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Abstract

The band gaps of a few selected semiconductors/insulators are obtained from the self-consistent

solution of the Hedin’s equations. Two different schemes to include the vertex corrections are

studied: (i) the vertex function of the first-order (in the screened interaction W ) is applied in both

polarizability P and self-energy Σ, and (ii) the vertex function obtained from the Bethe-Salpeter

equation is used in P whereas the vertex of the first-order is used in Σ. Both schemes show consid-

erable improvement in the accuracy of the calculated band gaps as compared to the self-consistent

GW approach (scGW ) and to the self-consistent quasi-particle GW approach (QSGW ). To further

distinguish between the performances of two vertex-corrected schemes one has to properly take into

account the effect of the electron-phonon interaction on the calculated band gaps which appears

to be of the same magnitude as the difference between schemes i) and ii).
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Introduction

The ability to accurately predict band gaps in semiconductors/insulators is a long-

standing goal for computational physicists. Density functional theory1 (DFT) in its Lo-

cal Density Approximation (LDA) or in Generalized Gradient Approximation (GGA) has

been very successful in the prediction of the ground state properties, but it is incapable of

describing the excited-state properties such as the quasiparticle band structure in a quan-

titative way. Specifically, the average deviation in the calculated band gaps of semicon-

ductors/insulators is about 40-50% as can be estimated from Fig.1. The deviation becomes

even larger if one takes into account the effect of the electron-phonon (e-ph) interaction. The

common approach nowadays to address the band gap problem, therefore, is to use Hedin’s

GW approximation2 or its numerous extensions3–13 which often are more accurate than DFT

in this respect. A great variety of different GW -based schemes, which are available today,

allows one to select the most accurate one for a given material. On the other hand, the

same variety of approaches tells us that the search for an optimal method to calculate the

band gaps has not been finished yet. As it was discussed in the recent paper (Ref.[14],

which hereafter will be abbreviated as I), the success of many existing extensions of the

GW approach is based on the cancellation of errors which renders their systematic improve-

ment complicated. Besides, GW schemes do not provide information on the effect of the

diagrams beyond GW . For example, one cannot say whether the perturbation expansion is

convergent or not. Common route to go beyond GW approximation nowadays is to combine

the GW approach with the Time Dependent Density Functional Theory (TDDFT) through

the introduction of the exchange-correlation kernel fxc.
12,15,16 However, to the best of my

knowledge, until recently, there were no attempts to apply self-consistent purely many-body

extensions of the GW method to crystalline materials.

In I, a few schemes to solve the Hedin’s equations2,25 self-consistently (sc) and with higher

order diagrams (vertex corrections) included have been introduced. The schemes are not

based on the cancellation of errors. The main advantages of the schemes as compared to the

existing GW -based methods are the following: they are diagrammatic and self-consistent,

they do not apply the quasi-particle approximation for the Green’s function, they treat

full frequency dependence of interaction W in higher order diagrams, they apply vertex

corrections for both polarizability and self-energy. The schemes were successfully used in I
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FIG. 1: (Color online) Relative deviation of the calculated (in GGA) band gaps of selected semi-

conductors/insulators from the experimental band gaps (excluding the electron-phonon interac-

tion). Experimental data has been taken from the Refs.[17–19]. The horizontal line represents

the experimental data corrected by the effects of electron-phonon and spin-orbit interactions (zero

deviation). The corrections were taken from the Refs.[20–23]. The GGA results have been cited

from the Ref.[24].

to calculate the band widths in alkali metals (Na and K) and the band gaps in Si and LiF.

The accuracy of the obtained results was superior to the accuracy of the QSGW method and

it was generally within uncertainty of the experimental data, but the calculations presented

in I were very time consuming.

In this work, a few improvements of the algorithms presented in I are used, which makes

the approaches less computationally demanding. The improvements continue to explore the

fact that the diagrams beyond GW (vertex part) can generally be accurately evaluated with

less intensive numerical parameters as compared to the parameters one uses in the GW

part. This idea was partially used already in I. Namely, the number of band states (Nbnd)

(they are obtained from the effective Hartree-Fock problem10 on every iteration) used in the

vertex part was less than in the GW part. Also, the number of orbitals (φnl) inside the

MT (muffin-tin) spheres and the number of plane waves in the interstitial region (NG) to

represent the band states were smaller in the vertex part. In this work, the coarser k -mesh in

the Brillouin zone (with Nk points) and a smaller number of the Matsubara’s time/frequency

points (nτ/nω) for the vertex part have been used.

The plan of the paper is the following. Section I explains the selection of vertex corrected

schemes for this study and presents convergence checks. Section II provides the results

obtained and the discussion. The conclusions are given afterwords.
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I. METHODS AND CONVERGENCE CHECKS

In this work, for a systematic study of the band gap problem in semiconductors, two of

the six approaches introduced in I are used: B and D schemes. Scheme B is conserving and

represents the first step beyond the GW approximation where all diagrams up to the first

order (in the screened interaction W) are included in the vertex function (Fig.2). The same

vertex function (Γ = Γ1) is then applied for both the polarizability

P (12) =
∑

α

Gα(13)Γα(342)Gα(41), (1)

and the self-energy

Σα(12) = −Gα(14)Γα(425)W (51), (2)

where digits inside the brackets represent the space-time arguments and α is the spin index.

All relevant quantities (P, W, G, Σ) are iterated till the full self-consistency in scheme B. The

satisfaction of the macroscopic conservation laws is appealing, but the limited number of

the diagrams included in scheme B breaks down other relationships which should be fulfilled

in an exact theory. For instance, the polarizability in scheme B doesn’t match its natural

definition as a functional derivative of the electron density with respect to the electric field

(external plus induced). Thus, the polarizability in scheme B is not physical.

On the other hand, the polarizability in scheme D is physical by construction, as the

corresponding vertex function (Γ = ΓGW ) is obtained from the Bethe-Salpeter equation

(Fig.3) with the kernel (Θ = δΣ
δG
) in ”GW” approximation (Fig.4). Thus, in scheme D, the

polarizability (and the corresponding W) are not iterated till the full self-consistency but are

Γ1 = +

FIG. 2: First order approximation for the 3-point vertex function. Direct lines represent Green’s

function G and the wavy line represents the screened interaction W. The dot is for the trivial part

of the vertex function.
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ΓGW = + Θ + +...Θ Θ

FIG. 3: Ladder sequence for the 3-point vertex function with the kernel Θ (see Fig.4) as the rung

of the ladder.

evaluated only once, immediately after scGW calculation. The choice of the diagrams for self

energy in scheme D (equation (2) with Γ = Γ1) is a trade between the consistency with the

Bethe-Salpeter equation for the polarizability on one hand (the kernel of the Bethe-Salpeter

equation is obtained assuming Σ = GW ) and the explicit ”improvement” of self-energy itself

by including higher order skeleton diagrams on the other hand. Self energy and Green’s

function are iterated till full self-consistency in scheme D, similar to scheme B. Scheme D

represents an example of a diagrammatic approach where certain infinite series of diagrams

are included based on a specific physical principle (in this particular case - the requirement

of the microscopic charge preservation).

It is important to mention that the frequency dependence of W is taken into account

without approximations in both schemes B and D. This allows one to consider them as

advanced approaches as compared to the commonly used static approximation for W (taken

at zero frequency) or the plasmon-pole approximation.4 One more technical detail is of

importance: in the diagrams beyond ”GG” approximation for the polarizability and ”GW”

approximation for the self-energy all building blocks (G and W) are treated with the same

(reduced) basis set. Thus, no asymmetry is introduced in self-energy from the terms like

G ∗W ∗ Γ[G,W ] because all G and W (not only those which are the arguments of the Γ)

are expressed in the same reduced basis set.

As the above two vertex-corrected schemes represent different approaches for the se-

lection of diagrams, it seems to be interesting to apply them systematically for semicon-

Θ = + +

FIG. 4: The GW approximation for the irreducible 4-point kernel Θ. Direct lines represent the

Green’s function and wavy lines represent the screened interaction W.
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TABLE I: Dependence of the calculated band gap of MgO on the calculation setup for the diagrams

beyond GW . Scheme B (see the text for the details) has been used. φnl enumerates the orbitals

(shown as sequences of principal quantum numbers and orbital characters) inside MT spheres

which were used to represent the band states in the diagrams beyond GW approximation. The

temperature was 1000K.

Parameter Setup Band gap

Nbnd 0 9.31

5 8.81

10 8.40

20 8.28

30 8.29

φnl 3s(Mg)/2p(O) 8.56

3s3p(Mg)/3s2p(O) 8.40

3s3p3d(Mg)/3s2p3d(O) 8.28

3s3p3d4f(Mg)/3s2p3d4f(O) 8.27

NG 26 8.19

59 8.25

92 8.28

Nk 23 8.28

33 8.24

43 8.27

nτ , nω, nν 46 8.28

62 8.29

94 8.29

ducting/insulating materials. For the comparative purposes, the calculations with scGW

approach (scheme A) and with QSGW approach have also been performed in this study.

An important step is checking that the band gaps are converged with respect to the

calculation setup for the vertex part, which was less intensive as compared to the setup

for the GW part. Table I shows how the evaluated band gap of MgO (all studied in this

work materials show similar convergence) depends on the calculation setup for the vertex

part. The setup for the GW part was fixed at the level presented below in the Table II.

When a certain setup parameter (in the vertex part) was varied, the rest of the vertex

part parameters were kept at their values also indicated in Table II. As it follows, the

most sensitive parameter is the number of band states included in the basis set. However,

with about 20-30 bands being sufficient for the vertex part, this number is approximately
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FIG. 5: (Color online) Dependence of the density of states of MgO (from the effective Hartree-Fock

problem) on the quality of the representation of the band states. Line ’FULL’ corresponds to the

properly normalized band states (in this case they are represented with the sets of plane waves and

φ’s as in GW part, see Table II). The rest of the lines have been obtained with the sets of plane

waves and φ’s of different completeness. Each line is marked with the corresponding set of φ’s (first

entry, Mg/O), and the number of plane waves NG in the interstitial region (second entry). Two

vertical lines show the range of the band states (∼20 bands) used in the vertex part as a basis set.

Formula (D4) from Ref.[10] has been used to evaluate the spectral function. Smearing parameter

was set to 0.005 Ry to avoid extremely sharp peaks. The k -mesh 3 × 3 × 3 corresponding to the

vertex part was used.

seven times less than the number of band states needed for the GW part (Table II). One

can estimate from Table I that the uncertainty of the calculated band gap related to the

changing of the vertex part setup is about 0.03eV , which comprises less than 5% of the

vertex correction to the band gap (see Table III below). It is also a few times smaller
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FIG. 6: (Color online) The same as Figure 5 but for the low energy part of the spectrum.
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TABLE II: Setups of the calculations. Nk stands for the number of k-points in the Brillouin

zone. Nlapw is the number of linearized augmented plane waves (LAPW’s) in the basis set (GW

part). φnl enumerates all orbitals (shown as sequences of principal quantum numbers and orbital

characters) inside MT spheres which were used to represent the band states. Those of them shown

in bold were used to augment the plane waves. The rest are the local orbitals (LO’s). The total

number of bands used as a basis for the GW part of the calculations is the sum of all LO’s and

LAPW’s. The columns (Lmax/N)PB
MT show maximal orbital character (Lmax) and the total number

of product basis (PB) functions in the MT sphere for a specific atom. NPB
G

stands for the number

of PB functions in the interstitial region (GW part). NG shows (for the Vertex part) the number

of plane waves used to represent the band states and the PB functions in the interstitial region.

The number of points on the Matsubara’s time/frequency meshes was 62 in the GW part and 46

in the vertex part. The basis set of the band states in the vertex part included 20-30 bands closest

to the chemical potential.

GW part Vertex part

Nk Nlapw φnl (Lmax/N)PB
MT NPB

G
Nk φnl (Lmax/N)PB

MT NG

Si 83 190 3s3p3d4f5g6h7i2s4s5s2p4p5p4d5d5f6g7h(Si) 6/332(Si) 652 43 3s3p3d(Si) 4/44(Si) 59

SiC 63 144 3s3p3d4f5g6h7i2s4s2p4p4d5f6g(Si) 6/294(Si) 650 33 3s3p3d(Si) 4/45(Si) 92

2s2p3d4f5g6h7i3s4s3p4p4d5f6g(C) 6/291(C) 2s2p3d (C) 4/44(C)

C 83 144 2s2p3d4f5g6h7i1s3s4s3p4p4d5f(C) 6/275(C) 652 43 2s2p3d(C) 4/47(C) 59

GaAs 63 144 4s4p4d4f5g6h7i3s5s3p5p3d5d5f6g(Ga) 6/344(Ga) 650 33 4s4p4d(Ga) 4/90(Ga) 92

4s4p4d4f5g6h7i3s5s3p5p3d5d5f6g(As) 6/344(As) 4s4p4d(As) 4/90(As)

MgO 63 113 3s3p3d4f5g6h7i2s4s5s2p4p5p4d5d5f6g7h(Mg) 6/332(Mg) 380 33 3s3p3d(Mg) 4/97(Mg) 92

3s2p3d4f5g6h7i2s4s3p4p4d5d5f6g7h(O) 6/314(O) 3s2p3d(O) 4/90(O)

ZnS 63 190 4s4p3d4f5g6h7i3s5s6s3p5p6p4d5d6d5f6f6g7h(Zn) 6/381(Zn) 650 33 4s4p(Zn) 2/19(Zn) 92

3s3p3d4f5g6h7i2s4s5s2p4p5p4d5d5f6g7h(S) 6/292(S) 3s3p(S) 2/19(S)

ZnSe 63 190 4s4p3d4f5g6h7i3s5s6s3p5p6p4d5d6d5f6f6g7h(Zn) 6/381(Zn) 648 33 4s4p(Zn) 2/19(Zn) 92

4s4p4d4f5g6h7i3s5s6s3p5p6p3d5d6d5f6g7h(Se) 6/226(Se) 4s4p (Se) 2/19(Se)

LiF 63 113 2s2p3d4f5g6h7i1s3s4s3p4p4d5f6g7h(Li) 6/286(Li) 376 33 2s2p3d(Li) 4/44(Li) 92

2s2p3d4f5g6h7i3s4s3p4p4d5f6g7h(F) 6/286(F) 2s2p3d(F) 4/44(F)

NaCl 63 113 3s3p3d4f5g6h7i2s4s5s2p4p5p4d5d5f6g7h(Na) 6/332(Na) 376 33 3s3p(Na) 2/37(Na) 92

3s3p3d4f5g6h7i4s5s4p5p4d5d5f6g7h(Cl) 6/329(Cl) 3s3p(Cl) 2/33(Cl)

BN 63 113 2s2p3d4f5g6h7i1s3s3p4d(B) 6/255(B) 380 33 2s2p3d(B) 4/36(B) 92

2s2p3d4f5g6h7i3s3p4d(N) 6/255(N) 2s2p3d(N) 4/36(N)

AlP 63 190 3s3p3d4f5g6h7i2s4s2p4p4d5f(Al) 6/290(Al) 650 33 3s3p3d(Al) 4/45(Al) 92

3s3p3d4f5g6h7i2s4s2p4p4d5f(P) 6/290(P) 3s3p3d(P) 4/44(P)

than the difference between band gaps obtained in schemes B and D. Thus, the accuracy

is sufficiently good to allow us to compare the different schemes (at least at the level when

one neglects by the e-ph interaction).

As it was mentioned above, the basis set for the vertex part consists from the smaller

number of band states and the representation of these ”lower energy” band states inside the

MT spheres and in the interstitial region is provided with a reduced number of φnl-orbitals

and the plane waves correspondingly. So, it is interesting to check how this approximate
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TABLE III: Theoretical and experimental band gaps (eV). Abbreviations A, B, and D have been

introduced in I. Experimental data have been cited from Refs.[9,17–19]. Corrected experimental

results (electron-phonon/spin-orbit interaction) are based on Refs.[20–23].

GGA G0W0 Earlier QSGW Present work exp exp+corr

Ref.[24] Ref.[24] Ref.[9] Ref.[7] Ref.[26] QSGW A B D

Si 0.56 1.12 1.23 1.41 1.47 1.41 1.55 1.32 1.26 1.17 1.22-1.24

SiC 1.36 2.38 2.52 2.88 2.90 2.79 2.89 2.52 2.42 2.40 2.51

C 4.16 5.69 5.94 6.18 6.40 6.18 6.15 5.80 5.73 5.48 5.80-5.88

GaAs 0.42 1.15 1.93 1.85 1.75 1.96 2.27 1.80 1.72 1.52 1.69

MgO 4.75 7.52 9.16 9.29 9.42 9.31 8.24 7.96 7.83 7.98

ZnS 2.07 3.35 4.04 4.15 4.19 4.28 3.90 3.79 3.83 3.94

ZnSe 1.15 2.34 3.08 3.17 3.32 2.96 2.80 2.82 3.00

LiF 9.28 14.27 15.9 16.63 16.30 15.02 14.39 14.2 14.48

NaCl 5.12 7.92 9.81 9.25 8.55 8.49 8.5

BN 4.46 6.36 7.14 7.51 7.06 7.06 6.37 6.30 6.25 6.51,6.6

AlP 1.57 2.37 2.90 3.10 2.80 2.84 2.53 2.44 2.45 2.47

representation for the ”lower energy” band states affects their normalization and how it is

related to the convergence of the calculated band gap presented in the Table I. A convenient

way to compare the normalization of the band states is to plot the density of states (DOS)

(Figures 5 and 6). As one can see, the accuracy of the representation is very good at the

energies close to the chemical potential. The accuracy is under control in the interval of

the band states used as a basis in the vertex part of the calculations. The most important

φnl-orbitals for the vertex part are the 3s-orbitals of Mg and the 2p-orbitals of O. They

ensure proper normalization of the band states at low energies and they provide most of

the band gap correction (see Table I). The spd-basis set in the MT spheres and 59 plane

waves in the interstitial region allow to obtain well converged band gaps for this material.

Inclusion of the f-orbitals inside the MT spheres and further increasing the number of plane

waves in the interstitial region improve the normalization at higher energies (Fig.5), but do

not affect the calculated band gap much, providing a further support that the selected basis

set (Table II below) for the vertex part is sufficiently good for our purposes.

For the materials with a band gap, studied in this work, the quality of the k-mesh in the

Brillouin zone is not very critical and, correspondingly, it was safe to use the coarser meshes

like 3 × 3 × 3 or even 2 × 2 × 2 for the vertex part. In the case of metals, the using of the
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coarser meshes for the vertex part should still be appropriate with the exception of when

the vertex function is evaluated for zero (or very small) external bosonic frequency. In this

case, one has to make sure that the details of the Fermi surface are handled with sufficient

accuracy.

Table II shows the setups of the calculations for all materials studied in this work, dis-

tinguishing the basis sets used in the GW part and in the vertex part. The information

presented in Table II might be useful as a reference in the future. Experimental crystal

structures have been used: the diamond structure for Si and C, the zinc-blende structure for

SiC, GaAs, ZnS, ZnSe, BN, AlP, and the rocksalt (B1) structure for LiF, NaCl. Temperature

was fixed at 1000K.

II. RESULTS

The main results of this work are collected in Table III, where the band gaps obtained

with two vertex corrected schemes (B and D in the notations of I) are compared with other

theoretical results and with the experimental data. GGA and G0W0 results are cited from

the work [24] where the completeness of the basis set of the LAPW+LO method with respect

to the increase in the number of LO’s was specifically checked. The principal conclusion from

Table III is the following: vertex corrected schemes (B and D) allow one to considerably

improve the results from scGW/QSGW calculations. As one can see, the biggest correction

comes from the first order vertex (scheme B), and scheme D reduces the gaps from scheme

B a little more. Essentially, the difference between band gaps obtained with schemes B and

D (and the deviation of the corresponding gaps from the experimental data) is of about the

same magnitude or less than the correction of the band gaps originating from the electron-

phonon/spin-orbit interaction (MgO and LiF slightly deviate from this rule). The fact that

the effects of the electron-phonon interaction were evaluated only approximately (often with

use of the LDA wafe functions to evaluate the correction) makes it difficult to conclude

decisively wchich scheme (B or D) is better. Thus, further improvement in the theoretical

approach should, obviously, include electron-phonon interaction in a certain way.

As it was mentioned in the Introduction and as one can judge from the Table III, the GGA

band gaps deviate strongly from the experimental ones (often more than 50%). G0W0 calcu-

lations also underestimate the gaps with an average deviation of about 10-15% (in the case

10



of GaAs the underestimation is somewhat bigger - 40%). QSGW calculations in this work

have shown only marginal (if any) improvement as compared to the scGW approach and the

corresponding band gaps differ noticeably from the experimental data. Among the QSGW

results published earlier, the band gaps reported in Ref.[26] are the closest ones to the QSGW

gaps obtained in this study. There are considerable differences in the gaps reported in the

earlier QSGW works. Particularly, the gaps from Ref.[9] are systematically smaller (GaAs

is an exception) than the gaps reported in Refs.[7,26] and obtained in this study. Differences

in numerical methods (linear muffin-tin orbitals (LMTO) in [9], projector-augmented-wave

(PAW) in [7], and norm-conserving pseudo-potentials in [26]) can contribute to the discrep-

ancies among calculated band gaps. Besides, the construction of the quasiparticle spectrum

in [7] is somewhat different. The disagreements may also arise from the different degree of

convergence with respect to the basis set. This speculation appears when one thinks about

a rather strong effect of the high energy local orbitals (LO) in the LAPW+LO basis set

upon the calculated band gaps reported recently in G0W0 calculations.24,27–30

Analyzing the calculations performed with scheme D, one can learn about the conver-

gence of the diagrammatic series. Namely, every subsequent iteration of the Bethe-Salpeter

equation represents an addition of the more complicated diagram to the vertex function.

Figure 7 shows the convergence of this process. All studied materials show very good con-

vergence. After six iterations (9 in case of GaAs), the correction is reduced by two orders,
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which is enough for a very good convergence of the band gaps. The reason for a somewhat

slower convergence in the case of GaAs is not clear at this point and can be an objective of

a separate study.

Whereas the principal goal of this study was to clarify the effect of vertex corrections on

the calculated band gaps, it is obvious that other information can be extracted from the

calculations. As an example, Fig.8 shows the imaginary part of the inverse dielectric function

ǫ−1(q, ν) as a function of real frequency ν evaluated for the momentum q = 0.5ΓX (halfway

between Γ and X points in the Brillouin zone). The calculated results are compared with

the experimentally measured electron energy loss spectrum (EELS). Presented theoretical

curves were obtained by analytically continuing32 the ǫ−1(q, iν) calculated as a function

of Matsubara’s frequency. As one can see, by taking into account the multiple electron-

hole scattering through the solution of the Bethe-Salpeter equation (scheme D) one can

considerably improve the agreement with the experimental data. Two principal peaks at

approximately 15eV and 25eV are reproduced sufficiently well. The smaller peak at about

18eV noticeable in the experimental data is absent in the calculations, presumably because of

insufficient accuracy of the analytical continuation. Another drawback of the need to perform

analytical continuation is that the original data (on the imaginary axis) have to be of a very

high quality. Particularly, the function ǫ−1(q, ν) with ν on the real axis was stabilized only

when the number of Matsubara’s time points was increased up to 100-120. It is interesting,

that the band gaps, the evaluation of which also includes analytical continuation (of the

12



self-energy), show considerably faster convergence (Table I).

Of course, the calculation of the dielectric function and of the proprties related with it,

by itself does not represent anything new in computational solid state physics. In fact, the

Bethe-Salpeter equation as a tool for studying the excitons was introduced more than 50

years ago33 and the applications of it began as early as 1980.34 What is new in the present

work is that the kernel of the Bethe-Salpeter equation is obtained consistently from the scGW

calculation. At the same time, it is quite common even nowadays to use the LDA or the

G0W0 approximation to generate G and W for using in the Bethe-Salpeter equation. Often

one supplements the LDA with the scissor operator to correct the one-electron spectrum.

These common approximations are either not self-consistent or (like LDA) not diagrammatic

and, as a result, their connection with the Bethe-Salpeter equation is not clear. Another

step forward is the elimination of the so called static approximation for W in the kernel of

the Bethe-Salpeter equation which still is in common use.

III. CONCLUSIONS

In conclusion, two vertex corrected schemes to solve the Hedin’s equations self-

consistently have been applied to calculate the band gaps for a number of semiconduc-

tors/insulators. Undoubtedly, they both improve the results from scGW and QSGW cal-

culations considerably. For this class of materials, the approach based on the physical

polarizability (scheme D) results in slightly smaller band gaps than the conserving scheme

B. However, it is hard to say decisively which scheme is better because the difference in their

results is small and, in fact, is often less than the size of the electron-phonon effects, which

are known only approximately.

Comparisons with the experimental data suggest that one has to take the electron-phonon

effects into consideration if one wants to enhance the predictive power of the theoretical

approach.
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