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Dynamical systems may host a number of remarkable symmetry-protected phases that are quali-
tatively different from their static analogs. In this work, we consider the phase space of symmetry-
respecting unitary evolutions in detail and identify several distinct classes of evolution that host
novel dynamical order. Using ideas from group cohomology, we construct a set of interacting Floquet
drives that generate dynamical symmetry-protected topological order for each nontrivial cohomol-
ogy class in every dimension, illustrating our construction with explicit two-dimensional examples.
We also identify a set of symmetry-protected Floquet drives that lie outside of the group cohomology
construction, and a further class of symmetry-respecting topological drives which host chiral edge
modes. We use these special drives to define a notion of phase (stable to a class of local perturba-
tions in the bulk) and the concepts of relative and absolute topological order, which can be applied
to many different classes of unitary evolutions. These include fully many-body localized unitary

evolutions and time crystals.

I. INTRODUCTION

Driven systems have recently been shown to support a
remarkable set of dynamical phases and phenomena for
which there is no static analog. In this rapidly evolv-
ing area, there has been a particular focus on novel
topological phases, whose boundaries may exhibit ex-
otic dynamical edge modes. Notably, a unified classifica-
tion of Floquet topological insulators has recently been
obtained!, and much progress has been made towards
understanding Floquet symmetry-protected topological
phases (FSPTs) in one dimension and higher®®. More
recently, systems have been proposed that break dis-
crete translational symmetry in the time domain (dubbed
‘time crystals’ or ‘m-spin glasses’)#4# 12 and dynamical
two-dimensional models have been obtained which pos-
sess a form of topological order that does not depend on
symmetry, and which is manifested as anomalous chiral
edge modes'14, Many of these exciting new phases are
well suited to experimental realization®: topological Flo-
quet states have been observed in photonic systemso18
and using cold atomst?2Y, and discrete time crystals have
also recently been realised22,

In this paper, we focus on novel bosonic Floquet sys-
tems with symmetry and strong interactions, which we
find may be entirely characterized by their edge behav-
ior. This is a form of holography peculiar to driven
systems that is analogous to the bulk-edge connection
of static symmetry-protected topological phases (SPTs)
(see Refs23%22 and references therein). For example, in
one dimension, FSPT phases are characterized by ir-
reducible representations of their protecting symmetry
group, which are manifested at the ends of an open
chain®"d, We find in this paper that, in all dimensions,
drives may be constructed which map product states at
a boundary onto nontrivial SPT states. This is an ex-
plicit realization in all dimensions of the idea of pumping
proposed in one and two dimensions in Ref3*%, Very re-
cently, after this work was largely complete, the pumping
approach was also explored in a set of Abelian models in

two dimensions in Ref®. In past work®®, FSPT phases
were conjectured to have a group cohomology classifica-
tion. Our work proves that cohomology classes define
distinct FSPT phases, which is indeed consistent with
this conjecture, although there are some important dif-
ferences in our approach that are discussed later.

The nontrivial drives that we construct capture an in-
herently dynamical kind of SPT order, which may be
characterized by an ‘effective edge unitary’, the action of
the evolution at the boundary of a d-dimensional open
system. Remarkably, these (d — 1)-dimensional effec-
tive edge unitaries cannot be generated in a symmetry-
preserving (d — 1)-dimensional system, and so are topo-
logically robust to local perturbations. We also discuss
a qualitatively different set of symmetry-protected drives
that are unique to two dimensions, and which are based
on the (non-symmetry protected) anomalous chiral drives
of Refs 1314 These are distinct from the FSPT phases
constructed based on group cohomology, and do not seem
to have been anticipated in the literature.

The notion of a phase in Floquet systems is a sub-
tle and delicate one: While a particular model drive
may have exotic topological properties, it is far harder
to demonstrate that this model is representative of a
wider class of models. To extend these special topological
drives to Floquet phases requires a careful consideration
of phase robustness, demonstrating stability to weak per-
turbations and heating effects that would inevitably arise
in a generic interacting, driven system. For this reason,
we spend the first part of this article discussing the phase
structure of dynamical systems in general.

To aid the discussion of phase robustness, we will de-
fine families of unitary evolutions whose endpoints sat-
isfy certain properties. For example, a family of unitary
evolutions could share the same, fixed endpoint. Within
such a family, one can define the relative order between
any two members and, in turn, define an analog of phase
based on this relative order. A particularly useful notion
of phase may be developed for endpoint unitaries which
possess a complete set of local integrals of motion, such as



in many-body localized (MBL) systems?®. In the static
case, in the presence of MBL, ground state order (such as
SPT order, topological order or spontaneous symmetry
breaking) can become a property of the entire spectrum,
and is then protected in the absence of a delocalization
transition®?82, In addition, MBL protects against heat-
ing effects?33 %l and may assist in the detection of edge
modes??32 and has recently been realized in a variety of
experimental settings®243, While the existence of MBL
in dimensions greater than one remains a matter of con-
jecture (and indeed, some doubt has recently been cast
on this conjecture*®*?) such phases are expected to be
robust on timescales that are exponentially large in the
disorder strength.

In this paper, as in some of our previous work" 14 we
disentangle the discussion of MBL from the topological
aspects of dynamical systems, which can be studied inde-
pendently. We discuss the phase structure of dynamical
systems in terms of the space of unitary evolution op-
erators, and use ideas from homotopy to classify phases
through the connectedness of this space. The advantage
of our approach is that we can discuss the topological
aspects of various types of nonthermal unitaries in a uni-
fied manner and can separate the more rigorously un-
derstood topological aspects of the study from the less
well-understood localization-related aspects. Thus, the
discussion may be easily extended to time crystals, for
example, as well as systems with only partial MBL. Our
study makes use of drives that we call loops, which have
the specific property that the Floquet Hamiltonian is ef-
fectively zero in a closed system, and is thus somewhat
different from other approaches which have focused on
bulk eigenstate order.

The structure of the paper is as follows. In Section [[I]
we discuss the phase space of unitary evolutions in de-
tail and explain the homotopic ideas that motivate the
unitary loop models we use throughout the document.
These ideas are explored further in Sec. [[TI, where we
discuss some properties of loops and the different types
of loop order that may arise. In Sec. [[V] we construct
a set of symmetric topological drives, based on the con-
struction of Refs?#14 which are nontrivial even in the
absence of symmetry restrictions. These motivate a set of
FSPT drives introduced in Sec. [V]that are outside of the
group cohomology paradigm. The bulk of the paper then
uses a group cohomology approach to construct a general
set of FSPT drives applicable to any unitary symmetry
group G in any dimension. We introduce the construc-
tion in two dimensions (with examples) in Sec. before
generalizing to all dimensions in Sec. [VII] In Sec. [VIII] we
discuss the utility of our nontrivial drives in describing
order in generic Floquet systems. Finally, we summarize
our results and make some concluding remarks in Sec. [[X]
Some of the less essential proofs and discussions are omit-
ted from the main text and may be found in the Appen-
dices. We also provide a detailed comparison between
our approach to the study of FSPT phases and other
approaches based on eigenstate order in Appendix

II. PHASE STRUCTURE OF UNITARY
EVOLUTIONS

Throughout this paper, we are interested in classifying
the types of stable order that can exist in the space of
unitary evolutions. With this aim in mind, we begin by
discussing some general concepts related to the nature
of this space and the subtle notion of a phase within
it. While the discussion will initially be general (and
fairly abstract), we will later place these ideas in a more
concrete setting.

A. Static Systems

It is useful to first recall the notion of a gapped quan-
tum phase in a static system. A particular gapped Hamil-
tonian may be thought of as belonging to a continuous
space of gapped Hamiltonians, .S, which we may restrict
by insisting that the Hamiltonians in the space obey
a particular set of symmetries and possibly have some
other shared features. (For instance, we may require that
they be noninteracting). We regard two gapped quantum
Hamiltonians as belonging to distinct phases only if there
is no way to adiabatically transform one Hamiltonian to
the other within this space (i.e. without closing the gap
or breaking any symmetry). A classification of static
quantum phases is therefore a statement about the basic
topology (connectedness) of the space S.

In the presence of localization, specifically MBL for
interacting systems29, the ordering properties of a given
gapped quantum phase may be shared by all or a large
fraction of the eigenstates of the Hamiltonian, rather
than just the ground state* 32, The order of these eigen-
states can then be protected by the conjectured stabil-
ity of MBL to local perturbations, and cannot change
in the absence of a delocalization transition. This per-
mits a definition of a distinct phase for MBL Hamilto-
nians with each type of order, without the need for a
persistent gap. A classification of MBL phases therefore
describes the topology of the space of MBL Hamiltoni-
ans, Sypr, (which may also have symmetry restrictions
imposed upon it).

B. General Concepts for Driven Systems

Unitary evolutions are inherently more complicated
than static systems, but in principle may also be classi-
fied by studying the topology of their (possibly restricted)
phase space. In this paper we restrict the discussion
to the space of unitary evolutions with no symmetries
(which we write as Sp) and spaces of unitary evolutions
which possess unitary symmetries belonging to a group
G (which we write as Sg).

Within these spaces, we may regard a unitary evolution
as being generated by some time-dependent Hamiltonian,



through

U(t) =T exp [—i /OtH(t’)dt’} , (1)

where, throughout this article, we take ¢ € [0, 1]. In this
way, a generic unitary evolution traces out a path in the
space Sp or Sg, starting at the origin, U(0) = I. If the
space is S¢, then the generating Hamiltonian satisfies the

property
V()H(t)V(9)~" = H(t), (2)

for all ¢t and for all g € G, where V' (g) is the global repre-
sentation of the group element g. The unitary evolution
satisfies the corresponding symmetry property

V(gUV(g)™  =U(®). 3)

In the more general case, one could also consider antiu-
nitary symmetries, which relate the unitary at time ¢ to
the unitary at some other time ¢'.

The effects of a local perturbation may be absorbed
into a continuous deformation of the unitary evolution.
However, it is clear that no unitary evolution is stable
to arbitrary local perturbations: Any unitary evolution
Ui(t) in the space can be continuously deformed to the
trivial unitary evolution U(t) = I and therefore into any
other Us(t). To obtain a meaningful classification, we
must therefore impose further restrictions on the types
of local perturbations, and thus on the space of unitary
evolutions. In other words, just as in the static case,
we must consider a restricted class of perturbations: a
symmetry restriction alone is clearly not sufficient.

A natural way of restricting the phase space of unitary
evolutions is to demand that the endpoint take a cer-
tain form, i.e., we consider a family of unitary evolutions
whose end points have some natural shared properties,
and restrict ourselves to local perturbations which do not
take us outside of this family. For example, we may re-
quire the unitary evolution to end at a particular point,
U(1) = P, or we may require its end point to have the
form U(t) = exp(—iHwnpL), where Hympy, is some MBL
Hamiltonian. The set of local perturbations that keep
the end point unitary fixed is rather limited, but still
defines a family of unitary evolutions which lives in an
infinite dimensional space. With the end point unitaries
restricted to those that have a complete set of local inte-
grals of motion, we expect the inherent stability of MBL
Hamiltonians to transfer to these driven systems, pro-
tecting them from local perturbations that do not drive
the end point through a delocalization transition. We
consider these specific cases further below, but for now
we keep the discussion general and write the restricted
space of endpoints as W.

If the space of endpoints W is itself disconnected (for
example, if it consists of MBL Hamiltonians with dif-
ferent SPT orders), then this automatically leads to a
discontinuity in the space of possible unitary evolutions.
This classification of endpoints is in some sense similar to

Figure 1. Diagram of the space of unitary evolutions, S (which
may correspond to Sy or some Si). W is a region of restricted
endpoints to which unique paths may be defined and the black
ellipse is a region that lies outside of S. C(P) is the unique
standard path to the point P € W, and U(P) is a different
unitary evolution that ends at P. The composition C(P)™" o

U(P) forms a noncontractible loop.

the classification of static phases and leads to one kind of
order in driven systems. However, there may in general
exist inequivalent paths with the same endpoint in W,
leading to an inherently dynamical kind of order with no
static analog. This motivates the definition of a unitary
loop: if we have two unitary evolutions U; and Us, which
end at the same point so that U;(1) = Uy(1) = P, then
the composition of unitary evolutions U; Lo Uy ends at
the identity. Explicitly, if U; is generated by Hamilto-
nian H;(t), the composition Uy LoU; is generated by the
Hamiltonian

Hy(2 0<
H(t) = { —Hg(éttz 1) 1/2

which runs one unitary evolution after the other, rescaled
to the time interval ¢ € [0,1]. More generally, we define
a unitary loop as any unitary evolution that, for a closed
system, satisfies U(0) = U(1) = I. Loops play an impor-
tant role in the classification of the phase space of unitary
evolutions, as we now show.

C. Absolute Order

In general, we consider some (possibly symmetry-
protected) space of unitary evolutions, S € {Sp,Sa},
which contains some region of restricted endpoints, W,
as shown in Fig. [I} Within S, we suppose there is a set of
non-contractible loops, {L}, which are uniquely labeled
by a collection of topological invariants that we collec-
tively write as n(L) (and sometimes refer to as the loop
order).

In order to facilitate definitions of order and phase for
unitary evolutions, the region W should be endowed with
certain properties. First, suppose that for every point



P € W, there is a unique ‘standard path’, C'(P), from the
origin to the point P (see below for examples of unitary
evolutions for which this assumption is expected to hold).
If this is true, then it follows that for any path U(P) that
ends at P, there is a unique unitary loop formed from
L(U) = C(P)~! o U(P), where o indicates the compo-
sition of paths (see Fig. |1)). This allows a definition of
absolute order for all evolutions U(P) that end at P, la-
beled by the loop order, n(L(U)), associated with L(U).

We may also relax the condition that there is a unique
standard path to each point P, and assume instead that
there is at least one standard path to each point P, writ-
ing the collection of standard paths as {C;(P)}. If every
loops C;(P)~! o C;(P) is trivial, then choosing any stan-
dard path gives the same definition of absolute phase. If
there is at least one nontrivial loop, then it may still be
possible to define the notion of relative order.

D. Relative Order

Suppose we have two points in W, P and P’, and are
interested in comparing the drives associated with the
paths U(P) and U'(P’). We may ask if it is possible to
deform U(P) into U’(P’) through a set of local pertur-
bations that keep the endpoint in W throughout the de-
formation. Suppose that S(P, P’) is a path from P to P’
contained entirely within region W. Then, if the loop or-
der associated with L(U,U’) = U'(P")~1oS(P, P")oU(P)
has order n for every path S(P, P’), then we may assert
that U(P) has loop order n relative to U’(P’).

We now reconsider the standard paths {C;(P)} intro-
duced above and again consider the path S(P, P’) that
connects P to P’ and that is contained within W. Sup-
pose this defines a continuous deformation of C'(P) along
the path, i.e. that the path C(t) = S(t) o C(P), where
S(t) is a parametrization of path S(P, P’), is homotopic
to C(P), as shown in Fig. [2l Then, we have a definition
of C(P’) that depends on C(P) and S(P,P’). If ev-
ery such S(P, P’) gives an equivalent definition of C(P’),
then there is a unique definition of C'(P’) given C(P). If
this property holds for every P’, then choosing any C;(P)
from {C;(P)} provides a unique definition of C;(P’), and
so we can use these to define a consistent notion of rela-
tive order. If this fails, then there are nontrivial loops in
the parameter space.

E. Spaces of Endpoint Unitaries

From the discussions above, it is clear that a useful
choice of W (the restricted region of endpoint unitaries),
is one in which there are no nontrivial loops. A simple
example where this is true is when W = P is a single
point. In this case, the relative phase of any pair of uni-
tary evolutions Uy, Us that end at P can be obtained by
calculating the loop order of the composition Uy LoUy.
There are other nontrivial choices of W, but a complete

Figure 2. Continuous path S(P, P') between standard paths
C(P) and C(P'). If C(t) is homotopic to C(P), then C(P’)
can be defined uniquely given C'(P). See main text for details.

discussion of these builds on our construction of noncon-
tractible loops. We therefore defer a discussion of these

until Sec. VIII

IIT. NONTRIVIAL UNITARY LOOPS
A. Properties of Loops

While a loop evolution satisfies U(1) = I on a closed
system, this will not generally be the case for the equiva-
lent open system. To define the open system version of a
unitary loop, we simply omit the terms in the generating
Hamiltonian H(t) that connect sites from either side of
the boundary cut, formally writing

Hop(t) = Ha(t) — Hedge(t)

for the terms in the Hamiltonian corresponding to the
open system, closed system and sites across the bound-
ary respectively. This is always a well-defined procedure,
since a physical H(t) may be written, at a given ¢, as
a sum of local (and symmetry preserving, if required)
terms. Similarly, we can define the open system version
of a Floquet Hamiltonian by excluding the terms from
Hp that connect sites across the boundary.

Using Lieb-Robinson bounds*®, it can be shown that
the open system unitary evolution corresponding a loop
in d dimensions differs from the identity only in a (d—1)-
dimensional region close to the boundary (see argument
in Ref?¥). We call the nontrivial (d — 1)-dimensional
component of this open system evolution at the end of
the drive the ‘effective edge unitary’,

Uop(1) = Uess- (5)

We will find that effective edge unitaries corresponding to
nontrivial loops are anomalous, in that they may not be
generated by any local (and symmetry-respecting) (d—1)-
dimensional Hamiltonian.



The observation that running a loop on an open sys-
tem leads to an effective unitary at the boundary leads us
to propose a definition of equivalence among loops. We
regard two loops acting on the same d-dimensional region
A as topologically equivalent if and only if the effective
edge unitary of one can be obtained from the effective
edge unitary of the other through the action of a (d —1)-
dimensional symmetry-preserving unitary time evolution
whose action is confined to the boundary dA. As pre-
sented, it might seem that this definition of equivalence
depends on the choice of boundary §A. In Appendix [A]
however, we show that this is not the case.

This notion of loop equivalence is connected to an-
other, homotopic notion of loop equivalence. We show
in Appendix [B] that if a loop Ly can be continuously de-
formed to a loop Ls, then L; and Lo are topologically
equivalent in the sense defined above, i.e. the effective
edge unitary of one can be obtained from the effective
edge unitary of the other through a (d — 1) dimensional
unitary transformation at the edge. It follows from this
that two unitary evolutions which can be continuously
deformed into each other have trivial relative order (as
defined in Sec. . It also follows that it is impossi-
ble to find a continuous path connecting unitary evolu-
tions which have a nontrivial relative topological order.
This is the analog in driven systems of the statement
that SPTs with different topological order cannot be con-
nected through an adiabatic path.

B. Types of Nontrivial Loop

Having discussed some important properties of unitary
loops, we now discuss the different types of nontrivial
loop that are the main concern of this paper. As intro-
duced previously, a nontrivial loop is one which cannot
be contracted to the trivial loop (U(t) = I) within the
space Sy or Sg. In two dimensions, the set of noncon-
tractible loops in Sy were discussed in Refs 1314 where it
was found they form anomalous chiral phases that may
be labeled by a pair of coprime integers.

For our purposes, we are primarily concerned with non-
contractible loops that are protected by some symmetry
group G, which fall into two qualitatively different cate-
gories (see Fig.[3). The first set consists of loops that are
noncontractible in Sg but which are also noncontractible
in Sp—in other words, they lead to anomalous edge uni-
taries that cannot be generated by any local Hamilto-
nian evolution at the boundary (even ignoring symme-
try restrictions). These nontrivial loops are related to
the anomalous chiral phases of Refs1314 and we refer
to them as Floquet symmetric topological drives (FST
drives).

The second set of symmetry-preserving noncon-
tractible loops consist of loops that are noncontractible in
Sc but contractible in Sy. In other words, their effective
edge unitaries may be generated by a local Hamiltonian
at the boundary that breaks the protecting symmetry.

Figure 3. Two distinct types of symmetry-preserving loops.
The gray region corresponds to S, while the gray and white
regions inside the large ellipse correspond to Sp. The filled
black circle lies outside of both Sy and Sg. L1 shows a non-
trivial FST loop that is noncontractible in both S¢ and Sop;
L2 shows a nontrivial FSPT loop that is noncontractible in
Sa but contractible in Sg.

We call these drives Floquet symmetry-protected topo-
logical drives (FSPT drives) in analogy with the nomen-
clature of static systems, because in the absence of sym-
metry, these loops are trivial. Under appropriate condi-
tions, these FSPT drives may be used to generate FSPT
phases.

In contrast to static systems, however, we can combine
symmetry-protected topological drives from each class,
either by running one nontrivial loop after the other, or
by running two nontrivial loops concurrently on a tensor
product of Hilbert spaces. For a sequence of two drives,
it is clear that the spaces Sy and S are closed. However,
an FST drive followed by an FSPT drive forms a hybrid
loop in the space S¢g, but is contractible to just the FST
loop in the space Sy.

Similarly, the spaces Sy and Sg are also closed with re-
spect to the loop stacking operation. If we stack an FST
drive with an FSPT drive, then the complete evolution
forms a hybrid loop in the space Sg, but is equivalent to
just the FST drive (stacked with a trivial evolution) in
the space Sp.

In the next section, Sec. [[V] we discuss FST drives
and their relation to the previously studied anomalous
chiral drives of Refs#44. In Sec. |V] we discuss a type of
symmetry-protected drive, based on these chiral drives,
which are qualitatively distinct from other FSPT drives.
In Sec. [VI] and Sec. [VII] the bulk of this paper considers
FSPT drives from a group cohomology perspective, be-
ginning with examples from 2d, before generalizing to all
dimensions.



IV. FLOQUET SYMMETRIC TOPOLOGICAL
DRIVES IN TWO DIMENSIONS

In this section, we consider two-dimensional FST
drives that correspond to nontrivial loops in Sg, but
which are also noncontractible as loops in Sy. The
existence of drives of this form was demonstrated in
Refs 1314 and we now recall some of their features.

An anomalous chiral drive in Sy may be constructed
from a set of elementary exchange moves, which act on
the Hilbert spaces of two neighboring sites (H, ® H,)
with the action

Urr/ |I‘,Ot> & |I‘l,ﬂ> = |I‘, ﬂ> ® |I‘l, Oé> ) (6)

where o and 3 are the initial states on sites r and r’
respectively. From these elementary moves, it is possible
to construct drives which have an effective edge unitary
that acts as a translation along the boundary.

To find examples of chiral anomalous drives in Sg, we
need to impose the restrictions that arise from the sym-
metry group. To do this, we assume that the state on
each site is labeled by an element g, that belongs to the
(left) regular representation of G. The global group ac-
tion V(g), corresponding to the group element g, then
acts on each on-site group element by left multiplica-
tion. With this setup, it is simple to verify that a generic
exchange move commutes with the action of the group,
since

V(9)Urr |1, 90) @ v/, g5) = |r,998) @ ', gga) (7)
- Urr’V(g) ‘I‘, goz) 0 ‘rlvgﬁ> .

Furthermore, if the group G has a decomposition G =
A x B, then we may write the local group element at
each site as g, = (da,ba), where a, € A and b, € B.
This allows us to consider exchanges that swap only one
of the two components,

Uy{'Lr’ ‘I‘, (am ba)>®|rl7 (aﬂ7 bﬁ» = |I‘, (aﬁ, ba)>®|r/a (aow bﬂ)) :

(3)
As for the exchange swap above, this partial exchange
operation also commutes with the group action, since

V(@)U Ir, (aa,ba)) @ |1, (aag, bg))
= |r, (aag, ba)) ® |r', (aq, bs)) (9)
= x(-lr’V(a) |I‘, (at)u ba)> ® |I‘/, (a,37b5)> 5

and the commutation with V(b) is trivial. By forming a
four-step drive out of the pairwise exchange operations
Ug, in the manner described in Ref#, an effective edge
unitary can be generated that uniformly translates group
elements a, around the boundary of an open system.
This drive cannot be generated by any local Hamilto-
nian at the edge (symmetric or otherwise), and is non-
contractible in both Sy and Sg.

More generally, a group G may have two different de-
compositions, A; x By and Ay X By, where the A; are the
same size and the B; are also the same size. A topological
symmetric drive that translates the component A; and

b b

n{o nyanfor Ny Nk Ny nf 0

nho1 s ng nlo g
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Figure 4. Edge action of a nontrivial FSPT drive that lies out-
side of the group cohomology construction. Blue a-particles
are translated to the left, while red b-particles are translated
to the right. The dashed green vertical line indicates where
the chain should be cut to form the open edge described in
the main text. The states |¢1) and |1)2) include M sites ei-
ther side of the cut, and are acted upon by the effective edge
unitary Uedqge. See main text for details.

a similar drive that translates the component As would
be equivalent in Sy, but are not necessarily equivalent
in Sg. We leave a discussion of these ideas, and a con-
sideration of groups which do not have a direct product
decomposition, to future work.

V. FSPT DRIVES OUTSIDE OF THE GROUP
COHOMOLOGY CONSTRUCTION

Motivated by the topological symmetric drives dis-
cussed above in Sec. we might also consider a related
set of FSPT drives (i.e. trivial in Sp) that are based on a
similar construction, and which are qualitatively different
from the group cohomological FSPT drives we introduce
in the next section.

Consider a group with decomposition G = A x B, in
which the groups A and B have the same size (and which
may correspond to the same group). We may now con-
struct a drive which, at the boundary, translates the on-
site a-component to the left but the on-site b component
to the right. In Sy, this drive transfers no net infor-
mation, and may be contracted to the identity. In Sg,
however, this loop is not necessarily contractible. The
group G = U(1) x U(1) gives an example of this, as we
now demonstrate.

We consider two species of hardcore boson on a two-
dimensional lattice, where particle number is conserved
separately for each species. The on-site Hilbert space
at site r may be represented by two numbers, (n¢,n2),
where nJ € {0,1} represents the number of particles of
species j at site r.

We may now construct a model whose effective edge
unitary translates the occupation of the a-particles to
the left and the b-particles to the right along the bound-
ary. Explicitly, this drive can be constructed by stacking



two copies of the model of Ref one for each species of
particle. Labeling the sites at the boundary from j =1
to j = N, the effective edge unitary has the action

(nf,n%))  (10)

(ntll7 nll)\/'—1> )

U |(n‘11,nl{); . (n?,ni-’); .

= |(”;an?\7)§ e (”?+17”$—1); e

as shown in Fig. [l Since the amount of quantum infor-
mation transported for each species is equal and opposite,
this is a trivial drive in So*¥. However, on the basis of
charge conservation arguments, as long as the two species
separately have number conservation, we are led to argue
that this is a nontrivial loop in Sg. This is equivalent to
the statement that the effective edge unitary cannot be
generated by a local, symmetric unitary evolution at the
boundary.

We will show this by contradiction, and therefore as-
sume initially that U.g can be generated by a local,
one-dimensional, symmetric Hamiltonian, Heg. If this
is the case, then we can also define unitary evolutions
for an open boundary (which has been cut into a one-
dimensional open chain), by excluding the terms in Heg
that connect sites across the cut. Due to Lieb-Robinson
bounds*®, following the arguments presented in Ref’4
it follows that U™ = UpqgelUSo5ed| where UR™/cloed
is the unitary evolution for the closed/open boundary,
and Ucgge is a local unitary evolution which has a finite
region of influence near each boundary. With this inter-
pretation, Uesqge may be seen as a unitary transformation
on this space that takes a state of the final evolved closed
system to a state of the final evolved open system.

Specifically, we assume that the action of Ueqge is con-
fined to a 22M-dimensional Hilbert space (spanning M
sites either side of the cut). For a given initial state,

|(n§,n}) ... (nf,nf); ... (n,nR)) (11)

the state in the space that Usqge acts on is |¢1) @ [2),
where

1) = } ni_ M+2anN M) (ntllvnl])\f—l)> (12)

WJ? :} nQvnN nanli) (nlIl\/I+1anJ)VIfl)>a (13)

as shown in Fig. @] Through a unitary transformation,
we change basis so that this state may be written,

[B0) = [0 apea e ) (nhronky) (1)
) = |(n5,m9): (nf,mh)s. ., (g 0)) - (15)

Acting in this new basis, Usqge must decompose into a

product form, Uy, ® Ug, where Uy, acts on ’1/~Jg> and pro-

duces a state at the left edge and Ug acts on ‘1&1

produce a state at the right edge. In addition, Uy, and
Ugr must individually preserve the U(1) x U(1) symme-
try. If the unitary did not have this form, the state which
results from the action of Uy would have an entangle-
ment of the bits at the left and right edges, which would

violate the Lieb-Robinson bound on the propagation of
information.

Now, Uy, maps the state ‘1/;2> onto some linear combi-

nation of final states of the form
|(ng’,nY); (ng',n8);. .. (nfr, nfp)) (16)

(where the n" are unknown), which must hold for an
arbitrary initial configuration of occupation numbers in

‘1/;2> However, the state in which all of the initial n®

occupation factors are one has total a-charge M + 1, and
cannot be mapped onto any possible final state, which
has maximum a-charge of M. This is a contradiction, and
so this drive cannot be generated by a local, symmetry-
preserving unitary evolution at the boundary.

The above construction can also be extended to other
continuous groups. For instance, by taking G = SU(2) x
SU(2) and labeling on-site states by the eigenvalues of
the total spin, we can construct drives which translate
the two different spin species in different directions, re-
sulting in a drive that is trivial in Sy but nontrivial in S¢g.
These considerations also apply to a large class of other
groups, including products of groups of the form above.
In addition, the elementary drives may be stacked and
run in sequence to give more complicated drives. For the
groups U(1) x U(1), the set of drives obtained in this way
has a natural Z classification (from the considerations of
Ref13014)

We note, however, that these arguments do not ap-
ply to finite groups. It is possible to show, at least for
some specific cases such as Zy X Zso, that similarly con-
structed drives are topologically trivial within Sg. This
is in contrast to the group cohomology construction that
we introduce in the next section, which requires Hilbert
spaces that scale as the size of the group, and so works
for finite groups but fails for continuous groups.

VI. GROUP COHOMOLOGY CONSTRUCTION
OF FSPT DRIVES IN TWO DIMENSIONS

We now introduce a set of FSPT drives based on group
cohomology elements. These drives are noncontractible
unitary loops that act as the identity in a closed system,
but which generate SPT order at the boundary of an open
system. In this section, we consider two-dimensional
drives on a square lattice, where the underlying concepts
can be seen most intuitively, and we will use the group
Zy X Zs as an illustrative example. In Sec. [VII} we gener-
alize the models to higher dimensions and more general
lattices and groups.

A. 75 x Zs Model in 2d

As a motivating example, we first describe a spe-
cific two-dimensional model protected by the symmetry
G = Za x Zy. We consider a square lattice (A) with two
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Figure 5. Square lattice for the 2d Zs X Zs model. Red and
blue points represent the two Zs degrees of freedom. Letters
ABCD label the four sites of a given plaquette. Shading
indicates the separation of each plaquette into two triangles.

Zo degrees of freedom per site, represented by points in
Fig. ol The two generators of the Zs X Zs symmetry may
be written

V(o) = H ox (17)

reA

Vir) =[]

reA

where o and 7 are Pauli matrices, and we can label a gen-
eral state by its eigenvalues under the on-site operators
{oZ,7£}, which we write as {s,tr}.

To define the unitary drive, it is helpful to imagine each
square plaquette as being formed of two triangles, indi-
cated by shading in Fig. [5l We also label the sites within
each plaquette with the letters ABC'D. Consider the fol-
lowing two-site Hamiltonian, which acts, for example, on
the A and B sites in a single plaquette,

Fr(2) :W[ z
AB )

A0pTh +0BTA + OATATE] (18)
7E[ 2 gL TE 4+ oA TE 4 05T z]
3 TA0BTA OATR OBTATRH] -

It is clear that ﬁfg does not preserve the global sym-
metry G, since it does not commute with the symmetry
generators in Eq. . However, if we evolve with this
Hamiltonian until time ¢ = 1, then the endpoint unitary
satisfies the following simple relations under the action
of the symmetry,

V(O’)eiin})EV(U)il — efiflffgfiﬁg%»iﬁz (19)
V(r)e Hib v (r)t = emifin=ilpill;

where the single-site Hamiltonians are

‘ro T 2 T 2 _z

Hj = —70AT 0aTa (20)
T T _2 T 2 2
HA:ZTA_ZUATA'

This motivates a three-site Hamiltonian, ﬁf]éc =

Al(f])g + I;f](;% + ngx, which cyclically connects the sites

around a shaded triangle in Fig. bl If we evolve the sys-
tem until ¢ = 1 with this new Hamiltonian, then the final
unitary e~ e will be symmetric under the symmetry
generators, since the nonsymmetric single-particle com-
ponents in Eq. will cancel out. We may formally
take the logarithm of this unitary operator to find the

effective three-site Hamiltonian

B3 T 2 2 2 = z 2z, 2, 2 z _z, 2, 2
Hype = 3 (0A9CTATE + 0BOGTATE + 0405TETE (21)

z z z z z z z z z z z z
—(0BOGTATE + OAORTATE + 040ETRETE) |

which is now explicitly symmetric under V(o) and V(1)
(since each term contains an even number of % and 7%
operators).

We extend this idea to the complete lattice, defining
the global Hamiltonian

S [#0e-0,). @)

plaquettes

HZQXZQ =

which is a sum of symmetric, commuting terms (note that
we choose a different orientation for shaded and unshaded
triangles). From the properties above, this generates a
unitary evolution that may be written at time ¢t = 1 as

e_inz XLy — H

plaquettes

g2 _ag@ g g ?)
—iH —1H +i1H iH
e AB ca cpt DB, (23)

where two terms in the exponent proportional to I:Igg

have cancelled out. Moreover, when the product over
plaquettes is taken, most of the terms in the exponent
will again cancel, since every pair of neighboring sites is
shared by two plaquettes, which generate two-site terms
in the exponent with opposite signs. The only nonzero
terms will arise at the edges of the system where there is
no cancellation; for a closed system, the unitary operator
is the identity. A

The Hamiltonian Hyz, «7z, therefore generates a unitary
loop. When evolved until ¢ = 1, the evolution acts as
the identity in the bulk, but leads to an effective edge
unitary at the boundary of an open system. In fact, as
argued in the next section, this unitary drive effectively
converts a product state at the edge to a non-trivial 1d
SPT state, and so the drive is nontrivial and describes
a dynamical 2d SPT phase. The novel behavior of this
unitary evolution is related to the nontrivial projective
representation of the group Zs X Zs. We now extend this
type of drive to other groups.

B. Projective Representations

In general, we aim to produce a nontrivial unitary drive
using a Hamiltonian Hg that is protected by some sym-
metry group G. The drive should behave trivially in the
bulk, but should lead to SPT order at the 1d boundary



of an open system. Since 1d SPTs are in one-to-one cor-
respondence with the projective representations of the
group G2 we begin by recalling some properties of
projective representations.

We write elements of the group G as g;, and recall that
operators P, (g) form a projective representation of G if
and only if

Py(9a)Pu(gn) = w(a, 96) P (9agn) (24)

for all g,,g € G, where w(ga,gs) € U(1) belongs to
the factor system of the projective representation. If all
w(ga, gp) are trivial, then the P,(g) form a linear rep-
resentation. More generally, the factor system has the

property

W(gas gv)w(gagv, ge) = W(gb, 9e)w(gas gvge).  (25)

For the current purpose, it is useful to define a related
set of U(1) phases through

(Ja> Jags) = W(gas gb)- (26)

(Note that both of these phases are related to 2-cocycles
from the theory of group cohomology, a relationship we
make explicit in Sec. . In terms of the a phases, the
relation in Eq. may be written in the useful form

a(9,99a)

g, 99) @)

(ga> 9v) = (99a; 99b)
In Appendix[C] we explicitly consider the nontrivial pro-
jective representation of the Abelian group G = Zs X Zs,
giving the U(1) phases w(gq, g») and a(ga, gp)-

C. Nontrivial Unitary Loop

We set up the system on a square lattice, where the
state on each site is an element from the (left) regular
representation of G. Each site can therefore be labeled
by a group element, which we write (for site r) as g,.

As for the Zs X Zo model, we label the four sites within
each plaquette as ABC'D and interpret each square pla-
quette as being formed from two triangles, as in Fig.
The Hamiltonian is then a sum over all group element
configurations on each plaquette,

- Y% |

plaquettes ga,9B,9¢,9D

(28)

Hy(94,98,9c) 194,98, 9¢c) (94, 9B, 9c|

+Hy(9B,9c,9p0) 98, 9c,9p) (9B, 9C, 9D| |+
with coefficients

Hy(94,98,9c) = Argla(ga, g9B) a (9B, 9c) @ (gc, ga)]
(29)

Hy(gB,9c,9p) = —Arg|a (9B, 9c) @ (9c,9p) @ (9D, 9B)]
(30)

P @ %
G @ %
GN®— 9 —=9 Iy

N

gN_]- ] 1 P i

b ot

Figure 6. Action of Ug(1) on a cylinder (for a general sym-
metry group GG). States at the edge are labeled by a group
element g; and sites at the edge are labeled from one to N. Pe-
riodic boundary conditions are in the vertical direction. Red
and blue arrows indicate the cancellation of U(1) phases in
the bulk and the non-cancellation of U(1) phases at the two
edges.

and where the Arg function takes values in the range
(—m, w]. It is implied that each term in the Hamiltonian
acts as the identity everywhere outside of the three sites
it depends upon explicitly, and it may be verified that
each term in the Hamiltonian commutes with every other.
When G = Zy X Zs, Hg may be reduced to the expression
for Hz,xz, given in Eq. .

We note a number of useful properties of this Hamil-
tonian. First, it preserves the symmetry associated with
the group G. To see this, we act with V(g), the global
symmetry operator associated with the regular represen-
tation of the group element g, to find

> > |

plaquettes 9a,9B,9C,9D

Hy(94,98,9¢) 994,998, 99¢) (994, 998, 99¢|

V(g)HeV(9) ™ = (31)

+Hy(98,9c,9p) |998,99c, 99p) (998, 99¢, 99D | } .

However, using Eq. , we see that

a(gA7gB)a(gB7gC)a(gCagA> (32)
=a(g994,998) a (998, 99c) @ (99¢, 994) »
and so Ha(ga,9B,9c) = Ha(g994,998,99c) and

Hy(98,9c,9p) = Hy(998.99c,99p). Since the Hamil-
tonian sums over all configurations of group elements, it
follows that

V(g)HcV(9)™' = He, (33)

and the Hamiltonian is symmetric under G.
Next we consider the action of the unitary evolution,
Ug(l) = exp (—iﬁg). Since He is a sum of commuting

terms, the unitary evolution operator may be written
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Ua(1) =

I 1l

plaquettes ga,9B,9¢,9D

[|9A793790><9A79B790| + Ha94.95:9¢) 191 gp. g0 (ga, 9B, 9o | X (34)

[|QB;9C,9D><QB,9079D‘ + etHv(98:90:90) |6 go, gp) <gBanggD|} ,

where |94, 9B, 9c){94, 9B, gc| projects onto the com-
plement of |94, 95, 9c) and where it may be seen that
the factors

4 94:95.9¢) — o (g4, gp) a (98, 9¢) @ (9c, 94)  (35)
etfv(98:90:90) — [/ (gp, go) a (9¢,9p) @ (9D, 98)] "

Consider the action of Ug(1) in the bulk. It is clear from
Fig. that every pair of neighboring sites (including diag-
onal B-C neighbors) is affected by two factors in Ug(1),
one contributing a phase of the form e*+ and the other
contributing a phase of the form e’fv. From Eq. ,
the action of Ug (1) due to the pair of neighboring states
gr and gy is then

a(grv gr/)

Ug(1)|...gr,gr/...>:...a(g g,)

U PR S A

(36)
which is trivial. A similar cancellation occurs for every
pair of neighboring sites in the bulk and so the operator
Uc(1) is the identity for a closed system. At the edges of
an open system, however, its action is nontrivial, as we
now demonstrate. Taking a cylinder with circumference
N and boundary states [{g;})®|{g;}), the action of Ug(1)
restricted to the two boundaries is

' ry _ g2, 91)(gs, g2) - - (g1, 9N )
Vet Hoh) @ Hoh) = Sgp g)atah.g8) - ol gh)

{gi}) @ {gi}) (37)

where we have labeled the sites consistently from one to
N on each edge of the cylinder (see Fig. @ Since each
edge forms a connected loop, if we act with the symmetry
generator V(g) then Eq. shows that the action of the
unitary will be unchanged.

By comparing the form of this resultant edge state to
the form of a nontrivial 1d SPT state®®, we see that the
drive acts on a trivial symmetric product state,

9 -@ S| ® S| e

il

to produce a nontrivial SPT state at the edge.

VII. GROUP COHOMOLOGY CONSTRUCTION
OF FSPT DRIVES IN ANY DIMENSION

We now place the drives introduced in the previous
section onto a more formal footing and, in the process,
generalize to all dimensions and lattices. Our aim will
again be to produce a unitary evolution that:

(

1. is symmetric under some group G
2. in a closed system yields U(1) =1

3. in an open system yields U(1) = Ueg, a nontriv-
ial effective edge unitary that generates a (d — 1)-
dimensional SPT phase from a trivial product
state.

The setup of these drives requires some mathematical
background, which we begin by introducing.

A. Simplicial Complexes, Branching Structures,
and Group Cohomology

In an effort to keep the discussion concise, we will de-
scribe the mathematical framework only briefly in this
section. For further details, we refer the reader to
Refs 2353,

We define the system on an oriented manifold, M,
which is triangulated to form a simplicial complex. In
most physical systems, the sites of a real d-dimensional
lattice can be identified with the vertices of the simplicial
complex, with higher dimensional simplices defined that
connect nearby points. In general, there will be many dif-
ferent ways of triangulating the manifold M. While the
Hamiltonian we write down will depend on this choice,
the topological order of the unitary evolution will not.

We further equip this oriented, simplicial complex with
a branching structure®?, which is a way of consistently
assigning arrows to each line segment, such that there
are no oriented loops around any single triangle. A sim-
ple way to generate a branching structure is to number
the vertices of the simplicial complex from one to Ny,
and then to draw an arrow on each edge in the direction
of increasing index. There are many different possible
branching structures for a given simplicial complex, but
the topological order of the drives we define below are
again independent of this choice. See Fig. [7] for two pos-
sible triangulations and branching structures for a 2d set
of points.

The final piece of mathematical machinery we require
is the notion of a nontrivial n-cocycle from the theory of
group cohomology?323. For a group G and module M,
an n-cochain is a map v, : G**! — M that satisfies

9 vn(90: 915> 9n) = Vn(990, 991, - - ->99n)- (39)

For our purposes, the module M is simply the Abelian
group U(1). The set of cochains forms an Abelian group,
C™|G, M], under the multiplicative operation that takes

+Gn)-
(40)

V(go,gl, ce ,gn)V/(go,gl, ce agn) = V/I(go,gl» ce



Figure 7. Two possible triangulations and branching struc-
tures for a 2d set of points.

A

Figure 8. Ordering of vertices within a branched 2-simplex
and a branched 3-simplex.

In addition to the above, an operator d, may be de-
fined that maps elements from v, onto elements from
Vn+1 (see Ref. 23 for the explicit form of this operator).
This allows us to define two useful Abelian subgroups
of C"[G,M]: Z,[G,M] is the set n-cocycles, which are
elements of v, that satisfy d,v, = 1, while B,[G, M]
is the set of m-coboundaries, which are elements of v,
that take the form v, = d,,_1v,_1 for some v,,_1. The
nth cohomology group is then given by H"[G, M| =
Z"[G,M]/B"[G,M]. In d dimensions, we require ele-
ments from the dth cohomology group H?[G, M].

A nontrivial 2-cocycle, defined in this way, is in one-to-
one correspondence with the factor system of a projective
representation of G, through

W(gavgb) = VZ(lvgavgagb)' (41)
|

V(g)ﬁio,ih...,idv(g)_l =

Gigs--:Gig

= D (=D fggy,

Gigs--19ig

ST (1)) f (g
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If this substitution is made in the discussion below, then
the 2d Hamiltonian introduced in the previous section
can be recovered.

B. Group Cohomology Hamiltonian

We now use the elements introduced above to write
down a general Floquet SPT Hamiltonian. For a d-
dimensional simplicial complex with a branching struc-
ture, we label the vertices within each d-simplex as
{i0,%1,...,14}, ordered according to how many arrows
(associated with the branching structure) point towards
them. Fig. [§] shows the explicit vertex ordering for a
2-simplex and a 3-simplex.

As before, we associate the state on each vertex with
an element g, which belongs to the regular representa-
tion of group G. We write the states on a d-simplex as
|Gio» Girs- - - 9iy), Where g;, gives the state at vertex ig,
etc. With each such d-simplex, we associate the following
Hermitian operator,

Hio,il,“.,id = Z (_I)S(io """ tal f (giov s 7gid)
Gigs-19ig
|gio’gi15""gid> <giU7gil7"'7gid‘7 (42)
where f (gi,,---,9i,) is the unique number in the range
(—m, w] that satisfies
ef(gi0r0ia) — o, (Gigs -+ -+ Gia) » (43)

and sy, .. i,) 18 an orientation factor that is zero if the
vertices {ig,...,iq} have the same orientation as the
manifold M, and is one if the vertices have the oppo-
site orientation to M.

The operator H;, ;,,... i, has a number of useful prop-
erties. First, it commutes with the global actions of the
group G. To see this, we write the global action of the
group element g as V(g) and find

7gid) ‘gg7;07"'7ggid> <ggi07"'7gg’id| (44)

2 99i2) 19Gi0s - -+ 99ia) (9Gi0s - - - 995l »

where in the second line we have used the relation in Eq. . Since the sum is over all group elements, the final

expression is equivalent to Hj, ;,....4,-

A second useful property of IA{iO,ihm,id is that it may be rewritten in the form

If[io,ilym,id = (Z Hk) mod 27, (45)
k

with

Ho= 3 (~1)oia) (1)} by (g, ...

Gigs--9ig

agika"'

agid) |gioagi13"'agid> <gi0,gi17"'7gid‘ . (46)



In the above, the caret indicates that g;, is omitted from
the arguments of hy, and hy is the unique number in the
range (—, w] that satisfies

eihk(gio,-u@ik,-~~791‘,d) ,gid)’ (47)
where 1g is the identity element in G. The equiva-
lence between these two expressions for H; ;, .. ;, uses a
well-known result from group cohomology theory, and is
proved in Ref23. We note that H, is independent of the
state g;, on vertex ix, and so we may formally regard it
as acting on the d — 1 simplex {ig, ... T Jid}

For the Hamiltonian of the complete system, we sum
over all d-simplices (indexed by p) to obtain

Hga= Zﬁﬁl““ = Z [(Z ﬁ,’;) mod 277] .
p k

’ (48)

- Vd(lGagi07"'7gik7"'

C. Nontrivial Unitary Evolution

i3

% %

Figure 9. Two 3-simplices that share a common 2-simplex.
Since both 3-simplices have the same orientation (which we
take to be positive), the contributions to Ug,3(1) from the
shared 2-simplex will be v5 *(1a, giq, gir, 9iz) from the left
3-simplex and va2(1la, Giy; Giy > gis) from the right 3-simplex,
which cancel.

We now show that this Hamiltonian generates a non-
trivial unitary evolution when evolved until ¢ =1 to give
Ug,a(l) = e *He.a, First, it is easy to verify that for
every (d — 1)-simplex that is shared by two d-simplices,
the two terms in Ug 4(1) corresponding to this (d — 1)-
simplex cancel out. This is shown pictorially in Fig. [0}
Thus, for a closed system, Ug 4(1) = 1.
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For an open system, however, there will be a (d — 1)-
dimensional boundary consisting of (d — 1)-simplices
whose terms in Ug 4(1) do not cancel. Acting on a prod-
uct state |[{g}), the open system unitary operator will
have the action

Ug.a(1) {g}) = H

{405+ rtd—1}

= (Ipuk ® Uerr) [{g}) (49)

where the product is only over the (d — 1)-simplices at
the boundary.

We now specifically consider a trivial product state,
which may be written as [¢) = |Ypuk) ® |hg—1), where
[tha—1) is the trivial symmetric product state on the (d —
1)-dimensional boundary of size N,

ha—1) = Z g1,

g15--,9N

7gid—1) |{g}>

Vq (giLH'"

The action of the unitary evolution produces the state
UG,d(l) |’(/}> = ‘¢bulk> X ’,(/}Vd—1>) where "l/)l/d71> is an SPT
state associated with v4_;. The effective edge unitary
Uogr is thus an operator that transforms a trivial SPT
state into a nontrivial one: it therefore cannot be ob-
tained through a local unitary evolution with a Hamil-
tonian that preserves the symmetry of G (but it can be
generated by a Hamiltonian that is not symmetric). Each
such Ug associated with a distinct cohomology class pro-
duces a distinct local unitary evolution of this form, and
acts on a (d — 1)-dimensional SPT state at the edge to
produce an SPT state in a different topological phase.

While the group cohomology classification of static
SPT states remains a conjecture, and there are indeed
states that lie outside of this classification®®, there are a
number of arguments which show that the states corre-
sponding to each cohomology class are distinct and de-
scribe different SPT phases. In addition to the construc-
tion presented in Ref?d, Ref® showed that the same
classification could be obtained by studying the anoma-
lous action of the symmetries on the edge. Further,
in Refs288 the authors showed that gauging distinct
group cohomology-based SPT phases gives rise to phases
with different forms of topological order. On this basis,
they argued that the corresponding SPT states could not
be deformed to one another, further supporting the idea
that, even if incomplete, the group cohomology classifi-
cation produces a set of distinct phases.

Our group cohomology construction gives rise to ef-
fective edge unitaries that relate trivial SPT phases to
nontrivial ones. Thus, any rigorous argument showing
that a particular static SPT phase is distinct from an-
other implies that the corresponding effective edge uni-
taries are also inequivalent (in the sense introduced in
Sec. . The arguments of Appendix |Bf then show fur-
ther that the corresponding bulk drives for distinct ele-
ments of HY[G,U(1)] are also inequivalent and cannot be
continuously deformed to one another. Thus, while the
group cohomology classification proposed in this paper



need not be complete, the corresponding classification of
static SPT phases allows us to argue that each distinct
cohomology element defines a distinct FSPT phase, with
the same level of confidence as for the static case.

We note that our work also provides a new perspec-
tive on static SPT phases: The SPT states classified
by group cohomology may be obtained from trivial SPT
phases through a local unitary evolution that commutes
with the symmetry generators, but it is known that this
unitary evolution cannot be generated by a local sym-
metric Hamiltonian in any finite time (i.e. it cannot be
generated by a symmetric local quantum circuit)®?. In
our work, through explicit construction, we have shown
that these states may be generated from a product state
by a symmetric finite-depth circuit at the boundary of
a higher-dimensional system. This may be one route to
generating SPT states experimentally.

D. Summary of Nontrivial Loop Order

In the preceding sections we introduced a general set of
FSPT drives applicable to any symmetry group G on any
manifold and in any number of dimensions. Specifically,
there exits a unitary evolution Uéd 4(t), corresponding to

each element from the cohomology group HY[G,U(1)],
which generates a nontrivial loop. Since elements from
H?G,U(1)] form an Abelian group, the unitary evolu-
tions Ug!,(t) also form an Abelian group—we can run
several drives in sequence, and the resulting FSPT drive
can be derived from the structure of H4[G,U(1)]. Any
FSPT loop in the same class as one of the group coho-
mology drives constructed above can be obtained from
it through a symmetric evolution at the edge, and may
therefore be labeled by the relevant cohomology element.
More generally, a nontrivial loop may also have or-
der (symmetry-protected or topological) that lies outside
of the group cohomology construction, as discussed in
Sec. [Vl and Sec. [Vl The action of the drives constructed
in Sec. [V]differ from the group cohomology drives in that
they seem to map trivial product states onto other trivial
product states. We leave a detailed investigation of how
these different types of order combine to future work.

VIII. ENDPOINT UNITARIES AND

DYNAMICAL PHASES

Having introduced a series of nontrivial loops, we now
discuss these evolutions in the context of homotopy, using
the ideas introduced in Sec. [[Il

We recall that in order to obtain a meaningful classi-
fication of unitary evolutions within the space Sy or Sg
using homotopy, we must restrict the set of endpoints to
a region W. To be a useful restriction, there should be
no nontrivial unitary loops contained wholly within W.

The simplest restriction takes W as a single point, P.
In this case, the relative order of any pair of unitary

13

evolutions, U; and Us, that end at P can be obtained by
calculating the loop order of the composition U Loy,
Within the space S, the nontrivial loops will have order
as described in Sec.

A more useful choice for W would allow us to com-
pare unitary evolutions with different endpoints. Con-
sider first the space Sy. From the explicit examples that
we know of loops in this space, it seems that such loops
all include points during the evolution where the uni-
tary operator cannot be expressed as e *¥ for any local
Hamiltonian H. This leads us to conjecture that the
space W of endpoint unitaries which can be expressed as
U(1) = e *HF for a local Floquet Hamiltonian Hr does
not have any nontrivial loops. From our previous discus-
sion, it then follows that there is a well-defined notion
of relative order between unitary evolutions that end in
the region W. If we also define the standard drive to the
endpoint U(1) = e *H* as that which is generated by the
constant Hamiltonian Hg, then there is also a notion of
absolute order for these unitary evolutions. The phases
thus defined are stable to perturbations which keep the
endpoints of the unitary evolutions within this space.

These considerations also immediately apply to the
subspace of unitary evolutions in Sy that have endpoints
of the form U(1) = e~*mBL where Hypr, is an MBL
Hamiltonian. These are of experimental interest since
MBL may be used to avoid the problem of heating in
Floquet systems?3341 and may also aid in the detection
of edge modes??32, However, it has not been proven that
MBL is stable to heating in dimensions d > 14947 and
for this reason, it is perhaps useful to separate out those
topological aspects which can be framed independently
of assumptions about MBL. Nevertheless, a generic MBL
unitary is expected to remain in the MBL phase when
perturbed by arbitrary local perturbations, and so MBL
unitaries lend themselves to a particularly robust notion
of phase.

Another useful choice for W within Sy is the set of
unitaries that correspond to time crystals, which have an
almost complete set of local integrals of motion. Again,
based on the form of the unitary evolution at interme-
diate points, we conjecture that this choice of W is also
free of nontrivial loops. Further, the ‘time-crystal order’
of unitary evolutions in this space has been argued to
be stable to arbitrary local perturbations?!Y, Note that
these considerations also apply to the chiral anomalous
drives discussed in Refs 1314 and not just the symmetric
ones discussed here.

We now consider the symmetry-protected space Sg.
We first note that if W is the set of all unitary evolutions
whose endpoints have MBL Hamiltonians (with symme-
try G) then this space certainly has nontrivial group
cohomology loops. This, in particular, means that the
space of unitary evolutions with endpoints of the form
U(1) = e *H* for some local Floquet Hamiltonian Hp,
also has nontrivial loops. To illustrate this point, con-
sider a version of the SPT Hamiltonian in Eq. 7 where



each term now comes with a random coefficient,

CI\J/I,SL = ZApr:),il,...,z‘d- (51)
P

The set { AP} may be taken, for example, from a standard
Normal distribution, so that H g{SL is an MBL Hamilto-
nian (subject to the general concerns about the stability
of MBL in d > 14947 and using the notion that an MBL
Hamiltonian has an extensive number of local integrals
of motion).

Now, since all eigenstates of this Hamiltonian may be
written in the form |g1,...,gn), they must come in de-
generate multiplets related by the action of the global
group symmetry operators. Thus, they exhibit a version
of spontaneous symmetry breaking, as may be explicitly
verified in the 2d Zy xZs case (and as was noted for the 1d
case in Ref#). By considering the path of MBL Hamilto-
nians ﬁ;\f[fL (s), where changing s alters the coefficients
AP according to AP(s) = AP(0) + s, we see that there are
nontrivial loops in this space of MBL Hamiltonian end-
points. Explicitly, taking s from zero to one yields the
unitary evolution U = ¢S Ug,a(1), where Ug 4(1) is
the nontrivial loop given in Sec. [VII] In this way, there
exist nontrivial loops within the endpoint space of MBL
Hamiltonians with symmetry G. These loops become
apparent using our homotopy formulation, but may be
missed in other approaches that rely exclusively on MBL.

Note, however, that for the groups of type U(1) x U(1),
for which we constructed FSPT drives outside the group
cohomology paradigm, we don’t expect any nontrivial
loops in this space. This is based on the discussion of the
space Sy given above. Thus, this space of endpoints (and
so also the space of endpoint MBL Hamiltonians with the
group symmetry) may each be used to define dynamical
phases of this type.

From the structure of the nontrivial loops, as well
as the arguments of?, one is led to believe that there
are no nontrivial group cohomology loops in the space
of MBL Hamiltonians without spontaneous symmetry
breaking (with or without non-trivial SPT order). We
can therefore take W to be the set of endpoint unitaries
given by U = e *HsPT.MBL where HgprmBL is an SPT-
ordered MBL Hamiltonian without spontaneous symme-
try breaking. Each class of SPT-ordered MBL Hamiltoni-
ans defines a distinct and disconnected space of endpoints
W. Similar considerations also apply to a set of unitary
evolutions whose endpoints have the form e *#V(T),
where V(T is a translation operator and e~*# commutes
with V(T'), as arises in the proposed drives of Ref?. If
the space defined by endpoints U(1) = e~ has no loops,
then the space of endpoints of the form U (1) = e~V (T)
does not either.

Finally, we could also choose W to be the space of
endpoint MBL Hamiltonians in S with some particular
type of topological order. Indeed, distinct classes of MBL
Hamiltonians of this form, such as those corresponding
to symmetry enriched topological phases, give rise to dis-
tinct disconnected spaces of endpoints with no loops. For
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each of these spaces, the existence of well-defined Floquet
Hamiltonians permits the definition of absolute order in
addition to the definition of relative order.

This is far from an exhaustive list of possible choices
of W. The utility of our approach is that any choice of
W may be handled within this framework.

IX. CONCLUSION

In this work, we have discussed bosonic Floquet topo-
logical phases with symmetry in all dimensions. We be-
gan with some general homotopic considerations about
the topology of the phase space of unitary evolutions and
argued that, in general, two types of Floquet order may
be identified. The first is related to the bulk eigenstate
order of the Floquet unitary at the end of the evolution,
while the second is related to the form of the complete
bulk evolution (and not just the end point). The latter is
an intrinsic dynamical order which has no static analog.

To define phases, we considered families of unitary evo-
lutions with end points in some fixed space, W and ar-
gued that these were stable to various classes of pertur-
bation depending on the nature of the space W. Within
this framework, two types of order could be discussed:
a relative order and an absolute order, each based on
the notion of loops (drives whose Floquet Hamiltonian is
z€ero).

We constructed a set of nontrivial loops based on group
cohomology in all dimensions, which associates a type of
dynamical FSPT order with each element of the cohomol-
ogy group H?[G,U(1)]. These loops were shown to have
nontrivial effective unitaries at the boundary, which map
trivial product states at the edge onto nontrivial SPT
states. An effective edge unitary of this kind cannot be
obtained from a local, finite-time, symmetric evolution
(i.e. from a local symmetric quantum circuit). We ar-
gued further that a loop cannot be transformed continu-
ously (in the space of symmetric loops) to another unless
their effective edge unitaries are related through a local
symmetric unitary evolution.

We also discussed a set of topological symmetric drives
based on the anomalous chiral drives of Ref 1314, These
exhibit chiral information transport at the boundary of
the open system, and cannot be deformed to the trivial
loop even in the absence of symmetry restrictions. This
motivated the construction of a class of FSPT drives that
lie outside of the group cohomology paradigm.

Although we defer a detailed comparison to Ap-
pendix[D] we note here that our work has a number of dif-
ferences from other approaches in the literature (based on
bulk eigenstate order). Notably, within our framework,
bulk eigenstate order does not seem to be associated with
(and cannot uniquely identify) the dynamical topological
loop order, in sharp contrast to static systems. However,
the notion of pumping in two dimensions proposed in
Refs #9658 has a direct analog in our work generalized
to all dimensions, related to the generation of nontrivial



SPT states at the boundary. It would be interesting to
further compare these approaches.

Our work also provides an interesting perspective on
static SPT phases. While SPT states cannot be gen-
erated from trivial product states by finite-depth sym-
metric local quantum circuits®”, here we have shown
(through explicit construction) that these states may be
generated from a product state by a symmetric local uni-
tary evolution at the boundary of a higher dimensional
system. This may be one route to generating these SPT
states experimentally.

The stability of MBL systems to local perturbations is
likely to transfer to unitary evolutions, and so one expects
there to be analogs of static MBL phases (SPT, sponta-
neous symmetry breaking phases, etc.) in driven systems.
In addition to these, new phases of eigenstate order not
present in static systems may also arise, such as sponta-
neous breaking of discrete time translation symmetry in
Floquet time crystals. For some of these classes of stable
unitary evolutions, our construction of nontrivial loops
shows that there exists a stable form of inherently dy-
namical order, manifested as a relative or absolute order
(or both) depending on the space under consideration.
The nature of the transitions between novel phases of
this kind is an interesting subject for future study.

Localization issues are the most pertinent for any ex-
perimental realization of these novel phases. While we
have made various conjectures about the existence of
nontrivial loops in a set of different spaces of MBL uni-
tary endpoints, it would be useful to substantiate these
with numerical studies or further theoretical investiga-
tion. In principle, the action of an effective edge unitary
may be detected by studying the switching of the eigen-
state order of the corresponding edge modes. However,
this involves the challenge of detecting closed SPT sys-
tems, for which the proposals of Ref34, for instance, do
not apply.
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Appendix A: Independence of Effective Edge
Unitary on Choice of Boundary

In this appendix, we show that the effective edge uni-
tary of a nontrivial drive is independent of the choice of
boundary for the open system (in terms of its topologi-
cal classification). As usual, we assume that the unitary
evolution of the system is generated by some symmetry-
respecting Hamiltonian H(t), which is a sum of local
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(a) (b)

Figure 10. (a) and (b): Two boundaries C; and C> of an
otherwise closed system, (a) on a generic 2d surface and (b)
after being deformed into a cylinder. The edge Hamilto-
nian Hegge(t) connects sites from each boundary, indicated
by dashed lines.

terms. For a nontrivial loop, the unitary operator of
a closed system is the identity. To obtain the unitary
evolution for the open system, we simply exclude terms
from H(t) that connect sites either side of the boundary
cut.

We consider a specific open system with two oriented
boundaries Cy and C5, which we assume are of equal size
(see Fig. . We may reconnect these two boundaries by
adding terms to H(¢) that connect sites from each ori-
ented boundary. This could be interpreted as deforming
the system into a cylinder, and then connecting the two
ends to form a torus. With this interpretation, Cy and
C5 have orientations as shown in Fig.

Specifically, we write the new Hamiltonian as

Hclosed(t) = Hopen(t) + Hedge(t)a

in terms of the Hamiltonian of the previous open system
and the Hamiltonian Hegge(t), which contains terms that
connect C'; to Cy. The evolution of this new, closed,
system must be the identity, since we have assumed that
the unitary evolution generated by H(t) is a nontrivial
loop.

Borrowing arguments from Ref“**, we may relate the
evolutions of the closed and open systems through

Uopen(t) = édge(t)Uclosed(t) = elzdge(t)’

where Uspen /closed (t) 15 generated by Hopen /closed (t) and
Usage(t) is generated by H/,,(t), a Hamiltonian localized
at the boundary between C7 and C that is obtained from
Heage(t) through conjugation with Uciosea (see Ref ).
Since every term in the Hamiltonian respects the sym-
metry G, and since Hedge(t) is a quasi-1d Hamiltonian,
the unitary Uy, (t) cannot generate nontrivial 1d SPT
order, and so Uy, is trivial. Furthermore, since Hopen(?)
only differs from Hjosed (t) away from C; and Co, Ue'dge(t)
must be localized near these regions (from the Lieb-
Robinson bound on the propagation of information). In

this way, we may write

(A1)

f,14

(A2)

édge(l) = UCI ® UCz? (A?’)



where Ug; only has support in the neighborhood of the
region C}.

Since Uggge(1) is trivial, its anomalous action near the
left edge (in the cylindrical interpretation) must be equal
to the anomalous action near the right edge, but with
the opposite orientation. However, it is evident from
Fig. b) that after deforming the surface into a cylin-
der, the boundaries C; and C5 do have opposite orien-
tation. In this way, we find that any choice of C; or Cy
yields the same anomalous action.

For a large enough system, and for large enought
boundaries C'; and C5, small deformations in the size
of the boundary may be accommodated through local
changes in the Hamiltonian at the edge, which cannot
affect the above conclusions. In this way, the argument
is also valid for C and C of different size, provided they
are large enough. While the argument presented above
is for two-dimensional systems, a d-dimensional general-
ization shows that the same conclusion holds in higher
dimensions as well.

Appendix B: Homotopy of Loops and Equivalence of
Effective Edge Unitaries

In this appendix, we show that if two loops, L1 and Lo,
are homotopic to each other, then their effective edge uni-
taries, Uelff and U, esz are equivalent up to local symmetric
perturbations. By equivalence, we say that Uelff and Ugﬂ
are equivalent if and only if

Ue = VU, (B1)
where V is a symmetric unitary evolution localized at
the edge. Homotopy is defined as in Sec. [[Il Specifi-
cally, Ly and Lo are homotopic if and only if there ex-
ists a (symmetric, local) homotopy Hamiltonian, H(s,t),
where H(0,t) generates Ly and H(1,t) generates Lo, such
that the end point of the evolution remains within some
fixed region of endpoints W for all 0 < s < 1. (For
example, W may be the set of endpoints of the form
U = e *vBL where Hypr, is an MBL Hamiltonian. See
Sec. [[0] for a full discussion of the phase space of unitary
evolutions).

With this definition, the homotopy Hamiltonian
H(s,t) defines a homotopy unitary operator U(s,t),
which we may expand at t = 1 to obtain

U(s+e,1) = lim

{efifl(l)AtefiH(lfAt)At efiH(At)At}
At—0

(B2)
where H(¢) is a shorthand for H(s + ¢€,t). We now write

H(s+e,t)=H(s,t)+ H'(s,t), (B3)

where H' can be made as small as desired by making
€ arbitrarily small. We may then write the homotopy

16

unitary as
. . ’
lim esz(s,l)Atesz (s,1)At
At—0
e—iH(s,At)Ate—iH’(s,At)At

U(s+e€1)=

(B4)
=U'(,1)U(s,1),

where U’ (e, 1) is some local unitary (not necessarily that
which is generated by H'(s,t)), and in the second line
we have used a similar rearrangement to that given in
Ref ™4,

Now, since U(s,1) and U(s+¢,1) are both symmetric,
it follows that

U'le,1) =U(s +¢,1)U(s,1)7* (B5)

is also symmetric and, further, that it is connected to the
identity as € — 0. Since this holds for every infinitesimal
step of the homotopy, it follows that U(0,1) = Uls and
U(1,1) = UZ; are equivalent in the sense of Eq. (BI).

Appendix C: Projective Representations of Zas X Zsg

The group Zso X Zs is an Abelian group of order four
with presentation

(a,bla® = b* = (ab)? = 1). (C1)

It is the direct product of two copies of the cyclic group
Zs, and in a physical setting, may be associated with a
system of two Ising spins. The group multiplication table
is shown in Tab. a).

In addition to the linear representations, the group
Zo X Zso also has a nontrivial projective representation,
which may be represented by the Pauli matrices®®

P,(1)=1I (C2)
P,(a) =0"
P,(b) =0~

P,(ab) = oY.

It may be verified that this is a projective representa-
tion of the group, as defined in Sec. [VIB] and that the
corresponding factor system takes the values given in
Tab. [[(b). The related U(1) o phases defined in Eq.
are also given in Tab. [[[c).

Appendix D: Eigenstate Order and Floquet Phases

In this section, we compare our group cohomology con-
struction of FSPT drives to other approaches used in the
literature.

An alternative approach to the classification of FSPT
phases given in Refs®® is based on studying the bulk
eigenstate order of closed systems. In this approach, one
maps the problem onto the classification of eigenstate or-
der in a static system with symmetry G xZ, which may be
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|1 a b ab  w(ga,g) ‘gb =1 a b ab a(ga, gv) ‘gb =1 a b ab

11 a bab g=1] 1 1 1 1 Ga—=1] 1 1 1 1

ala 1 ab b a 1 1 — 4 a 1 1 7 —

b|b ab 1 a b 1 i 1 —3 b 1 - 1 1

ablab b a 1. ab 1 =i 4 1 ab 1 i =i 1
(@ 0 (©

Table 1. (a) Group multiplication table for Zs x Z,. (b) factor system and (¢) U(1) « phases for the nontrivial projective

representation of Zs X Zs.

interpreted as G x Z, for large enough n that H4 1[G x
Zyn,U(1)] is equal to H4G, U(1)] x HYG,U(1)]. One
then regards the bulk Floquet unitary operator U as a
symmetry operator corresponding to discrete time trans-
lation. While U does not have the same form as the
on-site symmetries of G, it was argued in Ref™ that,
due to the finite speed of information flow, U can never-
theless be treated on equal footing with the other discrete
symmetries. The effective static symmetry group is then
enhanced to G X Z. A classification of such phases can be
obtained by studying the action of the symmetry group
G X Z at the edges of a restricted interval I in the bulk.

In our approach, the bulk eigenstate order of a Flo-
quet system is independent of its dynamical order, and
may not be detected by the above classification if the
restriction to the interval I is not carried out carefully.
For example, Ref® restricts the unitary evolution oper-
ator to this interval by considering only its final expres-
sion, U(1). Since a unitary loop acts as the identity in
the bulk, we may precede this evolution with a nontriv-
ial unitary loop without affecting U(1) or its restriction.
However, from the perspective adopted in this paper, this
drive will be different from the drive without the nontriv-
ial loop prepended. This shows by explicit construction
that the choice of U (as expressed in terms of local op-
erators) is not unique. A unique restriction for U(1) can
be obtained if the restriction to the interval I is imposed
for the duration of the evolution U(t), as in the suggested
restriction given in Eq. 3 of Ref®. As our work makes
clear, this kind of restriction is unavoidable (rather than
just a convenient choice as Ref® seems to suggest) if one
wishes to capture all dynamical topological order.

Ref® also proposed a set of nontrivial two-part drives,
which fall into this paradigm, whose unitaries take the
form U = e~ *HsPTV/(T). These consist of a drive with a
trivial Hamiltonian, whose unitary corresponds to the ac-
tion of a translation symmetry V (7', followed by a drive
with an SPT Hamiltonian Hgpr with group symmetry
G x Z. (Note that this is also the form of the 1d Flo-
quet drives proposed in Ref). It was then argued that
when the operator U is continuously deformed to V(T),
the group cohomology classification cannot change and
is therefore given by H4[G x Z,U(1)].

We may consider preceding drives of this form with a
nontrivial loop: For example, take a trivial Hgpr and
prepend the unitary evolution U = e~ *#sPTV/(T) with
a nontrivial loop. If this is carried out for the closed
system, the endpoint unitary may still be chosen to be
U = e *HsptV(T), which would lead to classification as
a trivial phase. However, from the perspective of this pa-
per, the drive is now nontrivial. The choice of endpoint
unitary could be fixed by considering its action on an
open system, but such a choice does not seem to be con-
tinuously deformable to V(T). This demonstrates that
for driven systems, there is not a unique choice for the
local decomposition of the time translation operator U
in a closed system. This is in contrast to static systems,
where there is always a unique choice of symmetry oper-
ator, independent of boundary conditions.

We note, however, the commonalities in predictions
as well as physical interpretation between the two ap-
proaches. Notably, the group cohomological part of
the classification of FSPTs agrees with our approach
based on loops, with the H¢[G, U(1)] part of the product
HM G x Z,U(1)] = H¥* G, U(1)] x HYG,U(1)] (ob-
tained using a Kiinneth formula®) seeming to account
for the classification of loops.

Another common aspect is the interpretation in terms
of pumping for the two-dimensional case®®. In Ref!®
it was argued that by gauging the full symmetry group,
G = G X Z, the effect of U was the same as introducing a
closed ‘symmetry-twist line’, which is analogous to a 1d
SPT phase. This was also a feature of the 1d classification
schemes®™"'”, An explicit construction of a family of such
drives in two dimensions was recently provided in Ref®
for Abelian symmetry groups. In our current work, we
find an explicit notion of pumping related to generating
nontrivial SPT states at the edge of the system, extended
to all dimensions, but we do not necessarily regard them
as emerging from the bulk as in Refs2/08,

While comparing approaches, we note that since we
consider a homotopic classification of loops, the topology
of a drive can be disentangled from the MBL restrictions
of the endpoint unitaries. Thus, we are not restricted
to cases where the eigenstates of the drive correspond to
some fully MBL Hamiltonian.
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