral partners of themselves, which we call
chiral zero/π modes. Similarly, the time glide symmetry
constrains the spectrum as ε(kx) = ε(−kx).

Figure 2 shows the quasienergy spectrum of the 2D
model H(t), where we adopted periodic boundary condi-
tion along the x direction and the open boundary condi-
tion along the y direction. The spectrum in Fig. 2 shows
a bulk band around ε = 0 and a bulk gap around ε = Ω/2,
where nontrivial edge states appear. This should be con-
trasted with equilibrium topological phases, which have
bulk gap with protected edge states at ε = 0, and there-
fore it suggests that the system is in an intrinsically dy-
namical phase. Moreover, the edges state appearing in
the gap around ε = Ω/2 is protected by the combination
of chiral symmetry and time-glide symmetry, since two-
dimensional gapped phases with chiral symmetry alone
(2D systems in class AIII in the tenfold way) do not sup-
port nontrivial phases10,11. We describe the topological
property of these edge states characterized by chiral sym-
metry and time-glide symmetry in the following.

B. Topological characterization of 2D Floquet
phase with chiral symmetry and time glide

symmetry

Before we discuss topological invariant with chiral sym-
metry and time-glide symmetry, we first review the topo-
logical characterization of 1D Floquet topological phases
with chiral symmetry (1D systems in class AIII)27. In or-
der to characterize Floquet topological phases, we study
the time-evolution operator given by

U(k, ti → tf ) = T exp

[
−i
∫ tf

ti

dt′H(k, t′)

]
, (10)

since the characterization needs the information of micro-
motion during the cycle. By definition, the eigenvalues of
the evolution operator U(k, 0 → T ) are e−iε(k)T , where
ε(k) is the quasienergy. (We choose T = 1 for simplicity
in the following discussion.) The chiral symmetry indi-
cates that the time-evolution operator satisfies

ΓU(k, 0→ T/2)Γ = U†(k, T/2→ T ). (11)

When we focus on topological characterization for chiral
π modes, we can deform the bulk Floquet bands to the
quasienergy zero [ε(k) = 0]. In this case, the evolution
operator over the cycle becomes trivial U(k, 0→ T ) = 1
and, in particular, the equation U†(k, T/2 → T ) =
U(k, 0 → T/2) holds. If we write the half-period evo-
lution as

U(k, 0→ T/2) =

(
a b
c d

)
, (12)

in the basis

Γ =

(
1 0
0 −1

)
, (13)

this indicates b = c = 0. Now we define the winding
number ν for one parameter family of unitary operators
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g(k) by

ν[g(k)] =
1

2πi

∫
dk tr

(
g†
dg

dk

)
, (14)

where tr denotes a trace over the internal degrees of free-
dom. Since ν[U(k, 0 → t)] = ν[U(k, 0 → 0)] = 0 holds
due to the continuous deformation t→ 0, the two wind-
ing numbers of a(k) and d(k) satisfy ν[a] + ν[d] = 0, and
are not independent. Thus we can choose the winding
number ν[d] as the topological invariant that character-
ize chiral π modes in 1D class AIII Floquet systems. In
general cases with U(k, 0 → T ) 6= 1, the topological in-
variant for chiral π modes νπ is still given by the winding
number as27

νπ = ν[d]. (15)

Now we proceed to the topological characterization of
2D Floquet phases with chiral symmetry and time glide
symmetry. Since 2D systems in class AIII has no topo-
logical number, we can see that the time-glide symme-
try plays a crucial role in characterizing them. In the
presence of time-glide symmetry along the x-direction,
1D subsystems at kx = 0, π are regarded as 1D class
AIII system with an additional Z2 symmetry induced by
the time-glide symmetry. This Z2 symmetry (which we
also denote by MT ) is a global Z2 symmetry combined
with time translation by the half period, and acts on the
Hamiltonian restricted to the 1D subsystem at kx = 0 as

MTH(0, ky, t)M
−1
T = H

(
0, ky, t+

T

2

)
. (16)

We assume that this subsystem does not have nontrivial
winding number ν[d] in order to exclude the possibility of
weak topological insulators of class AIII, where the flat
band of chiral π mode appears in the quasienergy spec-
trum. Instead, we consider topological invariant similar
to the winding number by taking into account the Z2

symmetry MT . Specifically, under the combination of Γ
and MT , the Hamiltonian is transformed as

ΓMTH(0, ky, t)(ΓMT )−1 = −H(0, ky, T/2− t), (17)

which looks similar to the action of Γ in Eq. (7) except
that the center of time reversal is at t = T/4 instead of
t = 0. This indicates that the time evolution operator
satisfies the condition

ΓMTU

(
0,−T

4
→ T

4

)
(ΓMT )−1 = U†

(
0,−T

4
→ T

4

)
(18)

Therefore, if we write

U

(
0,−T

4
→ T

4

)
=

(
a′ b′

c′ d′

)
, (19)

in the basis

ΓMT =

(
1 0
0 −1

)
, (20)

in a similar way to Eq. (12), we can define the winding
number ν[d′] for the 1D subsystem at kx = 0. Simi-
larly, we can define the winding number ν[d′] at kx = π.
Nonzero winding numbers ν[d′] result in the presence of
chiral π modes at glide symmetric points (kx = 0, π).
While the presence of chiral π mode is not protected
away from the glide symmetric points, the continuity of
quasienergy spectrum with kx ensures the presence of an
edge state within the bulk gap. Thus nonzero winding
numbers ν[d′] at time glide planes characterize the non-
trivial edge states in the π gap.

The above topological number ν[d′] characterizing 2D
Floquet topological phases with Γ and MT requires an-
ticommutation relation between Γ and MT . To see this,
we show that if [Γ,MT ] = 0, the winding number van-
ishes identically (ν[d′] = 0): If ΓMT and MT commute,
they can be simultaneously diagonalized as

ΓMT =

(
1 0
0 −1

)
, MT =

(
M+
T 0

0 M−T

)
. (21)

By combining this equation and Eq. (18), we obtain
M−T d

′(M−T )−1 = d′†. Since the winding number satis-
fies the relationships ν[g] = ν[g′gg′−1] and ν[g] = −ν[g†],
these lead to ν[d′] = −ν[d′] = 0 when [Γ,MT ] = 0. Thus
the nonzero winding number requires the anticommuta-
tion relation {Γ,MT } = 0. These structures are concisely
captured through a Clifford algebra analysis, which will
be detailed in Sec. III C.

The anticommutation relationship between the chiral
symmetry and the time glide symmetry shows that the
time glide symmetric Floquet topological phase is dis-
tinct from conventional topological crystalline insulators
(TCIs). It is known that nontrivial TCIs exist in 2D
class AIII with (static) reflection symmetry24–26. A nat-
ural question is whether the time glide symmetric Flo-
quet topological insulators can be obtained by deforming
a conventional TCI with a time glide symmetric pertur-
bation. The condition {Γ,MT } = 0 shows that this is
not the case because nontrivial TCIs requires the com-
mutation relationship [Γ, Rx] = 0 (Rx being a reflection
symmetry along the x direction). Thus perturbing a TCI
by relaxing static Rx into dynamical MT cannot result in
a time glide symmetric Floquet topological phase, which
clarifies these two phases are distinct sets of topological
phases.

Finally, we explicitly calculate the winding number
ν[d′] for the 2D model given by Eq. (2). We focus on
the mirror invariant subspaces at kx = 0, or kx = π
(which give the same topological numbers as we will see
below). Since we can deform the interlayer hopping t′ to
zero without closing the bulk gap, we can focus on two
chains coupled with complex hoppings described by

H(ky, t) = σx cos
ky
2

+ η(t)σyτy sin
ky
2
, (22)

where we also set 2t = 1 for simplicity. In this case, the
time evolution operator U(−T/4→ T/4) can be obtained
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FIG. 3. Schematic picture of the 3D model with time-glide
symmetry. The model consists of a four step drive, denoted
by A, B, C and D. Solid and dotted lines represent static
hoppings with t and t′, respectively. Blue arrows represent
alternating hoppings with the amplitude it (−it) along (op-
posite to) the direction of the arrow.

by setting T = 2π as

U(−T/4→ T/4) = exp

[
−iT

4

(
σx cos

ky
2
− σyτy sin

ky
2

)]
× exp

[
−iT

4

(
σx cos

ky
2

+ σyτy sin
ky
2

)]
= − cos(ky)− i sin(ky)σzτy. (23)

Since ΓMT = σzτy, the topological number for the mirror
invariant subspace is given by

ν[d′] = ν[−e−iky ⊗ 112] = −2, (24)

where 112 denotes a 2 by 2 identity matrix in the σzτy =
−1 sector. This nonzero topological number defined with
time glide symmetry protects the two fold degeneracy at
E = Ω/2 in the mirror invariant subspace, and hence,
the gap closings at kx = 0, π shown in Fig. 2.

C. 3D model of class A and time-glide

Next, we present a 3D model that supports a Floquet
topological phase protected by the time-glide symmetry.
We focus on an insulating phase with charge U(1) sym-
metry which belongs to the symmetry class A in the AZ
classification. The 3D model we study is defined on a

(a) (b)

kx/π
kz/π kx/π

E
/ Ω

E
/ Ω

-1.0 -0.5 0.0 0.5 1.0
-1.0
-0.5
0.0

0.5

1.0

FIG. 4. Quasienergy spectrum of the 3D model with time-
glide symmetry. We consider a slab model which has periodic
boundaries along the x and z directions and open boundary
along the y direction. (a) Quasienergy spectrum at kz = 0
which is time glide symmetric plane. (b) Energy dispersion of
the surface state that appears within the π gap. We used the
parameters: t0 = 0.25, tint = 0.04, δtint = 0.02,∆ = 1,Ω = 1
and Ly = 30..

stack of the honeycomb lattice and is described by the
time-dependent Hamiltonian H(t) = Hintra(t) +Hinter(t)
which is given as follows. First, the intralayer part of the
Hamiltonian Hintra is given by the four step driving by
the Haldane model28 and staggered potential for honey-
comb lattice as

Hintra(t) =


HA, (0 ≤ t < T

4 )

HB , (T4 ≤ t <
T
2 )

HC , (T2 ≤ t <
3T
4 )

HD. ( 3T
4 ≤ t < T )

(25)

with

HA = t0
∑
m,〈i,j〉

c†m,icm,j + t0
∑

m,〈〈i,j〉〉

(−1)meiΦijc†m,icm,j ,

(26)

HC = −t0
∑
m,〈i,j〉

c†m,icm,j + t0
∑

m,〈〈i,j〉〉

(−1)meiΦijc†m,icm,j ,

(27)

HB = HD = ∆
∑
m,i

ηic
†
m,icm,i, (28)

where cm,i is the annihilation operator of an electron with
the layer index m and the site index i-th within the hon-
eycomb lattice, 〈i, j〉 denotes the nearest neighbor sites
i and j, 〈〈i, j〉〉 denotes the next nearest neighbor sites,
the phase factor eiΦij = ±i according to the direction of
arrows in Fig. 3, and ηi = ±1 for two distinct sublattices
of the honeycomb lattice. Next, the interlayer part of the
Hamiltonian is given by

Hinter ={∑
m,i[tint + (−1)iδtint]c

†
m+1,icm,i + h.c. (0 ≤ t < T

2 )∑
m,i[tint − (−1)iδtint]c

†
m+1,icm,i + h.c. (T2 ≤ t < T )

(29)
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In the momentum space (where kx and ky are measured
along the directions specified in Fig. 3), the Hamiltonian
is written in the 4 by 4 form as

Hintra =


t0dH · σ, (0 ≤ t < T

4 )

∆σz, (T4 ≤ t <
T
2 )

t0σz(dH · σ)σz, (T2 ≤ t <
3T
4 )

∆σz, ( 3T
4 ≤ t < T )

(30)

with dH =
(
1+cos kx+cos ky, sin kx+sin ky, [−2 sin kx+

2 sin ky + 2 sin(kx − ky)]τz
)
, and

Hinter ={
(tint + δtint cos kz)τx + δtint sin kzτy, (0 ≤ t < T

2 )

(δtint + tint cos kz)τx − tint sin kzτy, (T2 ≤ t < T )

(31)

where σi and τi are Pauli matrices acting on sublattice
and layer degrees of freedom. This model has a time-
glide symmetry with x-y plane as the mirror plane. More
explicitly, one finds MTH(t)M−1

T = H(t+T/2), with the
time-glide operator given in this 4 by 4 representation by

MT = σze
−i(1−τz)kz/2. (32)

The quasienergy spectrum for the above 3D model is
shown in Fig. 4. We consider the system with the open
boundary condition along the y-direction and the peri-
odic boundary condition along the x and z directions.
The quasienergy spectrum shows the bulk gap around
±Ω/2 and there appears a surface state. The inset of
Fig. 4 shows a blowup of the surface state and shows
that a Dirac fermion with linear dispersion is realized at
the surface around (kx, kz) = (π, π). We note that the
gapless point is located at one of the mirror invariant
plane with MT at kz = 0, π. While 3D systems in the
symmetry class A do not possess any topological num-
ber according to the ten-fold way classification11–13, this
Dirac surface state is protected by the time-glide sym-
metry, as we now explain.

The topological number for the 3D systems with time-
glide symmetry is defined by focusing on the mirror in-
variant plane. In the case of time glide along the z direc-
tion in the above, we focus on the mirror invariant plane
at k0

z = 0, π and the restricted 2D Hamiltonian having
global Z2 symmetry combined with half time translation

MTH(kx, ky, k
0
z , t)(M

T )−1 = H(kx, ky, k
0
z , t+ T/2).

(33)

Topological numbers are defined for this effective 2D sys-
tem as follows.

We define a topological number of a 2D system with
global Z2 symmetry gT combined with half time transla-
tion. First we notice that the time evolution for the full
period is described by that for the half period as

U(kx, ky, 0→ T ) = gTUhgTUh, (34)

Uh(kx, ky) = U

(
kx, ky, 0→

T

2

)
. (35)

Here we used a representation for a order-two unitary
symmetry gT such that gT = g−1

T . Since the Floquet
Hamiltonian is obtained from the time evolution opera-
tor, the quasienergy spectrum is determined by eigenval-
ues of Uh as

HF (kx, ky) =
i

T
lnU(kx, ky, 0→ T ) =

i

T
ln[(gTUh)2].

(36)

(For simplicity, we choose T = 1 hereafter.) Now we as-
sume that the bulk quasienergy spectrum has a gap at
E = π. In this case, we can continuously deform the
quasienergy to E = 0 for the entire BZ. This means the
eigenvalues of gTUh are adiabatically connected to ±1
without closing the gap at E = π. For trivial time evo-
lution Uh = 1, eigenvalues of gTUh are given by those
of gT . Let us focus on two band system and the time
evolution operators belong to U(2) (where we may drop
the U(1) part for simplicity, without loss of generality,
and focus on the SU(2) part). Suppose that gT has two
eigenvalues +1 and −1 (e.g., gT = σz). If the eigenvalues
of gTUh are both +1 or both −1, the system is topologi-
cally distinct from trivial time evolution. This is because
deforming Uh to 1 requires that one of the eigenvalues
of gTUh continuously changes from −1 to +1 (or from
+1 to −1) as a U(1) variable, and in this process the
eigenvalue of gTUh passes ±i where the bulk π gap of
U(kx, ky, 0→ T ) is closed. Thus the system is nontrivial
if passing the points Uh = ±igT cannot be avoided in the
deformation into the trivial evolution Uh = 1. This sit-
uation is achieved when Uh as an SU(2) operator wraps
around the points either igT or −igT . This prevents triv-
ialization of Uh into 1. In the case of general number of
bands, this obstruction is described by the Chern num-
ber for gTUh as follows. First we consider time evolution
operators after spectral flattening U(kx, ky, 0 → T ) = 1.
This is possible because we can find gT symmetric de-
formation of U(t) to U(T ) = (gTUh)2 = 1. In this case,
Eq. (35) indicates that the half time evolution satisfies

gTUh = (gTUh)†, (37)

and the operator gTUh becomes hermitian. Since the
hermitian operator gTUh(kx, ky) has two parameters in
the 2D system and eigenvalues of gTUh(kx, ky) are ±1
(having a spectral gap), we can define a Chern number
for gTUh. This Chern number coincides with the wrap-
ping number defined in the above for the two band sys-
tem since the Chern number of gTUh means a nontrivial
wrapping around the identity operator, and hence, non-
trivial wrapping of Uh(kx, ky) around gT . (We note that
igT is replaced with gT here, because the energy gap is
located at E = 0 rather than E = π.)

Finally we show that the 3D model with time glide
symmetry has a nontrivial topological number defined in
the above. We focus on the mirror invariant plane at k0

z =
0, π. Since we can deform the interlayer coupling Hinter

to zero without closing the bulk gap, we consider the case
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FIG. 5. Schematic picture of the topological number at the
mirror invariant plane. Time evolution operators for Hintra

for each layer belongs to SU(2) which is described by S3.
The sphere S3 is illustrated by two solid balls whose surfaces
are identified. Nontrivial topological phase is characterized
by the wrapping of ±igT by the half time evolution operator
Uh. Since closing of the gap at E = π takes place at Uh =
±igT , the topological number is defined as a wrapping number
around these points. After spectral flattening, Uh is deformed
within a disk (S2) containing 1,−1 and the blue dotted circle,
and this wrapping number coincides with the Chern number
defined for gTUh.

of no interlayer coupling tint = δtint = 0. In this case the
Chern number of gTUh in the mirror invariant plane can
be obtained by computing those for two kind of decoupled
layers τz = ±1. Let us focus on the layer 1 with τz = +1,
where we have a two band system and we can deduce the
topological number from wrapping number of igT by Uh
within U(2). Since the intralayer Hamiltonian Hintra is
traceless (i.e., consisting of sums of three Pauli matrices),
the half time evolution Uh belongs to the SU(2) part
(which can be visualized by S3 as in Fig. 5), and we can
reduce the topological characterization of Uh to whether
Uh winds around the point iσz = igT in SU(2). The half
time evolution for Eq. (25) is written as

Uh = exp(−iHBT/4) exp(−iHAT/4). (38)

The first step of the driving exp(−iHAT/4) wraps around
the identity element 1. This is because HA = dH · σ
is the Hamiltonian of the Haldane model which has a
nonzero Chern number; the vector dH wraps around the
origin, and hence, its exponential map exp(−iHAT/4)
winds around the identity element 1 when the magni-
tude t0T/4 is small which is the case for the parameters
in Fig. 4. By setting ∆T/4 = π/2, the next step leads to
the factor exp(−iHBT/4) = −iσz which maps the iden-
tity element 1 to the point −iσz. Thus exp(−iHAT/4)
wrapping around 1 is mapped to Uh wrapping around
−iσz, which ensures a topologically nontrivial configura-
tion with global Z2 symmetry gT with half time trans-
lation. Once we perform the spectral flattening for the
Floquet operator U(T ), the Chern number of σzUh is
nonzero, say 1 in this case. In a similar way, the layer 2
(τz = −1) gives the Chern number −1 for σzUh. At the
mirror invariant plane kz = 0, these two contributions

add up because of MT = σz and give zero Chern num-
ber. In contrast, at the mirror invariant plane kz = π,
the difference of these two contributions is the topological
number because of MT = σzτz, which gives the nonzero
Chern number 2. This is consistent with the band struc-
ture in Fig. 4 where the gapless surface state appears at
kz = π where the bulk topological number with the glide
symmetry becomes nonzero.

III. CLASSIFICATION OF FLOQUET
TOPOLOGICAL PHASES

Having provided concrete examples for time-protected
Floquet topological phases in 2 and 3D, we now clas-
sify noninteracting Floquet topological phases with time
glide symmetry in all symmetry classes in arbitrary di-
mensions. To this end, we use classification theory of
topological insulators based on Clifford algebras25 and
apply it to Floquet topological phases. We also consider
topological phases realized with a “time-screw” symme-
try, which corresponds to a two-fold rotation together
with a half-period translation.

A. Tenfold way classification of Floquet topological
phases

Before proceeding to the classification theory of Flo-
quet topological phases with time glide symmetry, we
review the ten-fold way classification theory for Floquet
topological phases10, which serves as a basis for studying
the cases with time glide symmetry. Topological charac-
terization of Floquet topological phases involves data of
time evolution operators for whole period, i.e., U(t) with
t ∈ [0, T ), rather than just Floquet operator U(t = T ) (or
equivalently, the Floquet Hamiltonian HF ). In order to
study topological properties of the family of unitary op-
erators U(t), we instead study an effective Hamiltonian
that is made of U(t) which enables us to apply classi-
fication technique developed for equilibrium topological
phases11–13,25, as we will explain below.

We consider the symmetrized time-evolution operator

US(k, t) = T exp

[
−i
∫ T+t

2

T−t
2

dt′H(k, t′)

]

≡ lim
N→∞

N∏
n=0

(
1− i t

N
H

(
k,
T − t

2
+
nt

N

))
,

(39)

where T denotes the time-ordering. This family of uni-
tary operator US(k, t) encodes topological data of Flo-
quet topological phases (and has topological data equiv-
alent to usual time evolution operators U(k, t)). This

unitary operator satisfies US(k,−t) = U†S(k, t). In ad-
dition, we assume that the operator US(k, t) satisfies
US(k, 0) = US(k, T ) = 1 for the Floquet period T by an
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TABLE I. The ten ten-fold way classification for noninteracting Floquet topological phases. Two complex and eight real
symmetry classes are characterized by the presence or the absence of time-reversal symmetry (T ), particle-hole symmetry (C),
and chiral symmetry (Γ). Their presence is complemented by the sign multiplying the identity in T 2 = ±1 or C2 = ±1, and by
1 for Γ. Their absence is indicated by 0. For each spatial dimension d, nontrivial topological phases are characterized by Z, Z2

topological numbers. For symmetry classes without PHS or chiral symmetry, n denotes the number of gaps in the quasienergy
spectrum.

Class T C Γ d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

A 0 0 0 Zn 0 Zn 0 Zn 0 Zn 0

AIII 0 0 1 0 Z2 0 Z2 0 Z2 0 Z2

AI +1 0 0 Zn 0 0 0 Zn 0 Zn
2 Zn

2

BDI +1 +1 1 Z2
2 Z2 0 0 0 Z2 0 Z2

2

D 0 +1 0 Z2
2 Z2

2 Z2 0 0 0 Z2 0

DIII −1 +1 1 0 Z2
2 Z2

2 Z2 0 0 0 Z2

AII −1 0 0 Zn 0 Zn
2 Zn

2 Zn 0 0 0

CII −1 −1 1 0 Z2 0 Z2
2 Z2

2 Z2 0 0

C 0 −1 0 0 0 Z2 0 Z2
2 Z2

2 Z2 0

CI +1 −1 1 0 0 0 Z2 0 Z2
2 Z2

2 Z2

appropriate deformation of the time-dependent Hamilto-
nian. This condition is equivalent to considering spectral-
flattened Floquet Hamiltonian HF = 0, and it is satisfied
if we require the existence of a gap in the quasienergy
spectrum around Ω/2.

Instead of studying the unitary operator US(k, t) itself,
we consider a Hamiltonian given by

HS(k, t) =

(
0 US(k, t)

U†S(k, t) 0

)
, (40)

which satisfies H2
S = 1. This Hamiltonian is smoothly

defined for (k, t) ∈ T d × S1 and encodes the topological
nature of the periodically-driven system.

The symmetry constraints for the original time-
dependent Hamiltonian H(k, t) result in those for
HS(k, t). We consider time-reversal, particle-hole, and
chiral symmetries (denoted by T,C,Γ, respectively) ac-
cording to the ten-fold way classification of topological
insulators:

TH(k, t)T−1 = H(−k,−t), (41)

CH(k, t)C−1 = −H(−k, t), (42)

ΓH(k, t)Γ−1 = −H(k,−t), (43)

where T,C are antiunitary ({T, i} = {C, i} = 0) and
Γ is unitary ([Γ, i] = 0). We assume that T,C and Γ
commute with each other, if they are present, without
loss of generality. Note that the chiral symmetry changes
the sign of t (to −t) because it is given by TC when both
T and C exist. Accordingly, the time-evolution operator

satisfies

TUS(k, t)T−1 = T

N∏
n=0

[
1− i t

N
H

(
k,
T − t

2
+
nt

N

)]
T−1

=

N∏
n=0

[
1 + i

t

N
H

(
−k, −T + t

2
− nt

N

)]

=

N∏
n=0

[
1− i−t

N
H

(
−k, T − (−t)

2
+
−nt
N

)]
= US(−k,−t) = U†(−k, t), (44)

CUS(k, t)C−1 = C

N∏
n=0

[
1− i t

N
H

(
k,
T − t

2
+
nt

N

)]
C−1

=

N∏
n=0

[
1− i t

N
H

(
−k, T − t

2
+
nt

N

)]
= US(−k, t), (45)

ΓUS(k, t)Γ−1 = Γ

N∏
n=0

[
1− i t

N
H

(
k,
T − t

2
+
nt

N

)]
Γ−1

=

N∏
n=0

[
1 + i

t

N
H

(
k,
−T + t

2
− nt

N

)]

=

N∏
n=0

[
1 + i

t

N
H

(
k,
T − t

2
+

(N − n)t

N

)]
= U†S(k, t), (46)

These relations lead to symmetry constraints for HS
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given by

T ′HS(k, t)T ′−1 = HS(−k, t), T ′ = T ⊗ σx, (47)

C ′HS(k, t)C ′−1 = HS(−k, t), C ′ = C ⊗ σ0, (48)

Γ′HS(k, t)Γ′−1 = HS(k, t), Γ′ = Γ⊗ σx, (49)

where σi are Pauli matrices acting on two by two matrix
degrees of freedom of HS . In addition, HS satisfies an
inherent chiral symmetry as

Γ̃HS(k, t)Γ̃−1 = −HS(k, t), Γ̃ = 1⊗ σz. (50)

Classification of Floquet topological phases is obtained
by studying topological characters of HS(k, t). The effec-
tive Hamiltonian HS(k, t) can be classified in a similar
manner to equilibrium topological phases. Specifically,
we can map the classification problem of HS(k, t) to that
for d+1D TIs or line defects in dD systems as detailed in
Appendix A. The obtained classification table is shown
in Table I. It shows that Floquet topological phases share
the same topological classification with equilibrium topo-
logical phases. One remarkable feature is that topolog-
ical numbers can be defined for each energy gap in the
quasienergy spectrum. When PHS or chiral symmetry is
present, we focus on gaps including quasienergy 0 and π
which are particle-hole symmetric, hence, we can define
two topological numbers.

B. Classification with Clifford algebras

The above tenfold way classification of noninteracting
Floquet topological phases can be derived systematically
by using the Clifford algebras, which we rederive below.
This will then serve as a starting point for the incorpo-
ration of the time-glide and time-screw symmetries.

We again consider the effective Hamiltonians HS(k, t)
in Eq. (40) and topologically characterize them by con-
sidering representative Dirac Hamiltonians (which can be
achieved by a suitable deformation)12,25,29. In this ap-
proach, we study how many distinct sets of gapped Dirac
Hamiltonians exist that cannot be adiabatically deformed
with each other under the symmetry constraints. Specif-
ically, we study the Hamiltonian HS(k, t) in the Dirac
form written as

HS(k1, . . . , kd, t) = k1γ1 + . . .+ kdγd + tγt + γ0, (51)

where γi are Gamma matrices anticommuting with each
other, in particular, γ0 denotes the Dirac mass term. The
symmetry constraints are written as

{γi, Γ̃} = 0, [γi,Γ
′] = 0, (52)

{γi, T ′}i=1,...,d = 0, [γi, T
′]i=t,0 = 0, (53)

{γi, C ′}i=1,...,d = 0, [γi, C
′]i=t,0 = 0, (54)

and

{T ′, Γ̃} = [C ′, Γ̃] = {Γ′, Γ̃} = 0, (55)

with

{T ′, i} = {C ′, i} = [Γ′, i] = 0, [T ′, C ′] = 0. (56)

These symmetry constraints are concisely described in
terms of Clifford algebras in Table II. Clifford algebra is
an algebra generated by generators anticommuting with
each other. Specifically, complex Clifford algebra Clq is
generated over complex numbers C by q anticommuting
generators {ei} that satisfy

{ei, ej} = 2δij . (57)

These are essentially algebras formed by gamma ma-
trices. Real Clifford algebra Clp,q is generated over
real numbers R by p + q anticommuting generators
{e1, . . . , ep; ep+1, . . . , ep+q} that satisfy

{ei, ej} = 0, (i 6= j) (58)

e2
i =

{
−1 (1 ≤ i ≤ p)
+1 (p+ 1 ≤ i ≤ p+ q)

(59)

Real Clifford algebras are considered to be algebras
formed by gamma matrices in a similar way to complex
Clifford algebras, but they can also accommodate sym-
metry operators such as T and C that involves complex
conjugation.

Now the Clifford algebra is used to deduce topologi-
cal classification as follows. First, we fix the representa-
tion of kinetic terms γ1, . . . , γd and symmetry operators
T,C,Γ. In this case, distinct gapped Dirac Hamiltonians
have one-to-one correspondence to distinct Dirac mass
terms γ0; disconnected components of the space of possi-
ble Dirac mass terms correspond to distinct topological
phases13,25. This space of Dirac mass term can be ob-
tained from “the extension problem” of Clifford algebras
which is summarized in Table II. Namely, we fix repre-
sentations of the Clifford algebras Clq and Clp,q that is
generated by kinetic terms and symmetry operators, and
extends it by adding the generator involving the mass
term γ0. All possible extensions form a space V as

Clq → Clq+1 V = Cq, (60)

Clp,q → Clp,q+1 V = Rq−p, (61)

Clp,q → Clp+1,q V = Rp−q+2, (62)

where Cq and Rq are symmetric spaces that appear in
complex and real K-theory (for details, see Ref.25). Thus
the zeroth homotopy groups for spaces Cq, Rq associated
with extension problems give the Abelian groups that
characterize topological phases. The relevant extension
problems and spaces of Dirac masses are shown in Ta-
ble II. This reproduces the classification of Floquet topo-
logical phases in tenfold way as shown in Table I.

C. Classification of time glide symmetric Floquet
topological phases

In this section, we classify Floquet topological phases
with time glide symmetry by using Clifford algebra ap-
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TABLE II. Clifford algebras characterizing the Floquet topological phases. Clifford algebras consist of mass and kinetic
gamma matrices and symmetry operators. The space of possible Dirac masses V is obtained from the extension problem of the
Clifford algebra with respect to the mass term γ0. The zeroth homotopy group of V gives the Abelian group that characterizes
Floquet topological phases. In the last column, we show Abelian groups π0(V ) for the cases of zero dimensional systems. The
periodic structure with the dimensions follows from the shift in the space of Dirac masses V with d.

Class Clifford algebras Extension problem Space of masses V π0(V )d=0

A {γ0, γ1, . . . , γd, γt, Γ̃} Cld+2 → Cld+3 Cd Z
AIII {γ0, γ1, . . . , γd, γt, Γ̃, Γ̃Γ′} Cld+3 → Cld+4 Cd+1 0

AI {iγ0, iγt;T
′, iT ′, γ1, . . . , γd, Γ̃} Cl1,d+3 → Cl2,d+3 R−d Z

BDI {iγ0, iγt, Γ̃Γ′;T ′, iT ′, γ1, . . . , γd, Γ̃} Cl2,d+3 → Cl3,d+3 R1−d Z2

D {iγ0, iγt, iΓ̃;C′, iC′, γ1, . . . , γd} Cl2,d+2 → Cl3,d+2 R2−d Z2

DIII {iγ0, iγt, T
′, iT ′; γ1, . . . , γd, Γ̃, Γ̃Γ′} Cl3,d+2 → Cl4,d+2 R3−d 0

AII {iγ0, iγt, T
′, iT ′; γ1, . . . , γd, Γ̃} Cl3,d+1 → Cl4,d+1 R4−d Z

CII {iγ0, iγt, Γ̃Γ′, T ′, iT ′; γ1, . . . , γd, Γ̃} Cl4,d+1 → Cl5,d+1 R5−d 0

C {iγ0, iγt, iΓ̃, C
′, iC′; γ1, . . . , γd} Cl4,d → Cl5,d R6−d 0

CI {iγ0, iγt;T
′, iT ′γ1, . . . , γd, Γ̃, Γ̃Γ′} Cl1,d+4 → Cl2,d+4 R−1−d 0

proach. Recall the time glide in the x1-direction is rep-
resented by a unitary operator MT satisfying

MTH(k1, k2, . . . , kd, t)M
−1
T = H

(
−k1, k2, . . . , kd, t+

T

2

)
.

(63)

We assume M2
T = 1 without loss of generality. This con-

strains the symmetrized time-evolution operator U(k, t)
as

MTU(k, t)M−1
T = MTT exp

[
−i
∫ T+t

2

T−t
2

dt′H(k, t′)

]
M−1
T

= T exp

[
−i
∫ +t

2

−t
2

dt′H(R̂k, t′)

]

=

(
T exp

[
−i
∫ 2T−t

2

+t
2

dt′H(R̂k, t′)

])†
= U†(R̂k, T − t) (64)

with R̂(k1, k2, . . . , kd) = (−k1, k2, . . . , kd), where we used

T exp
[
−i
∫ 2T−t

2
−t
2

dt′H(R̂k, t′)
]

= 1 (triviality of the full

period evolution). Thus we have an additional symmetry
constraint onto the effective Hamiltonian HS(k, t) given
by

M ′THS(k1, k2, . . . , kd, t)M
′−1
T = HS(−k1, k2, . . . , kd,−t),
M ′T = MT ⊗ σx. (65)

Inclusion of the time glide symmetry modifies the Clif-
ford algebras characterizing Floquet topological phases
as summarized in Table III. First, Eq. (65) indi-
cates commutation/anticommutation relationships be-
tween the time glide operator M ′T and gamma matrices

as

[γ0,M
′
T ] = [γi,M

′
T ] = 0 (66)

for i = 2, . . . , d and

{γ1,M
′
T } = {γt,M ′T } = 0. (67)

In addition, M ′T anticommutes with the intrinsic chiral

operator Γ̃ = σz. Therefore the operator γ1γtΓ̃M
′
T anti-

commutes with the gamma matrices and Γ̃ and gives a
candidate of an additional generator in the Clifford alge-
bras. Indeed, in the case of class A, this is the additional
generator. Namely, in class A, the time glide symmetry
reserves one additional gamma matrix for the operator
γ1γtΓ̃M

′
T which is equivalent to raising the spatial dimen-

sion by one. Thus time-glide symmetric Floquet topolog-
ical phases in class A possess integer topological numbers
in odd dimensions, and are trivial otherwise. Next, the
form of the additional generator including MT in the Clif-
ford algebras depends on commutation/anticommutation
relation between the time glide operator M ′T and other
symmetry operators if present. Specifically, in the case
of class AIII, the relationship between Γ and MT is given
by

MTΓ = ηΓΓMT , (68)

where ηΓ = ±1 denotes commutation and anticommuta-
tion relations, respectively. In the case of ηΓ = +1, the
operator γ1γtΓ

′M ′T commute with every original genera-
tor. This indicates that the energy eigenstates of the ef-
fective Dirac Hamiltonian are simultaneously eigenstates
of γ1γtΓ

′M ′T , and hence, are decomposed into two sec-
tors with γ1γtΓ

′M ′T = ±1. Thus, time-glide symmetric
Floquet topological phases in class AIII with ηΓ = +1
are characterized by two topological numbers of class
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TABLE III. Clifford algebras characterizing the Floquet topological phases with time glide symmetry. Commuta-
tion/anticommutation relationships between time glide operator and generic symmetry operators are specified by ηΓ for
complex classes and (ηT , ηC) for real classes, where the entry 0 indicates the absence of such symmetry in the symmetry class.
Addition of time glide operator modifies the Clifford algebras as shown in the third column. (Here, γi is the short hand
notation for kinetic gamma matrices γ1, . . . , γd.) The extension problem of the Clifford algebra with respect to the mass term
γ0 gives the space of Dirac masses V shown in the last column.

Class ηΓ or (ηT , ηC) Clifford algebras Extension problem Space of masses V

A 0 {γ0, γi, γt, Γ̃, γ1γtΓ̃M
′
T } Cld+3 → Cld+4 Cd+1

AIII + {γ0, γi, γt, Γ̃, Γ̃Γ′} ⊗ {γ1γtΓ
′M ′T } Cld+3 ⊗ Cl1 → Cld+4 ⊗ Cl1 Cd+1 × Cd+1

AIII − {γ0, γi, γt, Γ̃, Γ̃Γ′, γ1γtΓ̃M
′
T } Cld+4 → Cld+5 Cd

AI (+, 0) {iγ0, iγt, iγ1γtΓ̃M
′
T ;T ′, iT ′, γi, Γ̃} Cl2,d+3 → Cl3,d+3 R1−d

AI (−, 0) {iγ0, iγt;T
′, iT ′, γi, Γ̃, iγ1γtΓ̃M

′
T } Cl1,d+4 → Cl2,d+4 R−1−d

BDI (+,+) {iγ0, iγt, Γ̃Γ′;T ′, iT ′, γi, Γ̃} ⊗ {; iγ1γtΓ
′M ′T } Cl2,d+3 ⊗ Cl0,1 → Cl3,d+3 ⊗ Cl0,1 R1−d ×R1−d

BDI (+,−) {iγ0, iγt, Γ̃Γ′, iγ1γtΓ̃M
′
T ;T ′, iT ′, γi, Γ̃} Cl3,d+3 → Cl4,d+3 R2−d

BDI (−,+) {iγ0, iγt, Γ̃Γ′;T ′, iT ′, γi, Γ̃, γ1γtΓ
′M ′T } Cl2,d+4 → Cl3,d+4 R−d

BDI (−,−) {iγ0, iγt, Γ̃Γ′;T ′, iT ′, γi, Γ̃} ⊗ {γ1γtΓ
′M ′T ; } Cl2,d+3 ⊗ Cl1,0 → Cl3,d+3 ⊗ Cl1,0 C1+d

D (0,+) {iγ0, iγt, iΓ̃;C′, iC′, γi, γ1γtΓ̃M
′
T } Cl2,d+3 → Cl3,d+3 R1−d

D (0,−) {iγ0, iγt, iΓ̃, iγ1γtΓ̃M
′
T ;C′, iC′, γi} Cl3,d+2 → Cl4,d+2 R3−d

DIII (+,+) {iγ0, iγt, T
′, iT ′; γi, Γ̃, Γ̃Γ′} ⊗ {iγ1γtΓ

′M ′T ; } Cl3,d+2 ⊗ Cl1,0 → Cl4,d+2 ⊗ Cl1,0 C1+d

DIII (+,−) {iγ0, iγt, T
′, iT ′, iγ1γtΓ̃M

′
T ; γi, Γ̃, Γ̃Γ′} Cl4,d+2 → Cl5,d+2 R4−d

DIII (−,+) {iγ0, iγt, T
′, iT ′; γi, Γ̃, Γ̃Γ′, γ1γtΓ

′M ′T } Cl3,d+3 → Cl4,d+3 R2−d

DIII (−,−) {iγ0, iγt, T
′, iT ′; γi, Γ̃, Γ̃Γ′} ⊗ {; γ1γtΓ

′M ′T } Cl3,d+2 ⊗ Cl0,1 → Cl4,d+2 ⊗ Cl0,1 R3−d ×R3−d

AII (+, 0) {iγ0, iγt, T
′, iT ′, iγ1γtΓ̃M

′
T ; γi, Γ̃} Cl4,d+1 → Cl5,d+1 R5−d

AII (−, 0) {iγ0, iγt, T
′, iT ′; γi, Γ̃, iγ1γtΓ̃M

′
T } Cl3,d+2 → Cl4,d+2 R3−d

CII (+,+) {iγ0, iγt, T
′, iT ′, Γ̃Γ′; γi, Γ̃} ⊗ {; iγ1γtΓ

′M ′T } Cl4,d+1 ⊗ Cl0,1 → Cl5,d+1 ⊗ Cl0,1 R5−d ×R5−d

CII (+,−) {iγ0, iγt, T
′, iT ′, Γ̃Γ′, iγ1γtΓ̃M

′
T ; γi, Γ̃} Cl5,d+1 → Cl6,d+1 R6−d

CII (−,+) {iγ0, iγt, T
′, iT ′, Γ̃Γ′; γi, Γ̃, γ1γtΓ

′M ′T } Cl4,d+2 → Cl5,d+2 R4−d

CII (−,−) {iγ0, iγt, T
′, iT ′, Γ̃Γ′; γi, Γ̃} ⊗ {γ1γtΓ

′M ′T ; } Cl4,d+1 ⊗ Cl1,0 → Cl5,d+1 ⊗ Cl1,0 C1+d

C (0,+) {iγ0, iγt, C
′, iC′, iΓ̃; γi, γ1γtΓ̃M

′
T } Cl4,d+1 → Cl5,d+1 R5−d

C (0,−) {iγ0, iγt, C
′, iC′, iΓ̃, iγ1γtΓ̃M

′
T ; γi} Cl5,d → Cl6,d R7−d

CI (+,+) {iγ0, iγt; γi, T
′, iT ′, Γ̃, Γ̃Γ′} ⊗ {iγ1γtΓ

′M ′T ; } Cl1,d+4 ⊗ Cl1,0 → Cl2,d+4 ⊗ Cl1,0 C1+d

CI (+,−) {iγ0, iγt, iγ1γtΓ̃M
′
T ; γi, T

′, iT ′, Γ̃, Γ̃Γ′} Cl2,d+4 → Cl3,d+4 R−d

CI (−,+) {iγ0, iγt; γi, T
′, iT ′, Γ̃, Γ̃Γ′, γ1γtΓ

′M ′T } Cl1,d+5 → Cl2,d+5 R−2−d

CI (−,−) {iγ0, iγt; γi, T
′, iT ′, Γ̃, Γ̃Γ′} ⊗ {; γ1γtΓ

′M ′T } Cl1,d+4 ⊗ Cl0,1 → Cl2,d+4 ⊗ Cl0,1 R−1−d ×R−1−d

AIII for each sector. In the case of ηΓ = −1, the op-
erator γ1γtΓ̃M

′
T anticommute with every original gener-

ator. Thus the time glide symmetry requires one addi-
tional gamma matrix for γ1γtΓ̃M

′
T which is equivalent

to raising the spatial dimension by one for original Flo-
quet topological phases in class AIII. Namely, time-glide
symmetric Floquet topological phases in class AIII with
ηΓ = −1 possess integer and trivial topological numbers
in even and odd spatial dimensions, respectively. We note
that this classification theory with Clifford algebras is in-
deed consistent with discussions in Sec. II; the Clifford
algebra analysis gives integer topological numbers for 2D
class AIII (ηΓ = −1) and 3D class A systems with time
glide symmetry as expected from explicit constructions
of integer topological numbers presented in Sec. II.

In a similar way, we can classify Floquet topologi-

cal phases with time glide symmetry in the real classes.
The forms of relevant Clifford algebras are determined
by commutation/anticommutation relationships between
T,C and MT described by (ηT , ηC) as

MTT = ηTTMT , MCC = ηCCMC . (69)

In this case, depending on the combination (ηT , ηC), ei-

ther one of γ1γtΓ̃M
′
T , iγ1γtΓ̃M

′
T , γ1γtΓ

′M ′T , iγ1γtΓ
′M ′T

commute or anticommute with all the original genera-
tors and gives the additional generator of the Clifford
algebras. The explicit forms of the Clifford algebras are
summarized in Table III.

Finally, we present the result of classification of Flo-
quet topological phases with time glide symmetry in Ta-
ble IV. This is obtained by taking zeroth homotopy
group of the space of Dirac masses V shown in Table III.
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TABLE IV. Classification of Floquet topological phases with time glide symmetry. The time glide operator MT is characterized
by commutation/anticommutation relations with other symmetry operators as MTT = ηTTMT , MTC = ηCCMT , and MT Γ =
ηΓΓMT .

ηT , ηC , ηΓ Class Cq or Rq d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

- A Cd+3 0 Z 0 Z 0 Z 0 Z
ηΓ = + AIII Cd+3 × Cd+3 0 Z2 0 Z2 0 Z2 0 Z2

ηΓ = − AIII Cd+4 Z 0 Z 0 Z 0 Z 0

ηT = + (AI,AII)

ηC = − (D,C)

(ηT , ηC) = (+,−) (BDI,DIII,CII,CI)

AI R1−d Z2 Z 0 0 0 Z 0 Z2

BDI R2−d Z2 Z2 Z 0 0 0 Z 0

D R3−d 0 Z2 Z2 Z 0 0 0 Z
DIII R4−d Z 0 Z2 Z2 Z 0 0 0

AII R5−d 0 Z 0 Z2 Z2 Z 0 0

CII R6−d 0 0 Z 0 Z2 Z2 Z 0

C R7−d 0 0 0 Z 0 Z2 Z2 Z
CI R−d Z 0 0 0 Z 0 Z2 Z2

ηT = − (AI,AII)

ηC = + (D,C)

(ηT , ηC) = (−,+) (BDI,DIII,CII,CI)

AI R−1−d 0 0 0 Z 0 Z2 Z2 Z
BDI R−d Z 0 0 0 Z 0 Z2 Z2

D R1−d Z2 Z 0 0 0 Z 0 Z2

DIII R2−d Z2 Z2 Z 0 0 0 Z 0

AII R3−d 0 Z2 Z2 Z 0 0 0 Z
CII R4−d Z 0 Z2 Z2 Z 0 0 0

C R5−d 0 Z 0 Z2 Z2 Z 0 0

CI R6−d 0 0 Z 0 Z2 Z2 Z 0

(ηT , ηC) = (+,+) BDI R1−d ×R1−d Z2
2 Z2 0 0 0 Z2 0 Z2

2

(ηT , ηC) = (−,−) DIII R3−d ×R3−d 0 Z2
2 Z2

2 Z2 0 0 0 Z2

(ηT , ηC) = (+,+) CII R5−d ×R5−d 0 Z2 0 Z2
2 Z2

2 Z2 0 0

(ηT , ηC) = (−,−) CI R7−d ×R7−d 0 0 0 Z2 0 Z2
2 Z2

2 Z2

(ηT , ηC) = (−,−) BDI, CII C1−d × C1−d 0 Z2 0 Z2 0 Z2 0 Z2

(ηT , ηC) = (+,+) DIII, CI C1−d × C1−d 0 Z2 0 Z2 0 Z2 0 Z2

The classification table shows a periodic structure with
respect to the spatial dimensions. There are four types of
changes from original classification table for ten fold way.
i.e., (i) shift of the spatial dimensions by +1, (ii) shift of
the spatial dimension by −1, (iii) doubling of topologi-
cal numbers due to the block diagonalization, and (iv)
reduction of real symmetry classes to complex symmetry
classes due to the block diagonalization. These phenom-
ena are also found in classification theory of topological
crystalline insulators (TCIs) in the equilibrium, and in-
deed the obtained classification table for time glide sym-
metry resembles that for TCIs24–26. However, the classi-
fication result for time glide symmetric Floquet topolog-
ical phases is different from that for TCIs. For example,
if we look at class AIII, the doubling of topological num-
ber and the shift of the spatial dimension take place for
ηΓ = +1 and ηΓ = −1, respectively, which are opposite
for the classification of TCIs. This suggests that the time
glide symmetric Floquet topological phases are intrinsi-
cally nonequilibrium topological phases and are not adi-
abatically connected to equilibrium topological phases.

D. Classification of time screw symmetric Floquet
topological phases

In a similar manner to the time glide symmetry, we can
define “time screw symmetry” which is a combination of
the C2 rotation and the half period time translation. In
this section, we classify time screw symmetric Floquet
topological phases by using Clifford algebras. The clas-
sification is performed in a similar way to that for time
glide symmetry.

The time screw symmetry in the (x1, x2) plane is rep-
resented by a unitary operator C2T that satisfies

C2TH(k1, k2, k3, . . . , kd, t)C
−1
2T

= H

(
−k1,−k2, k3, . . . , kd, t+

T

2

)
. (70)

Accordingly, the time screw symmetry constrains the
symmetrized time-evolution operator U(k, t) as

C2TU(k1, k2, k3, . . . , kd, t)C
−1
2T

= U†(−k1,−k2, k3, . . . , kd, T − t), (71)

and hence, the effective Hamiltonian HS(k, t) made of
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TABLE V. Clifford algebras characterizing the Floquet topological phases with time screw symmetry. Commuta-
tion/anticommutation relationships between time screw operator and generic symmetry operators are specified by ηΓ for
complex classes and (ηT , ηC) for real classes, where the entry 0 indicates the absence of such symmetry in the symmetry class.
Addition of time screw operator modifies the Clifford algebras as shown in the third column. (Here, γi is the short hand
notation for kinetic gamma matrices γ1, . . . , γd.) The extension problem of the Clifford algebra with respect to the mass term
γ0 gives the space of Dirac masses V shown in the last column.

Class ηΓ or (ηT , ηC) Clifford algebras Extension problem Space of masses V

A 0 {γ0, γi, γt, Γ̃} ⊗ {γ1γ2γtΓ̃C
′
2T } Cld+2 ⊗ Cl1 → Cld+3 ⊗ Cl1 Cd × Cd

AIII + {γ0, γi, γt, Γ̃, Γ̃Γ′, γ1γ2γtΓ
′C′2T } Cld+4 → Cld+5 Cd

AIII − {γ0, γi, γt, Γ̃, Γ̃Γ′} ⊗ {γ1γ2γtΓ̃C
′
2T } Cld+3 ⊗ Cl1 → Cld+4 ⊗ Cl1 Cd+1 × Cd+1

AI (+, 0) {iγ0, iγt;T
′, iT ′, γi, Γ̃} ⊗ {iγ1γ2γtΓ̃C

′
2T ; } Cl1,d+3 ⊗ Cl1,0 → Cl2,d+3 ⊗ Cl1,0 Cd

AI (−, 0) {iγ0, iγt;T
′, iT ′, γi, Γ̃} ⊗ {; γ1γ2γtΓ̃C

′
2T } Cl1,d+3 ⊗ Cl0,1 → Cl2,d+3 ⊗ Cl0,1 R−d ×R−d

BDI (+,+) {iγ0, iγt, Γ̃Γ′, iγ1γ2γtΓ
′C′2T ;T ′, iT ′, γi, Γ̃} Cl3,d+3 → Cl4,d+3 R2−d

BDI (+,−) {iγ0, iγt, Γ̃Γ′;T ′, iT ′, γi, Γ̃} ⊗ {iγ1γ2γtΓ̃C
′
2T ; } Cl2,d+3 ⊗ Cl1,0 → Cl3,d+3 ⊗ Cl1,0 C1+d

BDI (−,+) {iγ0, iγt, Γ̃Γ′;T ′, iT ′, γi, Γ̃} ⊗ {γ1γ2γtΓ̃C
′
2T ; } Cl2,d+3 ⊗ Cl0,1 → Cl3,d+3 ⊗ Cl0,1 R1−d ×R1−d

BDI (−,−) {iγ0, iγt, Γ̃Γ′;T ′, iT ′, γi, Γ̃, γ1γ2γtΓ
′C′2T } Cl2,d+4 → Cl3,d+4 R−d

D (0,+) {iγ0, iγt, iΓ̃;C′, iC′, γi} ⊗ {; γ1γ2γtΓ̃C
′
2T } Cl2,d+2 ⊗ Cl0,1 → Cl3,d+2 ⊗ Cl0,1 R2−d ×R2−d

D (0,−) {iγ0, iγt, iΓ̃;C′, iC′, γi} ⊗ {iγ1γ2γtΓ̃C
′
2T ; } Cl2,d+2 ⊗ Cl1,0 → Cl3,d+2 ⊗ Cl1,0 Cd

DIII (+,+) {iγ0, iγt, T
′, iT ′; γi, Γ̃, Γ̃Γ′, iγ1γ2γtΓ

′C′2T } Cl3,d+3 → Cl4,d+3 R2−d

DIII (+,−) {iγ0, iγt, T
′, iT ′; γi, Γ̃, Γ̃Γ′} ⊗ {iγ1γ2γtΓ̃C

′
2T ; } Cl3,d+2 ⊗ Cl1,0 → Cl4,d+2 ⊗ Cl1,0 C1+d

DIII (−,+) {iγ0, iγt, T
′, iT ′; γi, Γ̃, Γ̃Γ′} ⊗ {γ1γ2γtΓ̃C

′
2T ; } Cl3,d+2 ⊗ Cl0,1 → Cl4,d+2 ⊗ Cl0,1 R3−d ×R3−d

DIII (−,−) {iγ0, iγt, T
′, iT ′, γ1γ2γtΓ

′C′2T ; γi, Γ̃, Γ̃Γ′} Cl4,d+2 → Cl5,d+2 R4−d

AII (+, 0) {iγ0, iγt, T
′, iT ′; γi, Γ̃} ⊗ {iγ1γ2γtΓ̃C

′
2T ; } Cl3,d+1 ⊗ Cl1,0 → Cl4,d+1 ⊗ Cl1,0 Cd

AII (−, 0) {iγ0, iγt, T
′, iT ′; γi, Γ̃} ⊗ {; γ1γ2γtΓ̃C

′
2T } Cl3,d+1 ⊗ Cl0,1 → Cl4,d+1 ⊗ Cl0,1 R4−d ×R4−d

CII (+,+) {iγ0, iγt, T
′, iT ′, Γ̃Γ′, iγ1γ2γtΓ

′C′2T ; γi, Γ̃} Cl5,d+1 → Cl6,d+1 R6−d

CII (+,−) {iγ0, iγt, T
′, iT ′, Γ̃Γ′; γi, Γ̃} ⊗ {iγ1γ2γtΓ̃C

′
2T ; } Cl4,d+1 ⊗ Cl1,0 → Cl5,d+1 ⊗ Cl1,0 C1+d

CII (−,+) {iγ0, iγt, T
′, iT ′, Γ̃Γ′; γi, Γ̃} ⊗ {γ1γ2γtΓ̃C

′
2T ; } Cl4,d+1 ⊗ Cl0,1 → Cl5,d+1 ⊗ Cl0,1 R5−d ×R5−d

CII (−,−) {iγ0, iγt, T
′, iT ′, Γ̃Γ′; γi, Γ̃, γ1γ2γtΓ

′C′2T } Cl4,d+2 → Cl5,d+2 R4−d

C (0,+) {iγ0, iγt, C
′, iC′, iΓ̃; γi} ⊗ {; γ1γ2γtΓ̃C

′
2T } Cl4,d ⊗ Cl0,1 → Cl5,d ⊗ Cl0,1 R6−d ×R6−d

C (0,−) {iγ0, iγt, C
′, iC′, iΓ̃; γi} ⊗ {iγ1γ2γtΓ̃C

′
2T ; } Cl4,d ⊗ Cl1,0 → Cl5,d ⊗ Cl1,0 Cd

CI (+,+) {iγ0, iγt; γi, T
′, iT ′, Γ̃, Γ̃Γ′, iγ1γ2γtΓ

′C′2T } Cl1,d+5 → Cl2,d+5 R−2−d

CI (+,−) {iγ0, iγt; γi, T
′, iT ′, Γ̃, Γ̃Γ′} ⊗ {iγ1γ2γtΓ̃C

′
2T ; } Cl1,d+4 ⊗ Cl1,0 → Cl2,d+4 ⊗ Cl1,0 C1+d

CI (−,+) {iγ0, iγt; γi, T
′, iT ′, Γ̃, Γ̃Γ′} ⊗ {γ1γ2γtΓ̃C

′
2T ; } Cl1,d+4 ⊗ Cl0,1 → Cl2,d+4 ⊗ Cl0,1 R−1−d ×R−1−d

CI (−,−) {iγ0, iγt, γ1γ2γtΓ
′C′2T ; γi, T

′, iT ′, Γ̃, Γ̃Γ′} Cl2,d+4 → Cl3,d+4 R−d

the time evolution operator in Eq. (40) is constrained as

C ′2THS(k1, k2, k3, . . . , kd, t)(C
′
2T )−1

= HS(−k1,−k2, k3, . . . , kd,−t), (72)

with

C ′2T = C2T ⊗ σx. (73)

We obtain Clifford algebras associated with time screw
symmetric Floquet topological phases by assuming that
the effective Hamiltonian HS has a Dirac form. In this
case, Eq. (72) gives commutation/anticommutation rela-
tionships between the time screw operator and gamma
matrices as

[γ0, C
′
2T ] = [γi, C

′
2T ] = 0 (74)

for i = 3, . . . , d, and

{γ1, C
′
2T } = {γ2, C

′
2T } = {γt, C ′2T } = 0. (75)

In addition, C ′2T anticommutes with the intrinsic chiral

operator Γ̃ = σz. First, the Clifford algebras for complex
symmetry classes are obtained as follows. In the sym-
metry class A, the operator γ1γ2γtΓ̃C

′
2T commutes with

every original generators of the Clifford algebra. Thus
time screw symmetry doubles the topological number of
Floquet topological phases in class A. In the symmetry
class AIII, we have two cases

C2TΓ = ηΓΓC2T , (76)

with ηΓ = ±1. In the case of ηΓ = +1, the operator
γ1γ2γtΓ

′C ′2T is the additional generator that anticom-
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TABLE VI. Classification of Floquet topological phases with time screw symmetry. The time screw operator MT is characterized
by commutation/anticommutation relations with other symmetry operators as C2TT = ηTTC2T , C2TC = ηCCC2T , and
C2T Γ = ηΓΓC2T .

ηT , ηC , ηΓ Class Cq or Rq d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

- A Cd+2 × Cd+2 Z2 0 Z2 0 Z2 0 Z2 0

ηΓ = + AIII Cd+4 Z 0 Z 0 Z 0 Z 0

ηΓ = − AIII Cd+3 × Cd+3 0 Z2 0 Z2 0 Z2 0 Z2

ηT = + (AI,AII), ηC = − (D,C)

(ηT , ηC) = (+,−) (BDI,DIII,CII,CI)

AI, AII, D, C Cd × Cd Z2 0 Z2 0 Z2 0 Z2 0

BDI, DIII, CII, CI Cd+1 × Cd+1 0 Z2 0 Z2 0 Z2 0 Z2

ηT = − (AI,AII)

ηC = + (D,C)

(ηT , ηC) = (−,+) (BDI,DIII,CII,CI)

AI R−d ×R−d Z2 0 0 0 Z2 0 Z2
2 Z2

2

BDI R1−d ×R1−d Z2
2 Z2 0 0 0 Z2 0 Z2

2

D R2−d ×R2−d Z2
2 Z2

2 Z2 0 0 0 Z2 0

DIII R3−d ×R3−d 0 Z2
2 Z2

2 Z2 0 0 0 Z2

AII R4−d ×R4−d Z2 0 Z2
2 Z2

2 Z2 0 0 0

CII R5−d ×R5−d 0 Z2 0 Z2
2 Z2

2 Z2 0 0

C R6−d ×R6−d 0 0 Z2 0 Z2
2 Z2

2 Z2 0

CI R7−d ×R7−d 0 0 0 Z2 0 Z2
2 Z2

2 Z2

(ηT , ηC) = (+,+) BDI R2−d Z2 Z2 Z 0 0 0 Z 0

(ηT , ηC) = (−,−) DIII R4−d Z 0 Z2 Z2 Z 0 0 0

(ηT , ηC) = (+,+) CII R6−d 0 0 Z 0 Z2 Z2 Z 0

(ηT , ηC) = (−,−) CI R−d Z 0 0 0 Z 0 Z2 Z2

(ηT , ηC) = (−,−) BDI R−d Z 0 0 0 Z 0 Z2 Z2

(ηT , ηC) = (+,+) DIII R2−d Z2 Z2 Z 0 0 0 Z 0

(ηT , ηC) = (−,−) CII R4−d Z 0 Z2 Z2 Z 0 0 0

(ηT , ηC) = (+,+) CI R6−d 0 0 Z 0 Z2 Z2 Z 0

mutes with every generators and effectively shifts the
dimension by 1. In the case of ηΓ = −1, the oper-
ator γ1γ2γtΓ̃C

′
2T is the additional generator that com-

mutes with every generators and doubles the topological
number due to the block diagonalization with respect to
γ1γ2γtΓ̃C

′
2T . Second, the real symmetry classes are char-

acterized by time reversal symmetry and particle hole
symmetry, and their relationships with C2T govern time
screw symmetric Floquet topological phases. The com-
mutation/anticommutation relationships between C2T

and generic symmetry operators T,C are specified by
(ηT , ηC) as

C2TT = ηTTC2T , C2TC = ηCCC2T . (77)

The additional generator for the Clifford algebra that
is made from the time screw operator is given by ei-
ther one of γ1γ2γtΓ̃C

′
2T , iγ1γ2γtΓ̃C

′
2T , γ1γ2γtΓ

′C ′2T , and
iγ1γ2γtΓ

′C ′2T which commutes or anticommutes with all
the original generators. The explicit forms of the Clifford
algebras associated with time screw symmetric Floquet
topological phases are listed in Table V.

Finally, the classification of Floquet topological phases
with time screw symmetry is summarized in Table VI,
which is obtained by taking zeroth homotopy groups of
the space of Dirac masses V shown in Table V. The
classification table again shows a periodic structure with
respect to the spatial dimension d. Real symmetry classes
having either T or C (classes AI,D,AII,C) show either
reduction to complex classes or doubling of topological

numbers due to the block diagonalization with respect to
the additional generator involving C2T . Real symmetry
classes having both T and C (classes BDI, DIII, CII, CI)
exhibit four types of changes from the original ten fold
way classification in a similar manner to the case of time
glide symmetry.

IV. DISCUSSIONS

We have shown that the time glide symmetry, which
is an intrinsically dynamical symmetry, can host a novel
class of Floquet topological phases. The lattice models
with time glide symmetry that we presented can be engi-
neered in periodically driven systems such as cold atoms.
Namely, the 2D model consisting of a stack of driven Su-
Schrieffer-Heeger model would be realizable by design-
ing superlattice potential that shows alternating hopping
amplitude and by employing synthetic gauge fields for
imaginary hoppings. The 3D model consisting of a stack
of Haldane model on the honeycomb lattice may also be-
come feasible in a near future because the Haldane model
has been recently realized in cold atoms by shaking the
lattice potential30.

In equilibrium systems, topological crystalline insula-
tors (TCIs) have been studied actively as representa-
tive topological materials where gapless surface states are
protected by spatial symmetry24–26,31,32. Since static re-
flection symmetry also serves as time-glide symmetry in
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Floquet systems, a natural question would be whether
the time-glide symmetric Floquet topological phases are
different topological phases from TCIs or Floquet ver-
sions of them. In the following, we show that these two
are indeed distinct sets of topological phases. (i) First,
the 2D class AIII model for a time-glide symmetric Flo-
quet topological phase presented in Sec. II A cannot be
a TCI. In order to have nontrivial time glide Floquet
phase, we need anticommutation relation of chiral sym-
metry and time glide ({Γ,MT } = 0). This is in con-
trast to topological crystalline insulators in 2D class AIII
which require commutation relation, [Γ, R] = 0 (since
we need to define 1D winding number with Γ in each
subspace of R = ±1). (ii) In general, the classifica-
tion of time-glide Floquet topological phases in Table IV
shows that they are different from TCIs in the cases
with particle hole symmetry C (D and C) or with chiral
symmetry Γ (AIII, BDI, DIII, CII, CI). In these cases,
commutation/anticommutation between C and MT /R,
or Γ and MT /R, are opposite in obtaining nontrivial
phases. (For comparison, the classification table for TCIs
are found in Ref.25 as Table VI.) (iii) Classes A, AI,
AII do not show difference in the classification for time-
glide Floquet topological phases and TCIs. However, at
least, ones in 3D class A are distinct from TCIs, as dis-
cussed in Sec. II C. Namely, the way topological num-
bers are defined are different. In characterizing time-
glide Floquet topological phases, we use half-period uni-
tary U(0 → T/2) as a function of kx and ky and see
wrapping of a special point as shown in Fig. 5. On the
other hand, characterization of a Floquet version of TCI
involves U(kx, ky, t) as a function of three parameters
which belongs to a nontrivial element of π3(U(N)) = Z.
Since we can consider a case where half-period unitary is
nontrivial but full-period unitary is trivial in π3(U(N)),
time glide Floquet topological phases and TCIs are gener-
ally different in 3D class A. These considerations indicate
that time-glide Floquet topological phases and TCIs are
distinct sets of topological phases in general.

While we focused on time-glide symmetry MT and
two-fold time-screw symmetry C2T in this paper, we
can consider more general time-nonsymmorphic symme-
tries and Floquet topological phases protected by them.
For example, we can consider time screw symmetry hav-
ing C3 symmetry which does not square to 1. We ex-
pect that such non order-two symmetries also support
some nontrivial Floquet topological phases. However,
these general nonsymmorphic space-time symmetry can-
not be directly incorporated into the Clifford-algebra ap-
proach, which is naturally suited of order-two symme-
tries. Thus Floquet topological phases protected by gen-
eral time-nonsymmorphic symmetries are left for future
studies. Since twisted equivariant K-theory is proposed
to be a framework for classifying equilibrium topological
phases with crystalline symmetries33, twisted equivari-
ant K-theory may be applicable to Floquet topological
phases.

We studied effects of dynamical symmetry on crystals

under periodic driving. Recently, it has been proposed in
Ref.34 that even crystal structure itself can be extended
to a dynamical space-time pattern of atoms, which is
called “choreographic crystals”. In choreographic crys-
tals, atoms move in a symmetric way with respect to
each other within a period, like orbiting satellites. These
space-time patterns of atoms were studied by extending
group theory to dynamical motions. It would be an in-
teresting future problem to classify these choreographic
crystals and also study topological phases realized by
electrons sitting on these space-time patterns.

Periodic driving can cause catastrophic heating of the
topological phases in a long time when interactions are
present in the system. Therefore, we will primarily be
concerned with systems that are well approximated as
non-interacting and clean. In fact, even in the pres-
ence of relatively weak interactions, heating may only set
in at extremely long times35, allowing for a broad pre-
thermalization window. This heating effect can be en-
tirely avoided when the bulk is many-body localized36–38.
Although including disorder usually breaks reflection
symmetry and it is not so natural to combine time-
glide symmetry with disorder, it would still be useful
to consider effects of disorder that statistically preserves
time-glide symmetry, having in mind that some disor-
dered TCIs that preserves reflection symmetry on av-
erage support stable gapless surface states39,40. It was
shown that systems with Abelian symmetry group can
be localized by suitable local randomness while those
with non-Abelian symmetry cannot be localized41. In
our case, the criterion will be whether the reflection sym-
metric subsystem can be localized or not when we in-
troduce reflection symmetric random potential. At the
reflection symmetric subsystem, time glide MT reduces
to global Z2 symmetry, where we can apply the condi-
tion in Ref.41. Topological phases in 2D class AIII in
Sec. II A requires {Γ,MT } = 0 and cannot be localized
while that in 3D class A in Sec. II C can be localized.
In any case, these Floquet topological phases are sta-
ble under well-controlled systems when interactions are
absent. Furthermore, along this line, we may consider
global Z2 symmetry with half-period time translation as
a future problem, because such global symmetry makes
it easier to localize the bulk. For example, nontrivial en-
tries in tenfold way with such symmetry commuting with
other on-site symmetries host nontrivial Floquet topolog-
ical phases.

Finally, we note on effects of interactions onto time
glide symmetric Floquet topological phases. Recently,
interacting Floquet topological phases have been ac-
tively studied15,17,18. In particular, Floquet topological
phases show a breakdown of noninteracting topological
phases with interactions which is different from equilib-
rium cases. This arises from the presence of Floquet evo-
lution operator acting like an effective symmetry opera-
tion18. Therefore, it will be interesting to consider such
interacting Floquet topological phases with time glide
symmetry.
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Appendix A: Ten-fold way classification of Floquet
topological phases

We review tenfold way classification of noninteracting
Floquet topological phases obtained in Ref10. We con-
sider topological characterization of a time-evolution op-
erator US(k, t). Instead of studying US(k, t) itself, we
study the effective Hamiltonian HS in Eq. (40) defined
with US(k, t), because we can apply classification proce-
dure for equilibrium topological phases. First we study
complex symmetry classes (class A and class AIII).

1. class A: The Hamiltonian HS obeys the inherent
chiral symmetry Γ̃. The Floquet topological phase
is mapped to a TI in (d+ 1)D class AIII.

2. class AIII: The Hamiltonian HS obeys the inherent
chiral symmetry Γ̃ and a unitary symmetry Γ′. If
there is a commuting unitary symmetry, the ten-
fold way classification should be performed for the
Hamiltonian after block diagonalization. The block
diagonalized Hamiltonian with respect to Γ′ = ±1
has no symmetry due to {Γ′, Γ̃}. The Floquet topo-
logical phase is mapped to a TI in (d + 1)D class
A.

Next we study real symmetry classes with either T or
C (class AI, class AII, class D and class C). Since these
TRS and PHS acts on t in a trivial way, the Hamiltonian
HS(k, t) is interpreted as one-parameter family (param-
eterized by t) of d-dimensional Hamiltonians character-
izing a topological defect29.

1. class AI: The Hamiltonian HS obeys the inherent
chiral symmetry Γ̃ and the TRS T ′ squaring to +1.
Combining these two leads to an effective PHS Γ̃T ′

squaring to −T 2 = −1. Thus the Floquet topolog-
ical phase is mapped to a 1D topological defect in
a dD class CI system which is further mapped to
d− 1D TI in class CI.

2. class AII: The Hamiltonian HS obeys the inherent
chiral symmetry Γ̃ and the TRS T ′ squaring to −1.
Combining these two leads to an effective PHS Γ̃T ′

squaring to −T 2 = +1. Thus the Floquet topolog-
ical phase is mapped to a 1D topological defect in
a dD class DIII system which is further mapped to
d− 1D TI in class DIII.

3. class D: The Hamiltonian HS obeys the inherent
chiral symmetry Γ̃ and the TRS C ′ squaring to +1.

Combining these two leads to an effective PHS Γ̃C ′

squaring to C2 = +1. Thus the Floquet topological
phase is mapped to a 1D topological defect in a dD
class BDI system which is further mapped to d−1D
TI in class BDI.

4. class C: The Hamiltonian HS obeys the inherent
chiral symmetry Γ̃ and the TRS T ′ squaring to −1.
Combining these two leads to an effective PHS Γ̃T ′

squaring to −T 2 = +1. Thus the Floquet topolog-
ical phase is mapped to a 1D topological defect in
a dD class DIII system which is further mapped to
d− 1D TI in class DIII.

Finally we study real symmetry classes with both T
and C (class BDI, class DIII, class CII and class CI).
Since the chiral symmetry Γ = TC results in a commut-
ing unitary symmetry Γ′ for HS , we focus on the block di-
agonalized Hamiltonian and remaining symmetries to de-
duce the classification. The inherent chiral symmetry Γ̃ is
no longer a symmetry for the block diagonalized Hamil-
tonian because {Γ′, Γ̃} = 0. When Γ2 = (TC)2 = +1 (in
class BDI and class CII), T ′ and C ′ remain as symmetries
for the block diagonalized Hamiltonian with Γ′ = ±1.
Since T ′ and C ′ are equivalent after block diagonaliza-
tion because T ′ = Γ̃C ′, only one symmetry, say T ′, re-
mains as a symmetry after block diagonalization. When
Γ2 = (TC)2 = −1 (in class BDI and class CII), T ′ and
C ′ are not symmetries for the block diagonalized Hamil-
tonian with Γ′ = ±i (complex conjugation in T ′ and C ′

exchanges two sectors Γ′ = ±i). Instead, Γ̃T ′ remains as
a PHS for for the block diagonalized Hamiltonian with
Γ′ = ±1.

1. class BDI: The block diagonalized Hamiltonian HS

obeys the TRS T ′ squaring to +1. Thus the Flo-
quet topological phase is mapped to a 1D topolog-
ical defect in a dD class AI system which is further
mapped to d− 1D TI in class AI.

2. class DIII: The block diagonalized Hamiltonian HS

obeys the PHS Γ̃T ′ squaring to −T 2 = +1. Thus
the Floquet topological phase is mapped to a 1D
topological defect in a dD class D system which is
further mapped to d− 1D TI in class D.

3. class CII: The block diagonalized Hamiltonian HS

obeys the TRS T ′ squaring to −1. Thus the Flo-
quet topological phase is mapped to a 1D topologi-
cal defect in a dD class AII system which is further
mapped to d− 1D TI in class AII.

4. class CI: The block diagonalized Hamiltonian HS

obeys the PHS Γ̃T ′ squaring to −T 2 = −1. Thus
the Floquet topological phase is mapped to a 1D
topological defect in a dD class C system which is
further mapped to d− 1D TI in class C.

To summarize, noninteracting Floquet topological
phases in the d-dimensional space share the same topo-
logical classification as equilibrium topological phases in
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the same symmetry class. Corresponding topological
number can be defined for each gap in the quasi energy
spectrum for symmetry classes without PHS or chiral
symmetry; a system with n gaps is characterized by n

topological numbers in those classes. For classes with
PHS or chiral symmetry, two topological numbers are
defined corresponding to 0 gap and π gap. The result is
summarized in Table I.
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