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The fully self-consistent GW approximation is an established method for electronic structure
calculations. Its most serious deficiency is known to be an incorrect prediction of the dielectric
response. In this work we examine the GW approximation for the homogeneous electron gas and
find that problems with the dielectric response are drastically improved by enforcing the particle-
number conservation law in the polarization function. We also find that previously reported data for
the ground-state energy were contradicting each other well outside of reported error bounds. Some of
these results created a false impression of how accurate the fully self-consistent GW approximation
is. Our two independent implementations of the GW method agree with the data plotted in Ref. [15],
thus confirming only that data set. We also present values for other key Fermi-liquid properties.

Accurately solving the many-electron Schrodinger
equation for real solid-state systems is a major challenge
of great technological importance. Among available the-
oretical approaches, approximations based on diagram-
matic many-body perturbation theory [Il 2] are attrac-
tive because even at low order these approximations can
grasp the essential physics and allow to deal with the
long-range Coulomb interaction in the thermodynamic
limit. The widely used random-phase approximation
(RPA), for example, can qualitatively explain features of
real metals such as screening, plasmon and Friedel oscilla-
tions. In principle, the skeleton diagrammatic expansion
allows one to systematically improve on these results and
obtain accurate solutions to the many-electron problem.
In practice, however, progress is hindered because more
sophisticated lowest-order diagrammatic approximations
can lead to worse results, while a systematic evaluation
of the skeleton series seems computationally too expen-
sive within the conventional implementation (apart from
questions about series convergence).

The most widely used diagrammatic method for elec-
tronic structure calculations is the so-called GW approx-
imation [3H5]. While clearly going beyond regular RPA
by evaluating “bubble”-diagrams in a self-consistent way,
the GW approximation has an additional advantage of
being a conserving approximation (with respect to the re-
lation between the particle density n and Fermi momen-
tum kr) as shown by Kadanoff and Baym [6l [7]. It has
been established, however, that the GW approximation
fails to reproduce some key results for the two-particle
correlation functions and does not even properly describe
the plasmon properties, in contrast to RPA. This draw-
back has been clearly demonstrated for a homogeneous
electron gas (jellium model) by Holm and von Barth in
Ref. [8]. Moreover, incorrect screening properties are ex-

pected to have a feedback on single-particle spectra of
real materials for which the GW approximation some-
times fails to account for the observed value of the abso-
lute band-gap [9].

In this article we present a simple strategy to restore
the physical two-particle correlation properties within
the conventional GW approximation. Our trick can be
applied at every order of the skeleton expansion, and
does not produce any systematic bias in the infinite-
order limit for convergent series. It could therefore be
used in the future within a Diagrammatic Monte Carlo
approach [I0HI2]. We focus here on the jellium model,
describing Coulomb-interacting electrons moving against
a positively charged uniform background.

We also found that previously published results for the
ground-state energy per particle E/N obtained with the
standard GW approach were in strong (well outside of re-
ported error bounds) disagreement with each other, see
Refs. [8, M3HI5]. We have carefully developed two in-
dependent GW codes, which both confirm the ground-
state energy data plotted in Ref. [I5]. We provide accu-
rate values for the ground-state energy, the quasiparticle
Z-factor, and the effective mass renormalization m./m
(where m is the bare electron mass) at the Fermi level.

Formalism. Let us start by briefly reviewing the GW
approximation. It is based on the lowest-order skele-
ton diagrams for the irreducible self-energy 3, (o is the
spin index) and the irreducible polarization II. In the
position-imaginary time (r, 7)-representation it reads:

Za(rv T) = 7G0(T7 T)W(Ta 77—) ) (1)
I(r,7) = Z Go(r,7)Go(r,—7) , (2)

where G, is the one-body Green’s function and W the
effective screened interaction. These are self-consistently
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FIG. 1. Energy per electron (in Hartrees) as a function of
(T/er)? revealing the Fermi-liquid behavior. The solid line is
a linear fit giving a ground-state energy of E/N = 0.5783(2)
Ha.

defined through solutions of the Dyson equations in the
momentum-Matsubara frequency (k, w,, )-representation:

Go(kywn) ™t = G2k, wn) ™t = 3o (k,wy) , (3)
W(k,wn) " =V (k)™" = II(k,wn) , (4)

where V (k) = 4me?/k? is the bare Coulomb interaction
and GY is the free one-body Green’s function. Knowing
the one-body Green’s function G is sufficient for obtain-
ing the system’s energy, as well as quasiparticle proper-
ties such as m, and Z, see Refs. [II, 2]. We performed all
calculations at finite temperatures well below the Fermi
energy ep. For ground-state properties we extrapolated
results to zero temperature using the Fermi-liquid behav-
ior. In Fig. [If we show a typical plot for energy at rs = 1,
with standard definition of r¢ as the ratio of the typical
inter-particle spacing and the Bohr radius.

Dielectric response. The work by Holm and von
Barth [8] has established that the GW approximation
leads to unphysical behaviour of the two-particle corre-
lation functions. More precisely, it was found that the
spectral function S(k,w) of the irreducible polarization
has incorrect behavior at frequencies w > kvg, where vg
is the Fermi velocity; as a consequence, the real part of
the dielectric function e(k,w) = 1 — (4me?/k*)(k,w) at
small momenta k < kg has its zero shifted away from
the plasmon frequency w, = y/4mne?/m to completely
unphysical values, see Fig. 3 in Ref. [g].

Our results agree with this key observation: we also
find that at ¥ < kr and w, > kvp the irreducible
polarization is orders of magnitude larger than the ex-
pected values dictated by the plasmon mode, TI(k,w,) ~
—nk?/mw?2, see thorough discussion in Ref. [16]. More-
over, we find that this unphysical behavior can be traced
back to the numerical observation that the GW approx-
imation does not respect the dynamic particle number

conservation law, which implies that at zero momentum
II(k = 0,wy,) & dp0, or, identically, II(k = 0,7) = const.
Indeed, for an arbitrary interaction potential II is re-
lated to the density-density correlation function, x, via
I = —/ (1 - Vx), while x(k = 0,7) = (N(0)N(r)) =
const because the total number of particles N com-
mutes with the Hamiltonian. As a result, at zero mo-
mentum the density-density response is purely static,
x(k = 0,w, # 0) =0, see Ref. [16]. Instead, within the
GW approximation, one finds that II(k = 0,w,,) has sig-
nificant amplitudes at finite frequencies, and, correspond-
ingly, II(k,w, # 0) is not approaching zero when k — 0.
This also causes significant problems for the proper tech-
nical implementation of the GW approach in Coulomb
systems because (4me?/k?)II(k,w,) tends to diverge at
small momenta and forces one to consider extremely large
frequencies in the calculation of the screened interaction
wW.

Since all problems originate from the violation of the
dynamic particle conservation law, we propose a simple
strategy to enforce the physical behavior of TI(k, w,). All
one has to do is to perform a transformation

Ik, wy,) — I(k,w,) — II(0, wy,) + I1(0,0)6,, 0,  (5)
before calculating the dielectric response from the GW
solution. In other words, one has to subtract the spu-
rious frequency dependence at k = 0. Note that this
transformation is compatible with higher-order diagram-
matics and we suggest that it should be implemented
within the fully self-consistent skeleton schemes which
involve the self-consistent determination of II. Indeed,
in the large-order expansion limit the correction term is
supposed to vanish when II(k = 0,w,,) converges to the
correct physical behavior o 6, .

In Figs. ] and [3] we show how our protocol works in
practice by considering the case of r¢ = 1 at low tem-
perature T/ep = 0.02 and small momentum k/kp =
0.1. First, we performed analytic continuation of the
imaginary frequency data for e(k,w,) using a hybrid
of stochastic optimization [I7, 18] and consistent con-
straints [19, 20] methods to get the imaginary part
€”(k,w). Next, the real part € (k,w) is obtained from
the Kramers-Kronig relation. The improvement in terms
of eliminating the unphysical behavior is dramatic. Af-
ter the transformation, the high-frequency tail of €” (k, w)
gets suppressed by nearly two orders of magnitude. As a
result, the real part of the dielectric function now has its

(GW)

zero at wy ~ 0.89(1)w, and is approaching unity from

below at w > ep. [In order to have w;(,GW) to coincide
with w, precisely, one would need to divide II by Z2,
mimicking the effect of vertex corrections.] Everything
about the original GW data at frequencies w > kvg is
completely unsatisfactory.

Ground-state properties. Since we need G, anyway in

order to calculate II via Eq. we can easily extract



TABLE I. Minus the ground-state exchange-correlation energy per particle —Exc (in Hartree), the quasi-particle residue Z,
and the effective mass renormalization m./m at the Fermi level for the unpolarized 3D homogeneous electron gas. All these
quantities are obtained by using the standard GW approach, i.e. solving the set of Egs. —.

Ts 1 2 4 5 10
—Exc 0.5267(2) 0.2789(1) 0.1488(1) 0.1216(1) 0.06498(2)
A 0.899(1) 0.842(1) 0.769(2) 0.743(2) 0.658(2)
my/m 0.944(2) 0.931(2) 0.913(2) 0.906(2) 0.875(2)
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FIG. 2. Color online: Imaginary part of the dielectric func-

tion within the GW approximation at rs = 1, k/kr = 0.1,
and T'/ep = 0.02. Red dashed curve is the original GW re-
sult, and the solid black line is the corrected GW spectrum.
The crucial difference at frequencies w > kvr is clearly seen
in the inset.

Fermi-liquid properties from it and check them against
known results. The GW technique, self-consistently solv-
ing the above set of Eqgs. -, was implemented in the
past for jellium at zero temperature in Refs. [8] [13] [14]
and at finite temperature in Ref. [I5]. It was concluded
[13, [14] that the method produces ground-state ener-
gies that agree with diffusion Monte Carlo results [21] at
the sub-percent level (see also Table in the Supplemen-
tary material). Apparently, this conclusion was based
on data containing some systematic bias. We find that
our exchange-correlation energies differ from those of
Refs. [8, 13} 14] well outside the error bounds and by
an amount bigger than the difference between the GW
and various other approximations, for instance GW(©).
To ensure correctness of our results, we developed two
absolutely independent codes that did not share a sin-
gle common idea about grids and cutoffs for storing and
processing the data, Fourier transforms, and energy eval-

FIG. 3. Color online: Real part of the dielectric function
within the GW approximation at rs = 1, k/kr = 0.1, and
T/er = 0.02. The original GW result (red dashed curve)
completely misses the plasmon zero, and predicts unrealisti-
cally large response at frequencies above er. The corrected
result (solid black line) crosses zero within 10% of w, and
saturates to unity at w > er.

uation. Moreover, the second code was implemented for
the Yukawa potential and final results were recovered by
extrapolating the Yukawa screening wavevector to zero.
See Supplemental Material at [URL will be inserted by
publisher] for details about these two different implemen-
tations. Our data for the ground-state energy is found to
be in agreement only with the one plotted in Ref. [15]. Ul-
timately, four [22] independently developed finite-T codes
were compared and found to be in agreement with each
other within the error bounds reported in Table I.

For benchmark purposes we report here the ground-
state exchange-correlation energy, the quasi-particle Z-
factor, and the effective mass renormalization in Table [[
Error bounds were estimated from variations induced by
changing momentum-time grids, cutoffs, and extrapola-
tion procedures to the zero-temperature limit. All re-



sults in the table were obtained for the standard GW
formulation; i.e., the transformation procedure was
not applied when solving Egs. —.

While applying the transformation to the GW so-
lution vastly improves the two-body spectral properties,
it is natural to ask what impact it has on the Fermi-
liquid properties when applied at each iteration of the
self-consistent scheme; we abbreviate the correspond-
ing scheme as GW(II). The exchange-correlation en-
ergy, Z-factor and effective mass obtained in that way
are given in Table [ The relative change in exchange-
correlation energy ranges from about 1% for r, = 1 up
to almost 10% for ry = 10. Given that the relative differ-
ence in exchange-correlation energy calculated with the
standard GW approach and with the diffusion Monte
Carlo method [21] is a few percent, we conclude that the
GW(II) scheme has the same quality in terms of the ther-
modynamic properties while it improves the two-body
spectral function by orders of magnitude.

Conclusions. We have proposed a simple strategy to
drastically improve key properties of the two-particle cor-
relation functions within the GW approximation and ap-
plied it to the jellium model. The strategy is designed to
cure unphysical behavior of the polarization function II
that originates from the violation of the dynamic particle
conservation law. The very same trick can be applied to
other models and materials science systems, and can be
used in the Diagrammatic Monte Carlo approach that
considers higher-order vertex corrections (which should
correct the unphysical behavior of II). We also report
benchmark values of key Fermi liquid parameters for jel-
lium within the standard GW approximation and the
modified GW(II) version.
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TABLE II. Minus the ground-state exchange-correlation energy per particle —Ex¢ (in Hartree), the quasi-particle residue Z,
and the effective mass renormalization m./m at the Fermi level for the unpolarized 3D homogeneous electron gas. These are
obtained by using the modified GW, or GW(II), approach, i.e. by solving the set of Eqgs. - self-consistently and at the
same time applying the transformation Eq. to II at each iteration of the self-consistent scheme.

Ty 1 2 4 5 10

—Exc 0.5205(2) 0.2716(2) 0.1413(1) 0.1143(1) 0.05873(2)
Z 0.880(3) 0.808(2) 0.722(2) 0.692(3) 0.605(4)

m./m 0.934(3) 0.900(2) 0.834(2) 0.803(2) 0.673(4)
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