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We introduce a methodology to treat different degrees of freedom at different levels of approxi-
mation. We use cluster DMFT (Dynamical Mean Field Theory) for the t2g electrons and single site
DMFT for the eg electrons to study the normal state of the iron pnictides and chalcogenides. In
the regime of moderate mass renormalizations, the self-energy is very local, justifying the success
of single site DMFT for these materials and for other Hunds metals. We solve the corresponding
impurity model with CTQMC (Continuous Time Quantum Monte-Carlo) and find that the minus
sign problem is not severe in regimes of moderate mass renormalization.

The unexpected discovery of superconductivity in the
iron pnictide based materials has opened a new era of
research in the field of condensed matter physics.1 Mul-
tiple approaches, starting from weak coupling such as the
random phase approximation (RPA) and strong coupling
approaches using lessons learned from the t-J model, have
been proposed, but there is not yet consensus in the com-
munity of what constitutes the proper theoretical frame-
work for describing these systems.2 It has been proposed
that iron pnictides and chalcogenides are important not
only because of their high temperature superconductiv-
ity, but because their normal state properties represent
a new class of strongly correlated systems, the Hunds
metals. They are distinct from doped Mott Hubbard
systems in that correlation effects in their physical prop-
erties derive from the Hunds rule coupling J, rather than
the Hubbard U.3,4 Many other interesting Hunds metals
have been recognized, as for example Ruthenates5 and
numerous 3d and 4d compounds6.

Dynamical Mean Field Theory7(DMFT) and its clus-
ter extensions8,9 have provided a good starting point for
the description of Mott Hubbard physics. It is now es-
tablished that it describes many puzzling properties of
three dimensional materials such as Vanadium oxides
near their finite temperature Mott transition.10 In ma-
terials such as cuprates, as the temperature is lowered,
the description in terms of single site DMFT gradually
breaks down. New phenomena such as momentum space
differentiation and the opening of a pseudogap takes
place,11–35 and cluster DMFT is essential. How differ-
ent cluster sizes and methods capture these effects has
been explored intensively.14,29,36–41 The iron pnictides
and chalcogenides have been extensively studied using
LDA+DMFT by several groups.3,4,42–44 It has been ar-
gued using the GW method, that the frequency depen-
dence of low order diagrams in perturbation theory in
these materials is very local.45 However, because of the
difficulties posed by the multiorbital nature of these com-
pounds, the accuracy of the local approximation beyond
the GW level has not been examined and is the main goal
of this paper.

Building on the work of Ref. 46, we introduce a cluster
extension for the treatment of iron pnictides, which is nu-

merically tractable using CTQMC. By comparing single
site and cluster DMFT, we establish that in a broad range
of parameters where the mass renormalizations are of the
order of 2 to 3, which corresponds to the experimental
situation in many iron pnictides and chalcogenides, the
local approximation is extraordinarily accurate, justify-
ing the success of a very large body of work.

For simplicity, we use in this work a tight-binding
hamiltonian h0(k) of FeAs layers with As treated in
second order perturbation theory, as presented by M. J.
Calderón et al.47 For the hopping amplitudes the val-
ues suggested for LaOFeAs are taken and scaled such
that the bandwidth is ≈ 4eV .48 However, the main con-
clusions of this work should not be very sensitive to the
parameterization used. The wave vectors k label the irre-
ducible representations of a glide-mirror symmetry group
instead of the usual translation symmetry group, so that
the Brillouin zone contains 1 Fe atom instead of 2 Fe
atoms, with hole pockets at the M and Γ points and
electron pockets at the X and Y points. Notice here that
this unfolding, which is exact in two dimensions, is not
exact when the FeAs layers are coupled, i.e., a transla-
tion operation perpendicular to the layers does not com-
mute with a glide mirror operation along the layers, and
the corresponding symmetry group is not abelian. The
correlations of the electrons within a d-shell are captured
by adding a local Coulomb interaction, parametrized by
the Hubbard repulsion U and the Hund’s rule coupling
J , see Appendix for more details.

We solve this model using DMFT and Dynamical Clus-
ter Approximation (DCA). DMFT starts by approximat-
ing the lattice self-energy locally with that of a single
site impurity model. This neglects all k-dependence of
the lattice self-energy. DCA retains some of the mo-
mentum dependence by first cutting the Brillouin zone
into patches of equal size, each patch PK enclosing a
coarse grained momentum K. The lattice self-energy is
then approximated by a piecewise constant function over
the patches and identified with that of a cluster impu-
rity model written K-space. In this work, we choose a
minimal patching46 which takes into account both the
symmetries and the electron-hole pocket structure of the
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Brillouin zone, see Fig. 1. One patch (P+) encloses the

FIG. 1. Left panel: Orbital character of the Fermi surface in
the unfolded Brillouin zone of the tight-binding hamiltonian47

used in this work. Right panel: Tiling of the Brillouin zone in
two patches P+ and P−, enclosing the holes pockets at Γ and
M and the electron pockets at X and Y respectively. This
patching is compatible with the lattice symmetries.

holes at (0, 0) and (π, π) and the other patch (P−) en-
closes the electrons at (π, 0) and (0, π).

The (cluster) impurity model is solved by continuous-
time Monte-Carlo sampling of its partition function, writ-
ten as a power series in the hybridization between impu-
rity and bath (CT-HYB)49–51. This solver is well suited
for strong and/or complex interactions as arising in the
context of realistic material simulations. The price to
pay is a complexity that scales with the dimension of the
Hilbert space of the impurity.

The 5 d-orbitals split into eg = {3z2 − r2, x2 − y2}
and t2g = {yz, zx, xy} degrees of freedom. Since the
latter contribute the dominant character of the bands
near the Fermi level, an idea to obtain a cluster impurity
problem amenable for CT-HYB is to apply DCA only to
the t2g orbitals, while the eg orbitals are treated within
DMFT. To make this idea more specific, it is convenient
to consider DMFT and DCA as approximations of the
Luttinger-Ward functional52 ΦUJ [G], a functional of the
dressed Green function G which depends on the inter-
acting part of the problem only, that is U and J in our
case. Its derivative is the self-energy, and together with
the Dyson equation

G−10 −G−1 = Σ[G] =
1

kT

δΦUJ [G]

δG
, (1)

the (approximate) Luttinger-Ward functional deter-
mines hence the (approximate) solution of the problem
with bare Green function G0. Diagrammatically, the
Luttinger-Ward functional is the sum of all vacuum-to-
vacuum skeleton diagrams, and DMFT keeps only the
diagrams with support on a site. In momentum space,
this corresponds to neglect conservation of momentum at
the vertices, which is partially restored in DCA by con-
serving at least the coarse grained momentum K. We
call the corresponding functionals Φloc

UJ [G] and Φcl
UJ [G],

respectively. In this functional formulation, the mixed

DMFT-DCA treatment of the orbitals that we propose
consists in approximating the lattice functional as

ΦUJ [G] = Φloc
UJ [G] + Φcl

Ũ J̃
[P̂t2gG]− Φloc

Ũ J̃
[P̂t2gG], (2)

where P̂t2g is the projector on t2g orbitals. One can think
of this as a selective improvement of the diagrammatic
summation by going from single site to cluster DCA for
the t2g orbitals which is corrected by subtracting the dou-
ble counting of the single site DMFT t2g diagrams. The

use of Ũ and J̃ reflects the screening of the bare interac-
tions by the elimination of the eg degrees of freedom in
the cluster corrections. In the Appendix, we show how
the screening is determined and how the mixed DMFT-
DCA scheme is solved in practice. For the sake of com-
pleteness, the solution of the DMFT equations and the
impurity models are detailed as well.

In the following, all energies are given in units of
eV and the filling is constrained to 6 electrons per
Fe atom. The upper panel in Fig. 2 shows the t2g
the self-energies obtained by DMFT and DCA at T =
174K, (U, Ũ) = (4.5, 4.5) and (J, J̃) = (0.45, 0.375).
The DCA self-energy is shown in a “real-space site ba-
sis” with local part (ΣK=+ + ΣK=−)/2 and non-local
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FIG. 2. (Color online) Comparison of the t2g self-energy
obtained by DMFT (real/imaginary part with thin/bold
lines) and DCA (local/non-local part in red/blue and
real/imaginary part with crosses/circles). All self-energies
are diagonal in orbital space (see Appendix). The left panels
show the degenerate yz, zx entries and the right panel shows
the xy entry. The temperature is T = 174K. In the upper
panels (U, Ũ) = (4.5, 4.5) and (J, J̃) = (0.45, 0.375) while in

the lower panels (U, Ũ) = (10.125, 9) and (J, J̃) = (0, 0).

part (ΣK=+ − ΣK=−)/2. The non-local self-energy is
essentially zero and the local self-energy is in excel-
lent agreement with DMFT. The quasiparticle weight is
(Zyz/zx, Zxy) = (0.4, 0.3) and the filling of the t2g-filling
per Fe atom is Nt2g = 3.186. To address the question
wether this is due to the Hund’s rule coupling or the or-
bital degeneracy, we set J = 0 but increase U in order to
stay in a correlated regime, see lower panel in Fig. 2. The
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FIG. 3. (Color online) Impurity spin susceptibility (see Eq. 3)
for DMFT (red squares) and DCA (blue circles) for parame-

ters (U, Ũ) = (4.5, 4.5) and (J, J̃) = (0.45, 0.375). The upper
panel plots the susceptibility as a function of Matsubara fre-
quencies for T = 174K. The lower panel plots the suscepti-
bility as function of the temperature for iνn = 0. The black
diamonds display the ratio between the DMFT and DCA spin
susceptibility, and its scale is displayed in the right y-axis.

self-energies are local as well, (Zyz/zx, Zxy) = (0.41, 0.39)
and Nt2g = 2.77.

Another question that arises is the locality at the two
particle level. To this end, we measure the impurity spin
susceptibility defined as

χz(iνn) =
1

NP

∫ β

0

eiνnτ 〈St2gz (τ)St2gz 〉dτ, (3)

where S
t2g
z is the total spin along the z direction of the

t2g degrees of freedom on the impurity, for both DMFT
(NP = 1) and DCA (NP = 2), see Fig. 3. We also plot
the ratio of the DCA and DMFT susceptibility which is
≈ 0.9, meaning that even at the two particle level, our
coarse graining does not show momentum space differen-
tiation. This is very different from the cuprate case.

Fig. 4 shows the average sign in the CT-HYB simula-
tions for the DCA impurity model for different tempera-
tures and Hund’s rule couplings. The sign rapidly drops
with increasing Hund’s rule coupling. This makes cluster
simulations of materials with large mass renormalizations
expensive, in particular at low temperatures.

To conclude, we have demonstrated that the local ap-
proximation describes well Hunds metals, such as many
iron-pnictides and chalcogenides, in their normal state.
In the region of large mass renormalizations, relevant to
materials such as FeTe, there is an onset of a severe minus
sign problem. In itself this does not prove non-locality of
the self-energies, but the investigation of this region will
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FIG. 4. Average sign in the CT-HYB simulations for the DCA
impurity model, in the left panel for (J, J̃) = (0.45, 0.375)
as function of the temperature and in the right panel for
T = 174K as a function of the Hund’s rule coupling (the

values are (J, J̃) = (0.45, 0.375), (0.488, 0.441), (0.506, 0.469)
and (0.525, 0.51) from left to right). The Coulomb repulsion

is (U, Ũ) = (4.5, 4.5) in both panels. The CT-HYB simula-
tions are carried out in the K-space single particle basis, see
Appendix.

require other impurity solvers and is outside the scope of
this work. We have solved the same model Hamiltonian
with other two site tiling of the Brillouin zone. The re-
sults support our conclusion that the self energy is local,
with little tendency towards momentum space differenti-
ation in the parameter range explored in this paper.

We can rationalize our results by noticing that or-
bital degeneracy generally makes the spin-spin correla-
tions more classical and increases the frustration, mak-
ing single site DMFT treatments more accurate, an effect
noticed in early DMFT studies of orbitally degenerate
systems53. However, other considerations may be impor-
tant. Recently a three band Hamiltonian was studied at
larger values of the interactions U and J and strong mo-
mentum space differentiation was found54. Notice how-
ever that they considered a different dispersion relation,
suggesting that the dispersion of the iron pnictides is im-
portant.

Another possibility is that our cluster formulation is
too small to produce sizable precursors of the magneti-
cally ordered stripe state. Once these magnetic fluctua-
tions are included, k-dependence in the self-energy will
appear, as seen in the treatment of Ref. 55 with dual
fermions. Notice however that these effects appear only
sufficiently close to the magnetic transition, and our re-
sults will still remain valid at high temperatures where
the correlation length is short.

We believe that our findings of locality do not depend
of our treatment of the eg orbitals, which is limited to sin-
gle site DMFT. Treating them at the cluster DMFT level
is less important as these orbitals contribute less to the
Fermi surface. Confirming this by a full cluster DMFT
calculation including all 5 orbitals remains an interesting
open problem for the future.

We also comment on the role of non-local interactions.
These interactions play two roles. First, they generate a
k-dependence in the self-energy at the Hartree-Fock level,
but this effect should be thought of as already included
in the bare dispersions used as input to our studies. Sec-
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ond, the frequency dependence of the self-energy due to
non-local Coulomb interactions has been shown to be im-
portant in cluster DMFT studies of Ti2O3

56. The study
of this effect on pnictides and its possible relevance to
the nematic transition was recently suggested in Ref. 57,
which studied at the Hartree-Fock level. This work can
be extended using the methods of this paper, and is left
for future work.

More generally the methodology introduced in this pa-
per to treat different degrees of freedom at different levels
of approxmation should be widely applicable. This will
be useful for treating systems with multiple degrees of
freedom exhibiting different levels of non locality or dif-
ferent levels of correlation.

This work was supported by DOE DE-FG02-
99ER45761 (P.S. and G.K.) and NSF-DMR1405303
(K.H.). This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge Na-
tional Laboratory, which is supported by the Office of
Science of the US Department of Energy under Contract
No. DE-AC05-00OR22725.

APPENDIX

We begin here by writing down the equations for the
the mixed DMFT-DCA scheme as defined by Eqs. 1 and
2 by means of impurity models. We then show how the
effective interactions Ũ and J̃ are determined and the
equations are solved in practice. Finally, we detail the
impurity models.

A. Mixed DMFT-DCA equations

The functional derivative of Eq. 2 yields the approxi-
mation

Σ(k) =

(
Σloc
t2g + Σ̃cl

K − Σ̃loc 0

0 Σloc
eg

)
(4)

for the lattice self-energy written in k-space, where K =
+ (K = −) if k lies in the patch P+ (P−). The self-
energies on the right hand side of Eq. 4 are identified
with those of impurity models as follows:

(a) Σloc, a diagonal 5×5 matrix in d-shell orbital space
with components Σloc

t2g and Σloc
eg , is the self-energy

of a single site d-shell impurity model with interac-
tions U and J .

(b) Σ̃loc, a diagonal 3×3 matrix in t2g orbital space, is
the self-energy of a single site t2g-orbital impurity

model with effective interactions Ũ and J̃ .

(c) Σ̃cl
K, a diagonal 3×3 matrix in t2g orbital space for

each K, is the self-energy of a two-site t2g-orbital
cluster impurity model with effective interactions
Ũ and J̃ .

The non-interacting part of these impurity models is
encapsulated in the Weiss-Fields Gloc

0 , G̃loc
0 and G̃cl

0K,
which relate the self-energies with the interacting Greens
functions Gloc, G̃loc and G̃cl

K through the Dyson equa-
tions

(Gloc)−1 = (Gloc
0 )−1 −Σloc (5a)

(G̃loc)−1 = (G̃loc
0 )−1 − Σ̃loc (5b)

(G̃cl
K)−1 = (G̃cl

0K)−1 − Σ̃cl
K. (5c)

Eq. 4 yields the approximate lattice Green function

G−1(k) = G−10 (k)−Σ(k), (6)

where G−10 (iωn,k) = iωn + µ− h0(k) is the bare lattice
Green function. The DMFT and DCA approximations
of the Luttinger-Ward functional then require

Gloc =
1

|BZ|

∫
BZ

dkG(k) (7a)

G̃loc =
1

|BZ|

∫
BZ

dkP̂t2gG(k) (7b)

G̃cl
K =

1

|PK|

∫
PK

dkP̂t2gG(k). (7c)

Fixing the chemical potential by imposing 6 electrons per
atom, above equations determine the Weiss-Fields and
hereby the solution of the mixed DMFT-DCA scheme.
The interactions U and J are taken as external parame-
ters, and what remains to be determined are the effective
interactions Ũ and J̃ which take into account the screen-
ing of the t2g degrees of freedom in the cluster corrections.

Notice here that, in the normal phase, the DMFT self-
energies Σloc and Σ̃loc (and also Gloc

0 , G̃loc
0 , Gloc and

G̃loc) are diagonal in the orbital space. This comes from
the D2d point symmetry group of an Fe atom. Fur-
thermore, the patches are invariant under this symmetry
group, so that the DCA self-energy Σ̃cl

K (and also G̃cl
0K

and G̃cl
K) is diagonal in the orbital space as well.

B. Effective interactions

To determine the effective interactions, we define an
effective problem where correlations are applied only to
the t2g orbitals. These effective correlations, which are

identified with Ũ and J̃ , are then determined by requiring
that this model reproduces at low energies the results of
the five band calculation (with correlations U and J),
when both models are solved via single site DMFT. We
use the following algorithm:

(i) The five band model is solved with single site
DMFT for a filling of 6 d-shell electrons per Fe
atom and interactions U and J . This yields a local
lattice self-energy Σloc (with components Σloc

eg and

Σloc
t2g ), a filling of the t2g orbitals and a chemical

potential.
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(ii) We determine the low energy model by defining the
effective bare lattice propagator

G̃−10 := G−10 −
(

ΣHF · 1t2g 0
0 Σloc

eg

)
. (8)

Here, Σloc
eg is the eg part of the self-energy obtained

in (i), and ΣHF (which can be thought as an aver-
age Hartree-Fock contribution to the t2g self-energy
coming from the eg orbitals) will be determined in
the next step. The chemical potential is fixed to
the value obtained in (i).

(iii) To determine ΣHF, Ũ and J̃ , we solve the problem
with propagator Eq. 8 and the effective interactions
applied to the t2g orbitals with single-site DMFT.

The resulting self-energy is denoted by Σ̃loc. ΣHF

is determined by requiring that the t2g filling is

the same as in (i). Requiring that Σ̃loc + ΣHF

matches Σloc
t2g at the lowest Matsubara frequencies

determines the effective interactions Ũ and J̃ .

It is remarkable that these requirements give us very good
matching of the self-energies at all energies, as shown in
Fig. 5.
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FIG. 5. (Color online) Self-energies (real/imaginary part
with open/filled symbols) of the t2g orbitals obtained with
DMFT for the model with interactions applied to all d-shell
orbitals (red circles) and for the effective t2g model (blue di-
amonds). In the latter case, the Hartree-Fock constant ΣHF

is added. The parameters are T = 174K, (U, Ũ) = (4.5, 4.5)

and (J, J̃) = (0.45, 0.375).

C. Solving the mixed DMFT-DCA equations and
the DMFT equation

The good agreement of the self-energies in Fig. 5 sug-
gests to solve the mixed DMFT-DCA scheme in a simpli-
fied manner. Instead of simultaneously solving the three
impurity models in Sec. A, we just apply DCA to the
effective t2g model used to determine the screened inter-

actions Ũ and J̃ . ΣHF is slightly readjusted to preserve
the t2g filling found in Sec. B (i).

This simplified solution is justified if the cluster correc-
tions to local quantities is small. Indeed, in this case we
can start by ignoring the cluster corrections when solving

the mixed DMFT-DCA scheme and solve the model with
DMFT (which corresponds to step (i) in Sec. B). We then

solve the model with cluster corrections (where Ũ and J̃
have been determined as discussed in Sec. B), keeping
however the eg self-energy Σloc

eg and the chemical poten-
tial obtained without cluster corrections fixed. Further,
the contribution to the t2g self-energy from Σloc

t2g−Σ̃loc is
replaced by a constant proportional to the identity, which
is justified by Fig. 5. Choosing this constant ΣHF to pre-
serve the t2g filling found in Sec. B (i), this amounts just
to solve the effective t2g model with DCA as mentioned
above. Compared to the exact solution of the DMFT-
DCA scheme, this simplified solution avoids stability is-
sues and guaranties causality (c.f. nested cluster schemes
in Ref. 58).

When comparing results from the mixed DMFT-DCA
scheme with DMFT results, the latter is applied to the ef-
fective t2g problem for the sake of coherence. The DMFT

self-energy is thus Σ̃loc from Sec. B (iii), while the mixed
DMFT-DCA self-energy is Σcl

K, obtained in the above ap-
proximation.

D. Impurity Models

The aim here is to write down the action for the impu-
rity models in Sec. A. To this end, we begin by detailing
the interaction used in this work.

With respect to the d-shell single particle basis |σm〉,
where σ is the spin and the angular part is encapsulated
in the spherical harmonics Y ml=2, the local interaction

V̂ =
1

2

∑
σσ′

∑
{mi}

Vm1m2m3m4
c†σm1

c†σ′m2
cσ′m3

cσm4
(9)

is given by the tensor

Vm1m2m3m4 =
∑

k=0,2,4

4π

2k + 1
F k

×
k∑

m=−k

〈Y m1
2 |Y m∗k |Y m4

2 〉〈Y m2
2 |Y mk |Y m3

2 〉.
(10)

The Slater-Condon parameters F 0, F 2 and F 4 encapsu-
late both the radial part of the single particle basis (which
is the same for all |σm〉) and the interaction. In this work
we use F 0 = U , F 2 = 14 · J/1.625 and F 4 = 0.625 · F 2,
where U is the Coulomb repulsion and J the Hund’s rule
coupling.

In solids, it is more convenient to work in the basis of
real spherical harmonics |σα〉 with α ∈ {yz, zx, xy, 3z2−
r2, x2−y2}, and we denote the corresponding creation op-
erators by d†σα. We slightly simplify the interaction ten-
sor Vα1α2α3α4

in this basis by setting all elements which
are not of the form Vααα′α′ ,Vαα′α′α or Vαα′αα′ to zero.
While this truncation preserves the spin SU(2) invari-
ance of the interaction Eqs. 9 and 10, the orbital SO(3)
invariance is lifted. However, the truncated interaction
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is still D2d invariant and the crystal fields in the present
case lift the SO(3) degeneracy anyway.

In the basis of real spherical harmonics, the action for
the single-site d-shell impurity model Sec. A (a) reads

S =−
∑
σ

∑
α

∫∫ β

0

d†σα(τ)G−10αα(τ − τ ′)dσα(τ ′)dτdτ ′

+
1

2

∑
σσ′

∑
{αi}

V UJα1α2α3α4

∫ β

0

d†σα1
(τ)d†σ′α2

(τ)

× dσ′α3
(τ)dσα4

(τ)dτ,

(11)

where the superscript of the interaction tensor indicates
that U and J enter the Slater-Condon parameters. Re-
stricting in the action Eq. 11 the orbital sums to t2g or-

bitals and replacing U , J and G0 by the effective Ũ , J̃
and G̃0 respectively yields the single-site t2g impurity
model Sec. A (b).

The non-interacting part of the cluster impurity model
action Sec. A (c) reads

S0 = −
∑
σ

∑
K=±

∑
α∈t2g

∫∫ β

0

d†σαK(τ)G̃−10Kαα(τ − τ ′)

× dσαK(τ ′)dτdτ ′,

(12)

where d†σαK creates an electron with spin σ and coarse
grained momentum K in the orbital α. The interacting
part, written in a “real-space site basis” dασ1 := (dσα+ +

dσα−)/
√

2 and dασ2 := (dσα+ − dσα−)/
√

2, reads

SI =
1

2

∑
σσ′

∑
a=1,2

∑
{αi}∈t2g

V Ũ J̃α1α2α3α4

×
∫ β

0

d†σα1a(τ)d†σ′α2a
(τ)dσ′α3a(τ)dσα4a(τ)dτ.

(13)

For the CT-HYB simulations, the K-space single particle

basis d†σKα is used.
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