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Understanding low-temperature bulk transport in samarium hexaboride without
relying on in-gap bulk states

A. Rakoski,∗ Y.S. Eo, K. Sun, and Ç. Kurdak
University of Michigan

We present a new model to explain the difference between the transport and spectroscopy gaps in
samarium hexaboride (SmB6), which has been a mystery for some time. We propose that SmB6 can
be modeled as an intrinsic semiconductor with an accumulation length that diverges at cryogenic
temperatures. In this model, we find a self-consistent solution to Poisson’s equation in the bulk,
with boundary conditions based on Fermi energy pinning due to surface charges. The solution yields
band bending in the bulk; this explains the difference between the two gaps because spectroscopic
methods measure the gap near the surface, while transport measures the average over the bulk. We
also connect the model to transport parameters, including the Hall coefficient and thermopower,
using semiclassical transport theory. The divergence of the accumulation length additionally explains
the 10-12 K feature in data for these parameters, demonstrating a crossover from bulk dominated
transport above this temperature to surface-dominated transport below this temperature. We find
good agreement between our model and a collection of transport data from 4-40 K. This model can
also be generalized to materials with similar band structure.

I. INTRODUCTION

Samarium hexaboride (SmB6) has long eluded classi-
fication due to its unique properties, beginning with its
unusual temperature-resistivity curve.1 Past research has
led to the classification of SmB6 as a rare-earth mixed va-
lence compound; although it is homogeneous, the Sm ions
have mixed valence of 2+ and 3+.1–3 SmB6 has a sim-
ple cubic structure, and it is also free of both magnetic
and structural phase transitions,1 which makes it a good
candidate for studying homogenous mixed valence. One
of the most significant developments was the discovery
that SmB6 is a Kondo insulator.4 Kondo insulators are
characterized by the opening of a small gap at the Fermi
energy due to hybridization between f -electrons and con-
duction electrons.5,6 In SmB6 specifically, there are three
4f bands, one of which hybridizes with the 5d conduction
electrons, opening a gap between the two hybrid bands.7

Although the presence of the hybridization gap sug-
gests that SmB6 should exhibit insulating behavior, de-
tailed transport results over a 40-year period suggest a
much more complicated picture.1,8–12 High-quality SmB6

has consistently demonstrated activated behavior from
4-40 K. Around 4 K, the activated behavior is always
terminated by an unknown conduction mechanism, lead-
ing to a plateau in the temperature-resistivity curve.
Many attempts have been made to explain this crossover
to conductive behavior in terms of bulk effects, with
a commonly accepted picture based on impurities in
the material.1 A breakthrough came from the predic-
tion that Kondo insulators can additionally be topolog-
ical insulators,13–15 a class of materials that undergo a
crossover at low temperature from a conventional state
to a bulk insulating state with topologically protected
metallic surface states.16 Indeed, recent transport12,17

and angle-resolved photoemission spectroscopy (ARPES)
results18–20 have demonstrated evidence for these topo-
logically protected metallic surface states in SmB6 with

a crossover temperature of approximately 4 K. In this
paper, we will concentrate on temperatures from 4-40
K, where bulk transport is dominant. Although acti-
vated behavior is consistently observed in this tempera-
ture range, transport measurements including resistivity
and Hall coefficient also demonstrate a feature at about
10 K.

Before discussing some of the unusual properties of
SmB6 that arise from its small gap and hybridized bands,
it is instructive to discuss bulk transport in standard TIs.
Such “standard” TIs (for example, Bi2Se3 or Bi2Te3)
are characterized by a bulk band gap as in conventional
semiconductors, and after undergoing the crossover to
the topological phase, there are an odd number of sur-
face states located in the gap.21,22 If the topological sur-
face states are not considered, all standard TIs can be
treated as semiconductors. In this picture, charge neu-
trality must be enforced, so the Fermi energy (EF ) is
initially expected to be exactly halfway between the top
of the valence band and the bottom of the conduction
band. As in semiconductors, impurity states may also be
present in the gap. For an n-type material, donor states
would be in the gap near the conduction band, and for
a p-type material, acceptor states would be in the gap
near the valence band. Because charge neutrality must
also be enforced, the presence of these extra states shifts
EF towards the conduction band for donor states and
towards the valence band for acceptor states.23

Impurity states in semiconductors and standard TIs
can be treated quantitatively using the effective mass
approximation.24 In this picture, impurities are assumed
to be hydrogenic, but with the substitution of effective
mass for electron mass (m→ m∗) and dielectric constant
for vacuum permittivity (ε0 → κε0). The results are an
effective Bohr radius

a∗B =
4πκε0h̄

2

m∗e2
=

κ

m∗/m
(0.53 Å) (1)
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and an effective ground-state energy

E∗ = − m∗e4

2(4πκε0)2h̄2 = −m
∗/m

κ2
(13.6 eV). (2)

Once these parameters have been calculated, the initial
assumption of hydrogenic impurities can be verified. In a
donor state, for example, the extra electron must have an
extent much larger than one lattice constant for the donor
to be hydrogenic. If this were not the case, contributions
from the donor itself would also have to be considered,
and the hydrogen model could not be used. Therefore,
when comparing the effective Bohr radius to the lattice
constant, we must satisfy the condition a∗B � a for the
approximation to be valid.

The effective mass approximation has been used suc-
cessfully in all standard TIs. Standard TIs exhibit resid-
ual bulk conduction after undergoing the crossover to the
topological state, and this is well-understood as arising
from impurity states that can be treated using the effec-
tive mass approximation. Many researchers have applied
the idea of impurity states in the gap to SmB6 to try to
understand the plateau at 4 K before it was thought to
be a TI,1 and later to explain experimental discrepancies
in the size of the Kondo hybridization gap. While the
presence of the gap is well-known, transport and spec-
troscopic methods disagree on the size. Transport mea-
surements, which probe the energy difference between EF
and the conduction band (the activation energy), report
3-4 meV.9–12,17 In analogy with semiconductors and stan-
dard TIs, it is expected that EF is exactly halfway be-
tween the valence and conduction bands, suggesting that
the total transport gap is 6-8 meV. On the other hand,
spectroscopy and tunneling experiments measure the full
gap near the surface, and they report 16-20 meV.25–31

This discrepancy has been interpreted as aris-
ing from the presence of in-gap bulk impurity
states.7,25,26,28–30,32–34 In this scenario, transport would
measure the difference between the impurity state and
the conduction band, yielding an incorrect result for the
total gap. Since the effective mass approximation is usu-
ally so successful, it has been applied to SmB6 to under-
stand this proposed in-gap impurity state. However, re-
ported values26,30 of the dielectric constant κ range from
600-1500, and as we have seen, activation energy (which
can be used to obtain effective mass) ranges from 3-10
meV. Using these values with Eqs. 1 and 2, we obtain
a minimum a∗B of 0.5 Å and a maximum a∗B of 4 Å. Re-
ports of the effective Bohr radius are usually in this range;
for example, Sluchanko et al. report 3 Å.32 Additionally,
most reports agree that the lattice constant a of SmB6 is
about 4.13 Å, so we find that the condition a∗B � a re-
quired to verify the effective mass approximation is not
satisfied anywhere in the range of Bohr radii that can
be calculated. Because the effective mass approximation
fails, in-gap hydrogenic impurity states in SmB6 are not
justified.

Since semiconductor theory and the effective mass ap-
proximation are successful in most cases, this result is

startling. However, upon closer examination, we find
that it is perhaps not completely unexpected. Because
the gap in SmB6 arises due to hybridization, its band
structure is very different from that of a conventional
semiconductor. Unlike a semiconductor, SmB6 has a
non-quadratic and asymmetric dispersion, because its
band structure arises due to Kondo hybridization. Both
the valence and conduction bands have nearly flat re-
gions characterized by the localized f states as well as
low-mass regions characterized by the d states. Because
of this unusual composition, while the gap and band
structure effects in SmB6 arise based on contributions
from all the carriers, transport is dominated only by the
low-mass carriers. Additionally, both bands have posi-
tive curvature, unlike in a semiconductor, where only the
conduction band has positive curvature. As we will see,
this has a significant effect on how we understand trans-
port. The gap is also much smaller than that of stan-
dard semiconductors or TIs. Because of these differences
in the band structure, we will see that SmB6 must be
treated much more carefully than standard gapped ma-
terials. (In contrast, other hexaboride materials can be
treated as standard gapped materials, and in these cases,
impurity states are present within the bulk gap.35)

In the context of in-gap bulk states, we can gain in-
sight into SmB6 by analogy with superconductors. When
a material undergoes a transition to a superconducting
state, some of the electrons near the Fermi energy con-
dense into Cooper pairs. Formation of the condensate
opens up a gap at the Fermi energy.36 Even though this
gap is so small, tunneling measurements37 have shown
that the addition of impurities to a superconductor does
not destroy superconductivity (until the impurity con-
centration becomes sufficiently high). This suggests that
the impurity states are not in the gap, or that supercon-
ductors exhibit a small and clean gap and are not vulner-
able to impurity conduction. Although the mechanism
for gap formation (the Kondo effect) is very different in
SmB6, the gap is also much smaller than a semiconductor
bulk gap. This, combined with the failure of the effective
mass approximation, suggests that SmB6 should have a
clean gap that is not vulnerable to impurity conduction
at low temperatures. In fact, SmB6 does not exhibit
residual bulk conduction experimentally, and this can be
taken as evidence for a clean bulk gap.12

Another interpretation of the gap discrepancy is that
spectroscopy measures the direct gap while transport
measures an indirect gap that forms during hybridiza-
tion. Theoretical treatments of Kondo hybridization
predict the presence of both a direct and an indirect
gap,6,38,39 and researchers have also used this idea to
explain the gap discrepancy.11,31 This interpretation ex-
plains the gap discrepancy while avoiding the problem
of the in-gap impurity states, but we will propose an
alternative explanation that is consistent with features
observed in transport. As we have seen, in-gap impurity
states in SmB6 are not justified by the effective mass ap-
proximation, nor are they consistent with the observation
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FIG. 1. Dispersion relation of SmB6 along the Γ − X − Γ
direction, focused where the hybridization takes place. (a)
Band structure before hybridization. (b) Band structure after
hybridization of the d band with one of the f bands. The
vertical axis (energy) scale is zoomed in from the scale in (a).
(c). Simplified band structure used in the calculation. The
vertical scale is the same as in (b).

of no residual bulk conduction after the surface states
become relevant. To achieve consistency, we propose an-
other explanation of the gap discrepancy that does not
rely on in-gap states and instead allows for a clean direct
gap.

II. SIMPLIFIED DENSITY OF STATES AND
BAND BENDING CALCULATIONS

A. Density of states

The dispersion in SmB6 is well-known based
on the success of recent high-resolution ARPES
measurements.18–20 The gap forms at low temperature,
when the conduction band (5d) hybridizes with local-
ized states (4f). In SmB6, there are three 4f bands,
and ARPES indicates that only one band participates in
hybridization. A sketch of the band structure of SmB6

before hybridization is shown in Fig. 1(a), and the hy-
bridized band structure is shown in Fig. 1(b), both along
the Γ − X − Γ direction. SmB6 is an insulator, so the
Fermi energy is located in the gap in the hybridized band
structure. As can be seen in the figure, the two unhy-
bridized f bands are still present.

In addition to this basic structure, the hybridized dis-
persion has some subtle features, which can also be ob-
served by ARPES. For example, ARPES demonstrates
an indirect gap with a valence peak about 15 meV be-
low the Fermi energy at the H point.18 This feature can
also be observed at nearby energies due to intrinsic and
thermal broadening. Compared to the main features of
the dispersion, however, this feature is small and close
to the valence band. Although ARPES cannot probe
far into the conduction band at the temperatures we are
considering, there are likely some similarly small features
present in the conduction band. We refer to the regions

FIG. 2. Parameters used in the calculation. Main plot:
Data31 for dependence of the gap size on temperature and
a best fit (dashed line). Lower left inset: Simplified density
of states used in the calculation. Upper right inset: Fermi
surface and Brillouin zone of SmB6 after hybridization.40

in which such small features exist as the “region of non-
parabolicity.”

In our model, we will use a dispersion that is simpli-
fied considerably from the actual dispersion. We neglect
the small features in the region of non-parabolicity, such
as the feature at the H-point and any similar features
in the conduction band. To do this, we approximate the
band structure using a piecewise function, as shown in
Fig. 1(c). Here, the flat regions approximate the pieces
of the hybridized dispersion that primarily come from the
4f band, which we refer to as “f -like” states. The linear
regions approximate the pieces of the hybridized disper-
sion that primarily come from the 5d band, which we
call “d-like” states. Additionally, the two unhybridized
4f bands cannot be resolved separately from the valence
band by ARPES, so we approximate them to be at the
top of the valence band. Making these approximations
introduces some error into the model, but the features in
the region of non-parabolicity are small, so the error is
not more than a few meV.

From this dispersion, we can calculate a simplified den-
sity of states (DOS). The DOS corresponding to our sim-
plified dispersion (Fig. 1(c)) is shown in the lower inset
of Fig. 2. In this figure, the peaks in the DOS correspond
to the f -like regions of the dispersion, and these can be
estimated from the size of the pockets in the SmB6 Bril-
louin zone (BZ), shown in the upper inset of Fig. 2. The
flat parts of the DOS correspond to the d-like regions of
the dispersion. In the range Egap, the DOS is zero, and
the gap changes with temperature. Data for the gap as
a function of temperature31 is shown in Fig. 2, as is the
fit to this data that was used in the calculation (dashed
line).

We can represent the simplified DOS using delta func-
tions (δ) for the f -like states and step functions (θ) for
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the d-like states:

g(ε) = Ncfδ(ε− EC) + gcdθ(ε− EC)

+Nvfδ(ε− EV )− gvd(θ(ε− EV ) + 1)
(3)

where EC is the edge of the conduction band, EV is the
edge of the valence band, N is a density in cm−3, g is
a DOS in cm−3· eV−1, and the Fermi energy EF has
been set to 0. The subscripts on the four factors refer to
electron type and band; e.g. Ncf is the density of states
for f -like electrons in the conduction band (c). The Fermi
energy, which is in the gap, is defined to be zero.

The sizes of these four terms can be estimated using
ARPES data.40 According to this measurement, the hy-
bridized f band BZ has six half-ellipsoid Fermi pockets
(upper inset of Fig. 2), and the total volume of these
yields the number of filled states in the conduction band,
which we will denote nell. This implies that

Ncf = nell = 9.0× 1021 cm−3. (4)

The remaining volume in that BZ, plus the total volume
of the BZs for the two unhybridized f bands, yields the
valence band contribution. We will denote the volume of
the BZ as nBZ , so this implies that

Nvf = 3nBZ − nell = 7.6× 1022 cm−3. (5)

The d-like states can be calculated from data above the
hybridization temperature.40 We approximate the disper-
sion to be quadratic and use the usual result for a 3D
quadratic DOS,

g3D(ε) =
m∗

π2h̄3

√
2m∗ε (6)

In our simplified DOS we can approximate the d bands
on both sides of the gap as constant. Specifically, we
approximate this constant to be g3D(EF ), because EF is
in the gap and the gap is small. This also means that
this value in both bands is about the same constant,

gcd ≈ gvd ≈ g3D(EF ) = 1.8× 1019 cm−3 eV−1. (7)

We note that this term is 2-3 orders of magnitude smaller
than the terms in Eqs. 4 and 5. We will define this value
as g0 for brevity.

B. Band structure calculation

As we have seen, the actual and simplified dispersions
as well as the DOS of SmB6 can be characterized by two
types of carriers. The flat regions are dominated by f -
like carriers, and the remainder is dominated by d-like
carriers. In this section, we will outline a self-consistent
calculation used to obtain the band structure. For such
a calculation, we must take all the charges into account.
However, the f -like terms (Eqs. 4 and 5) are 2-3 orders
of magnitude greater than the d-like coefficients (Eq. 7).

To get the total charge density, the d-like states require
a factor of kBT , so they become even smaller; because of
this we neglect the d-like carriers for the band structure
calculation. However, we will later see that transport is
governed by the low-mass, d-like carriers.

The charge density can be calculated using usual meth-
ods for semiconductors. In semiconductors, the conduc-
tion band is nearly empty, so the Fermi-Dirac distribu-
tion f0(ε) can be approximated by the Boltzmann distri-
bution. The electron density is

n =

∫ ∞
EC

f0(ε)g(ε)dε = n0 e
−(EC−EF )/kBT (8)

where n0 is the average DOS. In SmB6 we use Eq. 3
for the DOS, keeping only the delta function terms. This
yields electrons in the conduction band with approximate
density

n ≈ Ncf e−(EC−EF )/kBT . (9)

We can similarly calculate the approximate density of
holes in the valence band to be

p ≈ Nvf e−(EF−EV )/kBT (10)

where EV is the valence band edge. This result resembles
the carrier density of a conventional semiconductor. For
such semiconductors, charge neutrality, n = p, yields the
intrinsic carrier density

n = p = ni ≈
√
NcfNvf e

−Egap/2kBT . (11)

The intrinsic picture works well for SmB6 at high tem-
peratures. However, intrinsic materials are sensitive to
surface effects, and at low temperature, these become rel-
evant. All surface charges, such as TI states, if they are
present, and localized surface charges associated with ox-
idation on the surface, contribute. Requiring charge neu-
trality with the addition of the surface charges forces the
Fermi energy to be pinned in place, leading to band bend-
ing in the valence and conduction bands. This possibility
has been suggested by recent experimental results,41 but
was not previously explored in depth.

To understand the effects of band bending, we perform
a self-consistent calculation to obtain the band structure.
In this calculation, we model the effects of band bending
using a potential φ(z) of the form

eφ(z) = EC(z)− Egap/2 (12)

where the conduction band is now dependent on location
z in the bulk, and Egap = EC −EV . We can rewrite the
carrier densities in terms of this potential to obtain

n(z) = Ncf exp

[
− eφ(z) + Egap/2− EF

kBT

]
(13)

and a similar expression for p(z). Using charge neutrality
again, we obtain

ρ(z) = −en(z) + ep(z) = 2nie sinh

[
eφ(z)

kBT

]
(14)
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for the total charge density. We then solve for the po-
tential across the bulk using Poisson’s equation in one
dimension,

d2φ

dz2
=
ρ(z)

ε
=

2nie

ε
sinh

[
eφ(z)

kBT

]
. (15)

To solve this equation, we choose a “test sample” of
thickness 200 µm, which is typical to a real SmB6 sam-
ple. We define z = 0 as the center of the sample (so
that z = ±100 µm are the edges). In addition, we use
κ = 600 as the dielectric constant.26 To proceed with
the solution, we now require boundary conditions. For
the first boundary condition, we simulate the band bend-
ing effects on the surface by introducing a pinning energy
Epin, which is defined with respect to the midpoint of the
gap by Epin = (EC + EV )/2 − EF . This describes the
energy difference between the band at zero potential and
the minimum of the bent band. Therefore, the boundary
condition can be expressed as eφ(z = 100 µm) = −Epin.
We can also define this pinning relative to the gap as
Epin = Egap/2 − Ea. As we will see later, when tem-
perature is sufficiently low, Ea corresponds to the acti-
vation gap measured by transport. The pinning energy
must also be the same at both edges of the sample, and
to enforce this, the second boundary condition is that
dφ/dz = 0 at z = 0, the center of the sample.

Additionally, we can define a “built-in potential,” Vbi,
as is commonly done for band-bending calculations in
semiconductors.23 Vbi describes the magnitude of the
bending in terms of the difference between the maximum
and minimum points on the conduction or valence band.
Using this built-in potential, we can determine an asso-
ciated length scale (the accumulation length) of Eq. 15,
given by

l =

√
2εVbi
eni

=

√
2εVbi

e(NcfNvf )1/2
eEgap/4kBT . (16)

At low temperature, when Egap is large, the accumula-
tion length is large, and at high temperature, when Egap
is small, the accumulation length is small.

With these parameters, solutions to Eq. 15 were found
for temperatures of 4-40 K and values of Epin between
4 and 7 meV. From a solution φ(z), the conduction and
valence bands can be obtained from Eq. 12, and the
charge density can be obtained from Eq. 14. An exam-
ple of these are shown for 8 K and Epin = 5.5 meV in
Fig 3. Fig. 3(a) shows the calculated conduction and
valence bands, as well as the relationships among the
band structure and the parameters Epin, Egap, Ea, and
eVbi. We note that the valence band is always parallel to
the conduction band and can be obtained by subtracting
EC(z) − Egap. Because of this symmetry, the following
discussion will be confined to the conduction band, al-
though it will also apply to the valence band. Fig. 3(b)
shows the calculated charge density corresponding to this
band structure. Across the sample, the charge density is
negative, and its magnitude is largest near the surfaces.

FIG. 3. Parameters obtained from the self-consistent solution
for φ(z) in a 200 µm sample with Epin = 5.5 meV and T = 8
K. (a) Band structure obtained using Eq. 12. The relation-
ship among the activation energy Ea, the built-in potential
eVbi, the pinning Epin, and the gap Egap are all shown. (b)
Charge density obtained using Eq. 14.

This is expected, because excess charge at the surfaces
leads to band bending.

Fig. 4 shows how the band structure varies with tem-
perature, again using Epin = 5.5 meV; the valence band
is omitted. At 12 K, the highest temperature shown, the
conduction band for the majority of the bulk is Egap/2
above the Fermi energy. There is a small amount of band
bending at the edges, but it does not extend very far into
the bulk, as expected from Eq. 16. This means that the
band structure is similar to that of a standard gapped
material, except near the surface. As the temperature
is lowered, however, the band bending effects begin to
extend farther into the bulk. At 2 K, the lowest temper-
ature shown, these effects completely dominate the band
structure. Here, the conduction band is much closer to
the Fermi energy than the valence band is, and this re-
sult is very different from what is observed in a standard
gapped material.

This process demonstrates a crossover between bulk
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FIG. 4. Calculated bulk conduction band at various temper-
atures for Epin = 5.5 meV.

conduction dominated by the usual bulk effects (at high
temperatures) and bulk conduction dominated by sur-
face effects (at low temperature). We can understand
where the crossover occurs by comparing the charge den-
sities and relevant length scales. At high temperatures,
the bulk dominates bulk transport, and this can be char-
acterized by the size of the sample (t) and the intrinsic
carrier density (ni). At low temperatures, the surface
dominates bulk transport, and this can be characterized
by the accumulation length (l) and the carrier density on
the surface (ns). From this, we can estimate the crossover
as occurring when tni ≈ lns. In our calculation, we esti-
mate that the crossover occurs at about 10-12 K. Since
the crossover depends on the relationship between the
accumulation length and the sample, the crossover tem-
perature is dependent on the thickness of the sample. For
example, in a much thinner sample such as a thin film,
the crossover would occur at a higher temperature than
we have estimated in this calculation.

These band bending results and the crossover are able
to explain the gap discrepancy between transport and
spectroscopy. In our picture, spectroscopy still measures
the full gap, which does not change based on where the
measurement occurs in the sample. Transport, on the
other hand, measures a different activation gap depend-
ing on temperature. Below the crossover, transport mea-
sures the activation gap on the surface, as shown in Fig.
3(a), but above the crossover, transport measures the
average gap across the entire bulk. As a rough estimate
using our model’s parameters, at 4 K the total gap is
about 19 meV, and with a pinning of 5.5 meV the model
yields Ea = 4 meV, in agreement with experiment. In
this way, the gap discrepancy can be understood without
using in-gap bulk impurity states.

The crossover also has interesting implications for the
gap. As we have noted, the accumulation length extends
through the bulk at low temperatures. As the temper-
ature is lowered, the accumulation length diverges, and
this can be thought of in analogy with semiconductors. In

semiconductors, the accumulation or depletion length in-
creases with purity, and a completely pure material would
have an infinite accumulation or depletion length.23 Our
calculation shows that the accumulation length becomes
large at cryogenic temperatures in SmB6, consistent with
the hypothesis that the gap is clean and the bulk is truly
insulating.

We note that the effects of the surface, whether topo-
logical, trivial, or both, were all included in the param-
eter Epin. In terms of our simulation, various surface
effects including the crystal plane, polarity, disorder, TI
states, or other predicted surface effects42,43 would sim-
ply change the value of Epin. We do not predict which
effects are strongest, but changes in Epin due to such ef-
fects would change the strength of the band bending for
the surface considered.

We further note that the Fermi energy pinning is
not rigid, which means that fixing the conduction band
permanently at Epin is not exact for all temperatures.
Near the crossover, the Fermi energy is allowed to shift
slightly. This means that competing with the surface-to-
bulk crossover is a slightly shifting pinning. (If the sur-
face effects are topological, we predict that the pinning
would be more rigid than if the effects were trivial.) This
type of shift does not affect the fully surface or fully bulk
regions seen in the model, but if its effects were included,
it would slightly change the temperature at which the
crossover occurs. We have chosen not to include these ef-
fects, because the model is quite robust against changes.
The band bending result is always present, and even a
large variation in the parameters only slightly shifts the
magnitude of the calculated effect. For example, reports
of dielectric constant26,30 vary from 600 to 1500. When
comparing these extremes in the calculation, the results
above the crossover are exactly the same, and the results
below the crossover differ only slightly.

III. CONNECTION TO EXPERIMENT

To assess the validity of our model, we must connect
the results of the self-consistent calculation to measurable
parameters. Specifically, we examine Hall coefficient, re-
sistivity, and thermopower, comparing the simulation re-
sults for each to data. Although we have used a semi-
conductor picture, SmB6 is very different from a stan-
dard semiconductor due to its non-parabolic dispersion
arising from the hybridized band structure. Because of
this unusual band structure, its transport properties are
unique and must be considered in detail. We must con-
sider which carriers, d-like or f -like, contribute to trans-
port phenomena, as well as the sign of these carriers.

In the discussion of the simplified DOS above, we saw
that the f -like electrons dominate when calculating the
carrier density, because their contribution to the DOS is
much greater than the contribution of the d-like electrons.
However, the f -like electrons have a flat dispersion, which
must yield zero mobility. This means they cannot con-
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tribute to transport, so observed transport phenomena
must be due to the d-like electrons. Looking back at the
features of the actual band structure, we note that the
f -like electrons do not have an exactly flat dispersion,
and there is some curvature connecting the f - and d-like
states. However, based on ARPES data, these features
are small compared to the size of the gap.18 Thus the
curvature of these features is small compared to the sim-
plified band structure, so we can again neglect the effects.

We can understand this more quantitatively using
semiclassical (Boltzmann) transport. First, we will con-
sider the case of an intrinsic semiconductor in the conduc-
tion band to demonstrate the calculation, but the valence
band result can be found similarly. We will then discuss
modifications for the SmB6 case. Using the elementary
solution to the Boltzmann equation, the current due to
an electric field applied in the z-direction is44

jz = −
∫ ∞
EC

v2
ze

2τEz
∂f0(ε)

∂ε
gC(ε)dε (17)

where vz is the particle velocity, e is the electronic charge,
τ is the scattering time, Ez is the applied electric field,
gC(ε) denotes the DOS for the conduction band, and ε is
the energy. We use the relaxation time approximation,
where τ is independent of energy, and the equipartition
theorem, v2

z = v2/3, to rewrite Eq. 17. Then, using
jz = σEz, we find the conductivity,

σ ≈ −e
2τ

3

∫ ∞
EC

v2 ∂f
0(ε)

∂ε
gC(ε)dε. (18)

The derivative of the Fermi-Dirac distribution is44

∂f0(ε)

∂ε
= − 1

kBT
f0(ε)(1− f0(ε)) (19)

and for a general intrinsic semiconductor, the conduction
band is almost empty, so the term in parentheses can be
approximated as 1. Then the conductivity becomes

σ ≈ e2τ

3kBT

∫ ∞
EC

v2f0(ε)gC(ε)dε. (20)

Since only electrons near the Fermi energy are mobile, we
can approximate their velocity as the Fermi velocity vF ,
and this is a constant. The remaining integral is just the
usual method for calculating carrier density, so we find

σ ≈ e2τ

3kBT
v2
Fn (21)

where n is given by Eq. 8. To further simplify, we can use
the Einstein relation for semiconductors, which relates
the diffusion constant, D = v2τ/3, to the mobility by

µkBT

e
=
v2τ

3
(22)

where µ is the mobility, v is the average velocity, and 3
represents the number of dimensions (the right-hand side

of this equation can be derived using the equipartition
theorem). So we find, for average velocity vF , the familiar
result, written for an intrinsic semiconductor,

σ = neµ. (23)

In SmB6, the picture is a little more involved. We will
now re-derive the general result of Eq. 23 with modifi-
cations for SmB6. First, we consider the carriers. Since
there are two types of carriers (f -like and d-like), a small
displacement of the Fermi surface due to an applied elec-
tric field is not uniform. For our simplified dispersion
(Fig. 1c), say the field is being applied from right to
left (so that electrons move from left to right). Then the
electrons in d-like states on the right are mobile as they
would be in a conventional semiconductor. However, the
electrons in d-like states on the left are unable to move,
as the f -like states are filled and have zero mobility. This
means that only half of the carriers in the band can move
when a current is present. Therefore we must include a
factor of 1/2 relative to the usual result (Eq. 19).

Additionally, since only the d-like carriers contribute
to transport, we should only consider the carrier density
n coming from these. Using Eq. 8 and Eq. 7, we find
that

n = g0kBTe
−(EC−EF )/kBT . (24)

Now we can rewrite g0 using Eq. 6. Also, the carriers
should still move with an average speed of vF . We obtain

σSmB6
≈ e2τv2

F

6

m∗

π2h̄3

√
2m∗EF e

−(EC−EF )/kBT (25)

and this can be further simplified using
√

2m∗EF = h̄kF
and vF = h̄kF /m

∗ to obtain

σSmB6
≈ e2τk3

F

6m∗π2
e−(EC−EF )/kBT . (26)

Next, we apply kF = (3π2n)1/3, which can be calculated
by integrating to find the carrier density at zero temper-
ature and rearranging. This means that n in this expres-
sion is the density of filled states up to EF , and according
to Eq. 4, this is just nell. We also use µ = eτ/m∗ to find

σSmB6 ≈
1

2
nell e µd e

−(EC−EF )/kBT (27)

where the subscript on mobility denotes that only d-like
electrons are mobile.

This calculation can be repeated for the valence band,
and the result is similar, except that the exponential is
replaced by exp [−(EF − EV )/kBT ]. To understand how
the conduction and valence band contributions are re-
lated physically, we must consider the signs of the car-
riers in both bands. For a conventional semiconductor,
the conduction band contributes electrons with positive
effective mass and the valence band contributes holes
with negative effective mass. These have opposite con-
tributions to transport. In SmB6, we still have electrons
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in the conduction band and holes in the valence band,
but both bands have positive curvature in the d-like elec-
trons. Since we are just considering the d-like carriers,
the conduction band case is the same as that of a con-
ventional semiconductor, electrons with positive effective
mass. However, the valence band has positive curvature
rather than negative as it would for a conventional semi-
conductor. This means that although there are holes in
the valence band, they have a positive effective mass as
well, so they contribute with the same sign as the elec-
trons in the conduction band.

Although this result was found by considering the sim-
plified band structure, again we can neglect the details
of the bands. For example, the H-point feature in the
valence band observed by ARPES18 shows up as a small
bump with negative curvature in the f -like part of the
dispersion. As discussed previously, this feature is very
close to the valence band, so although it creates some
curvature in the valence band, the effect is small. This
means that there are holes with negative effective mass
at these points in the valence band, but we assume that
the curvature is large, so that these carriers have a much
smaller mobility than the d-like carriers.

Because the dominant (d-like) carriers in the valence
and conduction band contribute to transport with the
same sign, we can return to Eq. 27 and conclude that
the total conductivity for all carriers in both bands is the
usual result as in Eq. 23, with µ = µd, and n defined as

n =
1

2
nell e

−(EC−EF )/kBT +
1

2
nell e

−(EF−EV )/kBT (28)

This means that we can use the usual transport relations
to connect our model to the experimental results, pro-
vided that this expression is used to calculate the carrier
density.

IV. TRANSPORT IN THE MODEL

A. Hall coeffcient and resistivity

We can now combine the results EC(z) and EV (z) of
the self-consistent calculation with Eq. 28 to define an
effective carrier density

neff =
1

t

∫ t/2

−t/2

1

2
nell

(
e−[EC(z)−EF ]/kBT

+ e−[EF−EV (z)]/kBT

)
dz

(29)

where t is the thickness of the sample (t = 200µm for our
test sample). We can then use this carrier density to com-
pare the model to transport data. We first concentrate
on the Hall coefficient (RH = 1/ne) because it does not
require any further parameters to be included; however,
if we assume that mobility is constant, the resistivity fol-
lows the same trend. This is not a good assumption, as

FIG. 5. Calculated Hall coefficient as a function of tempera-
ture for different values of Epin.

FIG. 6. Comparison of one value of Epin to a collection of
Hall data.9,11,17,32,45–47

mobility is often temperature dependent, but the same
feature around 10 K is seen in data for both Hall coeffi-
cient and resistivity.

Fig. 5 shows a plot of calculated Hall coefficient as
a function of temperature for various values of Epin.
As in the band structure result of Fig. 4, we observe
a crossover around 10 K. At temperatures above this
crossover, where the bulk transport is dominated by bulk
effects, all values of Epin yield the same curve. This is
expected because in this region, the accumulation length
is always much less than the sample size, regardless of
Epin. Below the crossover, however, there is some varia-
tion. In this region, the amount of bending influences the
accumulation length, so the magnitude of the Hall coef-
ficient changes with Epin. As mentioned previously, in
this region, the activation energy can also be determined
by Ea = Egap/2− Epin.

The calculated Hall coefficient for Epin = 5.5 meV is
plotted along a collection of data in Fig. 6. The data
agrees very well above about 10-12 K, and this agree-
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ment suggests that the bulk carrier density in SmB6 is
fairly consistent across samples. Below about 10-12 K,
the data exhibits a variation of about an order of mag-
nitude. We do not suggest a mechanism for this varia-
tion, but we do note that in this temperature range, our
model suggests that the bulk conduction is dominated
by the surface. Around 10-12 K, a feature is observed by
all researchers, and this corresponds to the crossover dis-
cussed previously, between bulk conduction dominated
by bulk effects above the crossover and bulk conduction
dominated by surface effects below the crossover.

The calculated Hall coefficient from our model also
demonstrates a crossover at about 10-12 K and correctly
describes the shape of the data, although the magnitude
of our result does not agree with the data. This disagree-
ment was expected based on the simplifications made to
the dispersion. Previously, we estimated that these sim-
plifications yielded errors of not more than a few meV
in the dispersion, but this becomes very important for
the Hall coefficient calculation. We can estimate the size
of the expected discrepancy in the calculated Hall coeffi-
cient by using a Boltzmann factor, eΓ/kBT , where Γ is the
approximate width of the features that were neglected.
For Γ in the range of 1 to 3 meV in a temperature range
of 10 to 20 K, the model is expected to be off at least
by a factor of 2 and at most by a factor of 32. Our re-
sult was consistently a factor of about 5-6 greater than
the data, and this is within the expected range of the dis-
crepancy. Based on this estimate, agreement would likely
be improved by including more features of the dispersion
and DOS. However, this type of refinement would require
many more parameters to be introduced.

B. Thermopower

We also compare the model to thermopower data, be-
cause like the Hall coefficient, it does not require any fur-
ther parameters. In the relaxation time approximation,
thermopower for electrons in a semiconductor is given
by44

SC = −kB
e

[(
α+

5

2

)
− EC − EF

kBT

]
(30)

where the subscript denotes the conduction band, and α
is a constant between 0 and 2 that describes how energy
is related to scattering time (τ ∝ Eα). A similar expres-
sion can be obtained for holes in the valence band; it is
important to note that the sign is positive for holes in a
standard semiconductor. For a material containing both
electrons and holes, these can be combined according to

Stot =
SCσC + SV σV
σC + σV

. (31)

In the limit of an intrinsic semiconductor, where n = p,
the intrinsic carrier density in Eq. 11 and the usual con-
ductivity in Eq. 23 can be used to simplify this. As-
suming a quadratic dispersion for both the valence and

FIG. 7. Thermopower versus temperature for various values
of Epin. A feature can be seen around 10 K, as in the Hall
plot.

conduction bands, we obtain

S =
kB
e

[
b− 1

b+ 1

Egap
2kBT

+
3

4
ln
mn

mp

]
(32)

where b = µn/µp, and the subscripts refer to electrons
(n) and holes (p).32,44

Again, the picture is slightly different in SmB6. The
factor of 1/2 must be accounted for once again, but based
on the form of Eq. 31, it is clear that this factor cancels
out for thermopower. Also, the curvature of the valence
band means that the holes contribute with the same sign
as the electrons. Using the conductivity derived in Eq. 27
and the analogous result for the valence band in Eq. 31,
we can find the total thermopower in the model. Defining
εc(z) = EC(z)−EF and εv(z) = EF −EV (z), we obtain

S(z) = −kB
e

1

kBT

εc(z)e
−εc(z)/kBT + εv(z)e

−εv(z)/kBT

e−εc(z)/kBT + e−εv(z)/kBT

(33)
where z again refers to the location in the bulk in the
model. To get the total thermopower, we must integrate
this expression, but since thermopower is dependent on
conductivity and conductivity is dependent on z, it must
be integrated using a form similar to that of Eq. 31.
Thus, the effective thermopower across the bulk is

Seff =

∫ t/2
−t/2 S(z)σ(z)dz∫ t/2
−t/2 σ(z)dz

(34)

where t is the thickness of the sample (here t = 200 µm)
and σ(z) = n(z)eµ, where n(z) is given by the integrand
of Eq. 29.
Seff was calculated as a function of temperature for

various values of the pinning, shown in Fig. 7. Again,
a feature around about 10 K is evident, although it is
broader than the feature seen for the Hall effect. The
bulk behavior in Fig. 7 is the same for all values of Epin,
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FIG. 8. Comparison of calculation for one value of Epin (solid
line) to a collection of thermopower data.32,48 The effects of
the TI surface state crossover are also shown (dashed line).

but the surface behavior and prominence of the feature
varies.

Fig. 8 shows a collection of thermopower data with
a fit from the model. The data are consistent at high
temperatures, and in this regime, there is also excellent
agreement between the data and the model. As with the
Hall coefficient, this agreement is expected as bulk effects
dominate in this regime. At low temperatures, the data
are more diverse. We note that the crossover does not
occur at the same temperature in each data set shown,
but we do not propose a mechanism for this.

At high temperature, in the bulk-dominated regime,
there is good agreement between the data and the model.
A feature is also present in both the data and the model,
although it does not occur at exactly the same tempera-
ture for each set of data. At low temperature, a deviation
can be observed in the data, although it does not occur
at the same point in each data set. We attribute this de-
viation to the manifestation of the TI surface state near
4 K, which can be added to the calculation.

To estimate the contribution of the surface state, we
will again use Eq. 31,

Stot =
Sbσbt+ Ssσs
σbt+ σs

, (35)

where the subscripts b and s refer to bulk and surface con-
tributions, respectively, and the thickness t is included
so that the units match. From the theoretical treatment
of TI surface states,49 we expect that their contribution
is much smaller than the bulk contribution. Therefore,
only the first term will have a significant contribution
to the thermopower. Near the bulk-to-surface transport
crossover of Tc = 4 K, we also expect that the bulk
and surface will contribute similarly to transport, i.e.
σbt ≈ σs. Each of these can be approximated using the
form σ0e

Ea/kBT , where Ea is the activation energy (the
energy relevant to transport). For σs we use Tc = 4 K
in this expression, and for σbt we allow T to vary. We

also assume that near Tc, σ0 is about the same for both
surface and bulk contributions. Then the thermopower
near 4 K, with Ea = 3.47 meV,12 is approximately

Stot ≈
eEa/kBT

eEa/kBT + eEa/kBTc
Sb. (36)

This expression is shown in Fig. 8 with a dashed line, and
the result provides a better estimate of the data near 4
K than the fit from the calculation.

Our model, with the addition of the estimation of sur-
face effects, captures the low-temperature features of the
thermopower well. We note that there is not much ther-
mopower data available in the literature, which makes
it difficult to understand trends in the data as done for
the Hall coefficient. Our model agrees quite well with
the data from Sluchanko et al.32, but not as well with
the other data. Again, a discrepancy between the data
and the model is present, and again we attribute this to
neglecting the small features of the dispersion. Improved
agreement could likely be attained by adding more de-
tails of the dispersion to the model.

V. CONCLUSION

We have presented a new model to understand the dif-
ference between the spectroscopy and transport gaps in
SmB6 without relying on in-gap bulk states. Transport
measures an activation energy of 3-4 meV, or a gap of
6-8 meV, while spectroscopic methods measure a gap of
16-20 meV. This discrepancy between the two results has
often been explained by introducing a localized bulk state
in the gap, perhaps due to impurities, although other ex-
planations such as the presence of an indirect gap have
also been used. The effective mass approximation has
been used to understand such an in-gap impurity state,
because this method has been successful at describing
impurity states in many gapped materials. However, we
showed that the effective mass approximation fails when
it is applied to SmB6, suggesting that the in-gap impurity
state picture is not justified.

Instead, we suggested a new way of understanding
the SmB6 gap using self-consistent band-bending calcula-
tions. We simplified the well-known dispersion and cor-
responding density of states to capture the main char-
acteristics of SmB6 and modeled SmB6 as an intrinsic
semiconductor. We considered the possibility of band
bending, which is expected to arise from the presence
of excess surface charges. A self-consistent solution for
the potential was found by numerically solving Poisson’s
equation with this charge density across the bulk of a
test sample, with the boundary conditions simulating the
strength of the bending effects at the surface and enforc-
ing symmetry across the bulk.

The self-consistent solution was found for temperatures
from 4-40 K, and from this result the band structure
was calculated. In addition, the band structure result
was connected to measurable transport parameters using
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FIG. 9. Predicted thickness dependence of crossover for
Epin = 5.5 meV.

semiclassical transport theory modified for SmB6. Specif-
ically, we concentrated on Hall coefficient, resistivity, and
thermopower, as these do not require the addition of ad-
justable parameters to our model. The results of these
calculations demonstrated a crossover to bulk transport
dominated by bulk effects (in analogy with a standard
gapped material) at high temperatures, to bulk transport
dominated by surface effects at low temperature. The
calculated crossover temperature was 10-12 K, which ac-
counts for a feature that has been observed in transport
data near this temperature. The transport parameters
were compared to data, and although there was qual-
itative agreement between the data and the calculated
curves, their magnitudes did not agree. We attributed
the disagreement to neglecting some of the small fea-
tures of the actual dispersion in the model, and found
that a few meV of error in the dispersion could explain
the disagreement.

We also related the feature seen in transport data to
the accumulation length for a semiconductor. At high
temperatures, the accumulation length was much smaller
than the sample size, and at low temperatures, the ac-
cumulation length was much larger than the sample size.
We estimated that the crossover would occur when bulk
effects in terms of sample thickness and intrinsic carrier
density become comparable to surface effects in terms
of accumulation length and surface charges. Because of
this relationship between accumulation length and sam-

ple size, our model suggests that the crossover would oc-
cur at different temperatures for different sample thick-
nesses.

This suggests one straightforward way of testing our
model: measuring the location of the transport feature
around 10-12 K for samples of different thicknesses. For
a sample thinner than 200 µm, the crossover temperature
would be higher than the 10-12 K temperature calculated
in our simulation, and for a thicker sample, the crossover
temperature would be lower than 10-12 K. This depen-
dence on thickness is shown in Fig. 9 for samples from
20-2000 µm in thickness, and the change in the crossover
temperature is large enough to be experimentally mea-
surable. On the other hand, testing the model using a
method such as ARPES would be difficult. Since ARPES
probes at and near the surface, it might be expected that
changes in accumulation length could be detected. How-
ever, the ARPES penetration depth is tiny compared to
the accumulation length, even when high energy photons
that can penetrate farther into the bulk are used. Be-
cause of this, it would be difficult to directly image the
band bending effects using ARPES.

The divergence of the accumulation length in SmB6 at
low temperatures suggests that the gap is clean, similar
to the gap in a superconductor. This, combined with the
success of our model at describing a variety of data with-
out introducing bulk states in the gap, agrees well with
the observation that there is no residual bulk conduction
in SmB6 below the TI crossover temperature of about
4 K. Together, these observations imply that SmB6 is a
true TI; it does not exhibit bulk conduction below the TI
crossover temperature as all other known TIs do. This
would be exciting for research in technological applica-
tions that require a clean gap and no bulk conduction.
We also predict that our model could be extended to
other materials that have a dispersion similar to that of
SmB6, including alloys of SmB6.
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12 S. Wolgast, Ç. Kurdak, K. Sun, J. W. Allen, D.-J. Kim,
and Z. Fisk, Physical Review B 88, 180405(R) (2013).

13 M. Dzero, K. Sun, V. Galitski, and P. Coleman, Physical
Review Letters 104, 106408 (2010).

14 T. Takimoto, Journal of the Physical Society of Japan 80,
123710 (2011).

15 M. Dzero, K. Sun, P. Coleman, and V. Galitski, Physical
Review B 85, 045130 (2012).

16 L. Fu and C. L. Kane, Physical Review B 76, 045302
(2007).

17 D. J. Kim, S. Thomas, T. Grant, J. Botimer, Z. Fisk, and
J. Xia, Scientific Reports 3, 3150 (2013).

18 J. D. Denlinger, J. W. Allen, J.-S. Kang, K. Sun, J.-W.
Kim, J. H. Shim, B. I. Min, D.-J. Kim, and Z. Fisk,
(2014), arXiv:1312.6637 [cond-mat.str-el].

19 M. Neupane, N. Alidoust, S.-Y. Xu, T. Kondo, Y. Ishida,
D. J. Kim, C. Liu, I. Belopolski, Y. J. Jo, T.-R. Chang,
H.-T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil,
S. Shin, Z. Fisk, and M. Z. Hasan, Nature Communica-
tions 4, 2991 (2013).

20 N. Xu, P. K. Biswas, J. H. Dil, R. S. Dhaka, G. Landolt,
S. Muff, C. E. Matt, X. Shi, N. C. Plumb, M. Radovic,
E. Pomjakushina, K. Conder, A. Amato, S. V. Borisenko,
R. Yu, H.-M. Weng, Z. Fang, X. Dai, J. Mesot, H. Ding,
and M. Shi, Nature Communications 5, 4566 (2014).

21 M. Z. Hasan and C. L. Kane, Reviews of Modern Physics
82, 3045 (2010).

22 X.-L. Qi and S.-C. Zhang, Reviews of Modern Physics 83,
1057 (2011).

23 S. M. Sze, Semiconductor Devices Physics and Technology,
2nd ed. (John Wiley and Sons, 1985).

24 W. Kohn, Physical Review 105, 509 (1957).
25 K. Flachbart, K. Gloos, E. Konovalova, Y. Paderno,

M. Reiffers, P. Samuely, and P. Švec, Physical Review
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