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Tungstates AWO4 with the wolframite structure characterized by the AO6 octahedral zigzag
chains along the c-axis, can be magnetic if A=Mn, Fe, Co, Cu, Ni. Among them, MnWO4 is a
unique member with a cycloid Mn2+ spin order developed at low temperature, leading to an inter-
esting type-II multiferroic behavior. However, so far no other multiferroic material in the tungstate
family has been found. In this work, we present the synthesis and the systematic study of the dou-
ble tungstate LiFe(WO4)2. Experimental characterizations including structural, thermodynamic,
magnetic, neutron powder diffraction, and pyroelectric measurements, unambiguously confirm that
LiFe(WO4)2 is the secondly found multiferroic system in the tungstate family. The cycloidal mag-
netism driven ferroelectricity is also verified by density functional theory calculations. Although
here the magnetic couplings between Fe ions are indirect, namely via the so-called super-super-
exchanges, the temperatures of magnetic and ferroelectric transitions are surprisingly much higher
than those of MnWO4.

I. INTRODUCTION

Frustrated magnetism plays a key role in the so-called
type-II multiferroics1, in which ferroelectric polarizations
(P ) are triggered by particular magnetic orders2–4. Not
only some noncollinear spin orders (e.g. the cycloidal
type) but also some collinear spin orders (e.g. the up-up-
down-down type) can break the spatial inversion sym-
metry. The corresponding microscopic magnetoelectric
mechanisms are the inverse Dzyaloshinskii-Moriya (DM)
interaction and exchange striction, respectively5–9. De-
spite the diversification of routes to magnetoelectricity,
these frustrated magnetic orders can compete and even
coexist in some systems. For example, in the most stud-
ied orthorhombicRMnO3, the ground state changes from
the cycloidal antiferromagnetism (AFM) (e.g. R=Tb,
Dy) to the collinear E-type antiferromagnetism (e.g.
R=Ho, Y)10–12. Even in those canonical cycloidal sys-
tems, e.g. DyMnO3, the synchronization of Dy’s and
Mn’s magnetic moments lead to the exchange striction
effect13,14. These multiple magnetoelectric orders also
exist in other complex Mn-oxides, e.g. RMn2O5

15–18

and CaMn7O12
19–21, which lead to plethoric multiferroic

physics as well as better magnetoelectric performances
due to combined benefits.

Besides these well-studied Mn-oxides, the tungstate
family with the wolframite structure is another play-
ground with plenty frustrated magnetic orders. For ex-
ample, MnWO4 is a multiferroic material when tempera-

ture (T ) is in the range 7.6 K to 12.7 K, corresponding to
the incommensurate elliptical spiral phase. Below this T
range the system displays a commensurate collinear anti-
ferromagnetic state22,23. The magnetic field and ion sub-
stitutions can significantly tune the magnetism and thus
the associated ferroelectricity24–27. It is worth noting
that the other tungstate members, e.g. FeWO4, CoWO4,
NiWO4, CuWO4, and NaCr(WO4)2, display collinear an-
tiferromagnetic orders and are not multiferroics28–31.
Very recently, Holbein et al. reported a double

tungstate NaFe(WO4)2 to exhibit a three-dimensional
incommensurate spiral spin structure below 4 K, which
could be tuned to a commensurate collinear spin struc-
ture by applying magnetic field32. However, their neu-
tron study revealed the condensation of a single irre-
ducible representation of magnetic structure, which did
not imply a nonzero ferroelectric P because spirals with
opposite chirality coexisted. For comparison, MnWO4

exhibits a magnetic structure derived from two irre-
ducible representations, which leads a finite ferroelectric
polarization (P ). Nevertheless, this work is deserved of
attention because it raises a possibility of searching new
multiferroics from the AA′(WO4)2 sub-family (i.e. dou-
ble tungstate) where A or A′ is magnetic.
Here we reported another double tungstate

LiFe(WO4)2 which is very similar to NaFe(WO4)2
in chemical composition and stoichiometry. However,
the fine difference between the crystallographic structure
of these two materials leads to different magnetoelectric
result. Our systematical experimental characterizations
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FIG. 1. (a) Projection in the bc plane of the crystal struc-
ture of LiFe(WO4)2. Blue: W; green: O; grey: Li; red: Fe.
Noting the arrangement of Li/Fe/W is different from those
in NaFe(WO4)2

32. (b) The framework of Fe ions and the
magnetic exchange paths J1/J2/J3. (c) The XRD pattern
measured at room T and the corresponding Rietveld fit. (d)
Rietveld fit of the NPD pattern measured at 30 K.

and theoretical calculations confirm that LiFe(WO4)2
is a new multiferroic system, the second multiferroic
member in the tungstate family. More surprisingly, the
magnetic and ferroelectric transitions in LiFe(WO4)2 is
even much higher than those in MnWO4

22,23, although
the indirect exchange paths Fe-O-O-Fe (or Fe-O-W-
O-Fe) seem to more complicated comparing with the
Mn-O-Mn paths in MnWO4.

II. METHODS

A. Details of experimental process

Polycrystalline samples of LiFe(WO4)2 were prepared
by the convention solid sintering method, using the
highly purified powder of oxides and carbonates as start-
ing materials. The stoichiometric mixtures were ground
and fired at 600 ◦C for 24 hours in air. The resultant
powder was re-ground and pelletized under a pressure of
1000 psi into disks of 2.0 cm in diameter, and then these
pellets were sintered at 750 ◦C for 24 hours in air in prior
to natural cooling down to room T . Phase purity of sam-
ples were checked by X-ray diffraction (XRD) at room T
using the Cu-K radiation of X-ray power diffractometer
(D8 advanced, Bruker).
The crystalline and magnetic structures are also

checked using neutron powder diffraction (NPD) carried
out at NIST using the BT1 powder diffractometer. The
NPD patterns were collected with neutron wavelength
λ = 2.0775 Å at T = 5 K and 30 K. The NPD data
were analyzed using the Rietveld refinement program
FULLPROF33.
The dc magnetization as a function of T and magnetic

field (H) were measured using the Quantum Design su-
perconducting quantum interference device magnetome-
ter (SQUID). The specific heat was measured in the T
range of 2 K to 300 K and under magnetic fields up to 9
T by the physical property measurement system (PPMS,
Quantum Design) using the relaxation method.
For the electrical measurements, the disk-like samples

of 3.0 mm in diameter and 0.2 mm in thickness were
deposited with Au electrodes on the top/bottom sur-
faces. The dielectric constant as a function of T was mea-
sured using the HP4294A impedance analyzer attached
to the PPMS. In our experiments, both Au and silver
paste electrodes were used and no observable difference
was found regarding the dielectric constant and pyro-
electric current. The ferroelectric P was measured by
integrating zero-electric-field pyroelectric current (Ipyro)
recorded using the Keithley 6514 electrometer. For the
pyroelectric current measurement, the sample was elec-
trically poled under an electric field Ep = 10 kV/cm and
cooled down from 50 K to 2 K. Then the poling field was
removed and the sample was electrically short-circuited
for a long time (e.g. several hours) in order to exclude
possible extrinsic contributions (e.g. trapped charge).
The background of Ipyro was reduced to less than 0.2 pA.
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Different warming rates, e.g. 2− 6 K/min, was adopted
to record Ipyro, which gave an identical peak position and
value of P in tolerable precision.

B. Details of DFT calculations

Density functional theory (DFT) calculations are per-
formed using the projector augmented wave (PAW) pseu-
dopotentials as implemented in Vienna ab initio Simula-
tion Package (VASP) code34–37. To acquire more accu-
rate description of crystalline structure and electron cor-
relation, the revised Perdew-Burke-Ernzerhof for solids
(PBEsol) function and the generalized gradient approxi-
mation plus U (GGA+U) method are adopted37,38. Ac-
cording to literature39,40, the on-site Coulomb Ueff =
U − J = 4 eV is applied to the 3d orbital of Fe, us-
ing the Dudarev implemention41. The cutoff of plane
wave basis was fixed to 625 eV, a quite high value due
to Li. The Monkhorst-Pack k-point mesh is 3×3×7 for
the minimal cell and correspondingly reduced for super-
cell calculations. To account the noncollinear spin tex-
ture, the spin-orbit coupling (SOC) is also switched on
in calculations and the standard Berry phase method is
adopted to estimate the ferroelectric P 42.

III. RESULTS & DISCUSSION

A. Crystalline structure

The crystal structure of LiFe(WO4)2 is described in
the monoclinic space group C2/c and consists of stack-
ing (100) layers made of mixed [LiO6] and [FeO6] edge-
sharing octahedra arranged in zigzag chains, separated
by layers composed of tungstate [WO6] octahedra. As
noted in Ref.43, the ordering in the wolframite-type
phases in respect to the Li-Fe-W and Na-Fe-W arrange-
ments is not the same. In NaFe(WO4)2 (described by
P2/c symmetry) each populated octahedral chain con-
tains only one type of cation, while in LiFe(WO4)2 the
chain contain both Li and Fe octahedra alternating along
the c direction. Such atomic arrangement leads to the
doubling of the unit cell along the b-direction, as com-
pared to the NaFe(WO4)2.
Figures 1(a-b) show the crystal structure of

LiFe(WO4)2 as well as the magnetic framework of
Fe3+ ions. As visible in Fig. 1(a), the magnetic frame-
work in LiFe(WO4)2 is no longer defined by zigzag chains
as in the case of NaFe(WO4)2 and Mn(WO4), but rather
by frustrated two-leg spin ladders. Figure 1(c) shows
the room T powder XRD pattern of LiFe(WO4)2. A
Rietveld refinement has been performed using the struc-
tural model proposed by Klevtsov44, which provided
satisfactory residual values (Rp = 8.51%, Rwp = 6.69%,
and χ2 = 1.952). There is no impurity phase detected
in the XRD power pattern. The crystalline structure is
monoclinic with a = 9.2997 Å, b = 11.4302 Å, c = 4.9072

TABLE I. Refined structural parameters of LiFe(WO4)2 from
powder neutron diffraction data collected at 30 K.

Atom (Wyck.) x y z B

W (8f) 0.2468(2) 0.0910(4) 0.250(1) 0.34(7)

Fe (4e) 0 0.3359(3) 0.25 0.1(1)

Li (4e) 0.5 0.342(1) 0.25 0.7(2)

O1 (8f) 0.3634(4) 0.0586(3) 0.9225(6) 0.12(2)

O2 (8f) 0.3806(3) 0.1821(3) 0.4127(6) 0.12(2) )

O3 (8f) 0.3559(3) 0.5483(3) 0.9451(6) 0.12(2)

O4 (8f) 0.3773(4) 0.6946(2) 0.3936(6) 0.12(2)

SP: C2/c, a = 9.2687(1) Å, b = 11.3964(1) Å,

c = 4.89368(6) Å, β=90.564(1) deg., Chi2 = 1.1

RBragg = 4.3%, Rp= 6.26%, Rwp= 7.84%

Å, β = 90.65◦, in agreement with previous works43,44.
Figure 1(d) shows the Rietveld fit of the NPD pattern
measured at 30 K. The refined structural parameters
of LiFe(WO4)2, such as lattice parameters, atomic
coordinates and displacement parameters, resulted from
the NPD data are listed in Table I.

B. Magnetic behavior

Figure 2(a) shows the T -dependent magnetic suscepti-
bility χ(T ) measured with a small field H ∼ 0.1 T over
the T -range from 5 K to 300 K. The zero-field cooling
(ZFC) and field cooling (FC) curves of χ(T ) overlap in
the whole measuring T range. The fit of χ−1(T ) using
the linear Curie-Weiss law yields a negative Curie-Weiss
θCW = −69.5 K, suggesting strong antiferromagnetic in-
teractions between Fe3+ spins. An effective paramagnetic
moment of 6.075 µB per Fe is found, which is very close
to the expected value of spin-only effective moment (5.92
µB) for high-spin Fe3+ (Sz = 5/2, L = 0).
Two successive magnetic transitions are observed at

TN1 = 22.6 K and TN2 = 19.7 K, as evidenced by peaks
of χ(T ) and dχ/dT , shown in Figs. 2(b-d). The ratio
θCW/TN1 is 3.08, indicating a moderate level of magnetic
frustration. In addition, χ(T ) under different H are mea-
sured, as plotted in Fig. 2(b). The large fields are only
slightly affecting the values of TN1 and TN2.
These low-temperature antiferromagnetic transitions

are reasonable considering the nearly-isolated [FeO6]’s
which are separated by [WO6]’s and [LiO6]’s. The ex-
changes between Fe spins can only be mediated via oxy-
gen and tungsten, i.e. the so-called super-superexchanges
Fe-O-O-Fe and Fe-O-W-O-Fe. Such complicated ex-
change routes suppress the effective strength of mag-
netic couplings. Even though, surprisingly, these antifer-
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FIG. 2. Magnetism of LiFe(WO4)2. (a) Magnetic susceptibil-
ity χ (left) and Curie-Weiss fitting of 1/χ (right). Both the
FC and ZFC curves are shown, which are identically coin-
ciding. (b) The amplified view around the phase transitions.
(c-d) The amplified view of the derivatives of χ around the
phase transitions.

romagnetic transitions are still much higher than those
in MnWO4. Empirically, in general, the superexchange
between Fe3+ pair is much stronger than that between
Mn2+ pair. Ferrites, e.g. BiFeO3, often show much
higher magnetic transitions than Mn-based oxides.
NPD is a powerful tool to reveal the frustrated mag-

netism in multiferroics45. To reveal the magnetic ground
state of LiFe(WO4)2, the NPD measurements were per-
formed below 30 K, as shown in Fig. 3(a). Comparing
with the NPD pattern at 30 K, no obvious change of lat-
tice parameters has been observed but additional sharp
magnetic Bragg reflections appear below approximately
20 K, reflecting the presence of long range magnetic or-
dering. A contour plot showing the T dependence of
the magnetic scattering at low momentum transfer (Q)
is given in the inset of Fig. 3(a). Neutron diffraction
results suggest that the first transition observed in the
macroscopic measurements at TN1 = 22.6 K corresponds

1 2 3 4 5 6 7

0

10

20

30

TN2

In
te

ns
ity

 (a
.u

.)

Q (Å-1)

 Exp
 Fit
 Diff
 Peak pos

TN1(a)

0.6 0.7 0.8 0.9 1.0 1.1

16

18

20

22

24

T 
(K

)

Q (Å-1)

FIG. 3. (a) The NPD pattern measured at 5 K and cor-
responding Rietveld fit. Inset: contour plot of the tempera-
ture dependence of magnetic Bragg peaks at small momentum
transfer Q. (b) The sketch of noncollinear magnetic order fit-
ted from the NPD data. The moments of Fe form a cycloidal
structure with iron magnetic moments nearly confined to the
plane defined by the k vector and [010] direction. The cycloid
rolls along the J3 magnetic path depicted by solid green lines.
. The moments at the two Fe positions related by the twofold
axis symmetry, Fe1 (0, y, 1/4), Fe2 (0, −y, 3/4), are depicted
by different colors.

to a short-range magnetic ordering, and that the long
range order only forms below the second transition point
TN2 = 19.7 K. The magnetic peaks that are present at
the lowest measured T , 5 K, can be successively indexed
with an incommensurate propagation vector k =(0.890,
0, 0.332). Interestingly to point out is that the other dou-
ble tungstate NaFe(WO4)2 was also found to order with
an incommensurate wave-vector k =(0.485, 0.5, 0.48) et
al.. Furthermore, the doubling of the magnetic lattice
along the b-direction in NaFe(WO4)2 is perfectly com-
patible with our wave-vector solution, considering that
the size of the crystallographic unit cell in LiFe(WO4)2
is already doubled.

To determine the symmetry-allowed magnetic struc-
tures, given the crystal structure and the aforemen-
tioned propagation vector, representational analysis has
been performed using SARAh-Representational Analy-
sis. There are two possible irreducible representation
(IRs) allowed for the Fe ion at the 4e Wyckoff position,
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TABLE II. Basis vectors for the space group C12/c1 with
k=(0.89, 0, 0.332). The decomposition of the magnetic rep-
resentation for the Fe site (0, 0.335, 0.25) is ΓMag = 3Γ1

1+3Γ1
2.

The atoms of the nonprimitive basis are defined according to
1: (0, 0.335, 0.25), 2: (0, 0.665, 0.75). The ζ parameter is
exp(−2πik · t).

IR BV Fe1 (0, 0.335, 0.25) Fe2 (0, 0.665, 0.75)

Γ1 ψ1 (1, 0, 0) (-ζ, 0, 0)

ψ2 (0, 1, 0) (0, ζ, 0)

ψ3 (0, 0, 1) (0, 0, -ζ)

Γ2 ψ4 (1, 0, 0) (ζ, 0, 0)

ψ5 (0, 1, 0) (0, -ζ, 0)

ψ6 (0, 0, 1) (0, 0, ζ)

corresponding to Γ1 and Γ2 in the Kovalev numbering
scheme, as summarized in Table II. We found that two
IRs are required to describe the incommensurate mag-
netic structure at 5 K. The best solution was achieved
when combining ψ2 of Γ1 and ψ4, ψ6 of Γ2. The simulta-
neous appearance of both Γ1 and Γ2 are quite nontrivial,
and it distinguishes the magnetism of LiFe(WO4)2 from
the recently studied NaFe(WO4)2, although their chem-
ical components are very similar32. We reiterate that
no structural distortion has been detected to accompany
this magnetic transition. Nevertheless, taking into ac-
count the succession of two second-order transitions, the
magnetic ground state defined by two IRs does not vio-
late the Landau theory of second order phase transitions.
The refined magnetic structure of LiFe(WO4)2 is shown
in Fig. 3(b). The magnetic moments of Fe form a cy-
cloidal magnetic structure with the spins confined to the
plane defined by the k vector and [010] direction. The en-
velope of the cycloid is nearly circular, with a refined am-
plitude of the magnetic moment of 4.2(1) µB. This value
is smaller than the expected value for the spin S = 5/2,
but it is not unreasonable considering the presence of
frustrated magnetic interactions.
We would like to point out that the NPD is occa-

sionally recognized as not sufficient to distinguish be-
tween the cycloid and spiral magnetic structures and
therefore the single crystals measurements become highly
desirable46. It all depends on number of non-equivalent
magnetic sites and number of degrees of freedom in the
model. Here we tested all possible symmetry-constrained
models, which included cycloidal and spiral configura-
tions, and found very different outcomes. The magnetic
structure model described in the manuscript gives the
best fitting to the NPD data.

C. Specific heat

To further characterize the phase transitions, the spe-
cific heat (CP) of LiFe(WO4)2 were measured. Fig-
ure 4(a) shows the curve of CP in zero magnetic field
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FIG. 4. (a) Heat capacities CP′s of magnetic LiFe(WO4)2
and nonmagnetic LiGa(WO4)2. (b) Left: the pure magnetic
contribution to heat capacity CM, calculated by deducting the
capacity of LiGa(WO4)2 from that of LiFe(WO4)2. Right:
the magnetic entropy. (c) Heat capacities measured under
magnetic fields.

as a function of T . Two pronounced peaks at TN1 = 22.6
K and TN2 = 19.7 K was observed, confirming the results
of above magnetization measurements. Since LiFeW2O8

is a magnetic insulator, the specific heat contains the con-
tributions from both magnons and phonons. In order to
deduct the phonon contribution, the specific heat of the
isostructural but nonmagnetic compound LiGa(WO4)2
was measured for reference, as shown in Fig. 4(a) too.
Then the magnetic contribution CM(T ) can be estimated
by subtracting the CP(T ) data of LiGa(WO4)2 from that
of LiFe(WO4)2, as shown in Fig. 4(b). The magnetic
entropy SM(T ) obtained by integrating the CM/T data
is also shown in Fig. 4(b), giving a saturation value of
SM = 0.94Rln6 = 14.003 J/mol·K at 70 K, very close to
the standard estimation nRln(2S+1) = 14.896 J/mol·K,
where n is the number of magnetic ion in one unit cell
(here n = 1).

Interestingly, the corresponding magnetic entropy gain
at TN1 is only about 49% of its saturated value, implying
the release of partial magnetic entropy above TN1. Such a
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FIG. 5. (a) Dielectric constant (left) and dielectric loss
(right). (b) Pyroelectric currents measured with different
warming rates. The poling electric field is 10 kV/cm. (c) In-
tegrated pyroelectric P ’s with positive/negative poling fields.
The peak position of dielectric constant coincides with the
emergence of pyroelectric P ’s.

behavior suggests the persistence of short-range magnetic
order even above TN1. In addition, the magnetic specific
heat CMag below TN1 can be well fitted by the power law
CMag = ATα, where α ∼1.79. This power law indicates
that the magnetic lattice of LiFe(WO4)2 is pseudo one
dimensional.
The field dependent specific heat CP(T ) is shown in

Fig. 4(c). With increasing magnetic field the TN1 and
TN2 transition points shift to lower values and the peaks
in the CP(T ) curve weaken. However, both phase tran-
sitions persist up to 9 T (the highest applied magnetic
field), indicating robust antiferromagnetic couplings in
this system.

D. Ferroelectricity and magnetoelectricity

According to established knowledge of magnetoelec-
tricity, the cycloidal magnetic structure can break the
spatial inversion symmetry and lead to the magnetic
ferroelectricity6. In the following, the multiferroicity of
LiFe(WO4)2 is studied.

First, the dielectric constant ε(T ) measured at 1 kHz
(Fig. 5(a), left axis) shows a broad peak around TN2,
which is an indication of ferroelectricity. The dielec-
tric loss (Fig. 5(a), right axis) is very small, implying
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FIG. 6. Magnetoelectricity. (a) Pyroelectric currents mea-
sured under different magnetic fields. (b) The corresponding
pyroelectric P ’s. Inserts: magnified views around TN2.

negligible leakage and reliable pyroelectric measurement.
Then the pyroelectric curves (Ipyro-T ) with three warm-
ing rates (2, 4, and 6 K/min) are shown in Fig. 5(b). The
three peaks of Ipyro-T curves are exactly at the identical
position without any shift. The Ipyro-T curves are also
measured under the positive and negative pooling elec-
trical fields (E = ±1000 kV/m). The integrated P (T )
curves are as shown in Fig. 5(c). The symmetrical P (T )
curves upon the positive/negative poling fields suggest
the reversibility of P . According to P (T ) and ε(T ), the
ferroelectricity emerge just below TN2, as expected from
NPD. The value of P at 10 K is about 15 µC/m2 for the
polycrystalline sample. Considering the value of P is only
50 µC/m2 for single crystalline MnWO4

22, the intrinsic
saturated P of LiFe(WO4)2 should be in the same order
of magnitude with or even higher than that of MnWO4.

The coincidence of magnetic TN2 and ferroelectric TC
is a strong evidence for magnetism driven ferroelectric-
ity, which is expected to arise from the cycloidal mag-
netism revealed by neutron diffraction experiments. To
further confirm the intrinsic magnetoelectricity, a series
of Ipyro(T ) curves at the warming rate 4 K/min are
measured under different magnetic fields (parallel to the
poling electric field) up to 9 T, as shown in Fig. 6(a).
The corresponding P (T ) curves under magnetic fields are
showed in Fig. 6(b). First, with increasing magnetic field,
the current peak shifts to lower T and become weaker
and broader. Second, the evolution of ferroelectric TC
consists with the tendency of specific heat (Fig. 4(c)).
All these characters imply the direct coupling between
magnetic order and dipole order. The weak change of P
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TABLE III. Summary of DFT results of LiFeW2O8. Five
collinear magnetic configurations (A-E) and the k=(1, 0, 1/3)
noncollinear (NC) order are considered. “+” and “-” denote
spin up and down, respectively. The indices of Fe can be found
in Fig. 1(b). All energies (in unit of meV/Fe) are obtained in
the conditions of SOC enabled and Ueff = 4 eV. The lowest
energy one (NC) is set as the energy reference point.

Magnetism
Magnetic ions

Energy
Fe1 Fe1’ Fe2 Fe2’ Fe3 Fe3’ Fe4 Fe4’

A + + - - - - + + 10.98

B + + - - + + - - 6.46

C + + + + - - - - 1.89

D + + + + + + + + 15.54

E + - + - - + - + 1.55

NC k =(1, 0, 1/3) 0

under H is probably due to the fact that H was applied
along the poling electric field direction.

E. DFT results

To further understand the physics involved in
LiFe(WO4)2, the DFT calculations have been performed
with the experimental crystalline structure.
First, to reveal the magnetic couplings in LiFe(WO4)2,

various magnetic orders are calculated, as summarized in
Table III. Five collinear plus one noncollinear magnetic
states are considered. Although the direct adopting of
experimental magnetic state is practically unavailable for
the DFT calculation due to the incommensurate propaga-
tion vector, the noncollinear one adopted in our calcula-
tion, with k =(1, 0, 1/3), is quite close to the experimen-
tal one. Such an approximation is acceptable according
to previous experience of DFT calculations on TbMnO3

and CaMn7O12
21,47,48. Indeed, this noncollinear state

owns the lowest energy comparing with other candidates.
Using the energies of five collinear magnetic states, the

exchange couplings J ’s between Fe spins can be roughly
estimated by mapping LiFeW2O8 to a classical Heisen-
berg model (−JijSi · Sj). Here the normalized value
|S| = 1 is used. The fitted exchange J ’s between neigh-
bor Fe ions (indicated in Fig. 1(b)): J1 = 2.28 meV,
J2 = −2.44 meV, and J3 = −1.13 meV. Only J1 is ferro-
magnetic and the antiferromagnetic J2 and J3 frustrate
the magnetism.
The density of states (DOS) and the spatial distribu-

tion of electronic density for the noncollinear state are
shown in Fig. 7. The states near the Fermi level are
mostly contributed by O’s 2p orbitals, which hybridize
with Fe’s 3d orbitals and W’s 5d orbitals. Although nom-
inally the valence of W is +6 with empty 5d orbitals, our
DOS diagram still suggests the involvement of W’s 5d
orbitals below the Fermi level. The band gap is about
2.4 eV, a good insulator. As shown in Fig. 7(b), the
magnetic coupling between Fe ions can be mediated via

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5
0

50

100

150

D
O
S

E (eV)

 Total
 Li
 Fe
 W
 O

(a)

FIG. 7. DFT results of LiFe(WO4)2 with non-collinear mag-
netic state, k =(1, 0, 1/3). (a) The density of states (DOS).
(b) Contour plot of charge density. The nearest neighbor Fe-
O, W-O, and O-O are connected.

Fe-O-O-Fe and Fe-O-W-O-Fe, instead of Fe-O-Li-O-Fe.

As stated before, the cycloidal magnetic structure can
lead to ferroelectric P , which can be confirmed by the
DFT calculation too. Using the standard Berry phase
method, the calculation with SOC gives a finite P about
24.5 µC/m2, which is qualitatively consistent with the
experimental pyroelectric value (∼ 12 µC/m2). The di-
rection of P is along the [010] axis, in consistent with the
Katsura-Nagaosa-Balatsky’s theory (P ∼ eij × (Si×Sj))
for noncollinear spin order6. This small magnitude of P
is also reasonable considering the nominally high-spin 3d5

configuration of Fe ions. The first-order SOC is quenched
due to the zero orbital moment (L = 0). Only higher-
order SOC, i.e. the hybridization between Fe’s 3d and
W’s 5d via O’s 2p, is allowed, which is thus weak. This
P is in the same order of magnitude comparing with that
of MnWO4 (∼ 50 µC/m2 for single crystalline sample)22,
which also owns the 3d5 configuration.

Finally, it should be noted that the comparison of cal-
culated P and experimental P is only qualitative, namely
the direction and order of magnitude are reliable. The
experimental P can be affected by the polycrystalline
grain boundaries and non-saturation. The calculated P
here is from pure electronic contribution, while the ion
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displacements has not been taken into account since the
SOC-enabled lattice optimization is too CPU-demanding
for such a large cell. So both the experimental P and
calculated P are not the precise value of intrinsic sat-
urated P . Even though, the qualitative comparison re-
mains valuable and consistent.

F. Additional discussion

Above experimental measurements were done with
polycrystalline samples. Usually, single crystals are bet-
ter to characterize the multiferroicity, for both the neu-
tron scattering and electric measurements. In this sense,
further studies based on single crystals are highly encour-
aged. Even though, the current study have shown strong
evidences and consistent results regarding the multifer-
roicity from several aspects.

IV. CONCLUSION

The physical properties of LiFe(WO4)2, especially the
magnetism and multiferroicity, have been systematically
investigated. Sequential magnetic transitions at TN1 =

21.6 K and TN2 = 19.7 K are observed. Below TN2, a
ferroelectric polarization emerges in LiFe(WO4)2 which
is driven by particular noncollinear magnetism and thus
can be tuned by magnetic field. Such type-II multifer-
roicity is verified by both neutron diffraction and density
functional theory. According to our study, LiFe(WO4)2 is
the second confirmed multiferroic member in the AWO4

tungstates family, different from the non-multiferroic
NaFe(WO4)2. Comparing with the first confirmed mul-
tiferroic MnWO4, LiFe(WO4)2 owns higher and wider
ferroelectric temperature, while its polarization is in the
same order of magnitude. Our study will hopefully stim-
ulate more studies on the tungstates family.
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