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We classify interacting topological insulators and superconductors with order-two crystal symmetries (re-

flection or twofold rotation), focusing on the case where interactions reduce the noninteracting classification.

We find that the free-fermion Z2 classifications are stable against quartic contact interactions, whereas the Z

classifications reduce to ZN , where N depends on the symmetry class and the dimension d. These results are

derived using a quantum nonlinear σ model (QNLSM) that describes the effects of the quartic interactions on

the boundary modes of the crystalline topological phases. We use Clifford algebra extensions to derive the target

spaces of these QNLSMs in a unified way. The reduction pattern of the free-fermion classification then follows

from the presence or absence of topological terms in the QNLSMs, which is determined by the homotopy group

of the target spaces. We show that this derivation can be performed using either a complex fermion or a real

Majorana representation of the crystalline topological phases and demonstrate that these two representations

give consistent results. To illustrate the breakdown of the noninteracting classification we present examples of

crystalline topological insulators and superconductors in dimensions one, two, and three, whose surfaces modes

are unstable against interactions. For the three-dimensional example, we show that the reduction pattern ob-

tained by the QNLSM method agrees with the one inferred from the stability analysis of the boundary modes

using bosonization.

I. INTRODUCTION

In recent years, the field of topological quantum matter has

seen rapid advances1–4, stimulated by the discovery of topo-

logical insulators5–7 and by potential applications in device

fabrication8 and quantum information technology9. An im-

portant concept in this field is the notion of symmetry pro-

tected topological (SPT) quantum states, which are short-

range entangled gapped phases with a symmetry. A defin-

ing property of SPT states is that they cannot be deformed to

a trivial state by a symmetry-preserving deformation without

closing the gap. One of the main characteristics of SPT states

is the existence of protected gapless surface states, which

leads to many interesting phenomena, such as dissipationless

currents in two-dimensional systems and magneto-electric ef-

fects in three-dimensional topological insulators.

An important theme in the field of topological matter is

the classification of SPT phases, i.e., to determine how many

distinct SPT states exist for a given set of symmetries. For

free-fermion systems with nonspatial symmetries (such as,

time-reversal) a systematic classification was obtained and

summarized in the so-called periodic table of topological

insulators (TIs) and superconductors (TSCs)10–13. This ta-

ble, which is sometimes called the “ten-fold way”, catego-

rizes d-dimensional free-fermion systems into ten symmetry

classes14,15 distinguished by the presence or absence of time-

reversal, particle-hole, or chiral symmetry. It was shown that

in any dimension d there exist five symmetry classes with non-

trivial SPT states, that can be indexed by the Abelian groups

Z or Z2. Subsequently, this classification scheme was ex-

tended to non-interacting SPT phases with crystalline space

group symmetries (i.e., spatial symmetries)16–22, which are

important in many condensed-matter systems. There are a

number of materials which have recently been proposed as

candidates for crystalline topological insulators. Among them

are the rocksalt SnTe23–25 and the antiperovskites A3PbO26,27,

where A denotes an alkaline earth metal.

While the classification of free-fermion SPT states is quite

well understood, attention has now shifted to interacting SPT

phases. The motivation to study strongly correlated SPT

quantum states comes in part from a number of 5d- and 4 f -

electron systems, that could be interacting topological insula-

tors. These include iridium oxide materials28, transitionmetal

heterostructures29, and the Kondo insulator SmB6
30. Interac-

tions can modify the classification of free-fermion systems in

two different ways: (i) Strong correlations can lead to new

topological many-body states that cannot exist without inter-

actions. Fractional topological insulators are an example of

such systems31. (ii) Interactions can reduce the classification

of free-fermion SPT phases, i.e, two different phases of the

free-fermion classification can be continuously connected in

the presence of interactions. In that case, we say that the

noninteracting classification “collapses”. This possibility was

first considered by Fidkowski and Kitaev32,33, who showed

that eight Majorana modes localized at the end of a one-

dimensional topological superconductor with time-reversal

symmetry (class BDI) can be gapped out by many-body inter-

actions that are weak relative to the bulk gap. In other words,

they found that the Z classification of one-dimensional super-

conductors in class BDI reduces to Z8 when many-body inter-

actions are included34.

Later, these considerations were generalized to all free-

fermion SPT states of the ten-fold way. In particular, it was

shown that the Z classification of free-fermion systems with

chiral symmetry in odd dimensions reduces to ZN
35–47. This

result was obtained by various different methods, using quan-

tum nonlinearσmodels (QNLSMs)35–40, cobordism41–43, vor-

tex condensation44,45, and group cohomology46. These works

have lead to a thorough understanding of the classification of

interacting SPT states of the ten-fold way. Less is known,

however, about the collapse of the classification of free-

fermion SPT phases that are protected by crystalline space
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group symmetries. These space group symmetries are present

in any condensed matter system and are, in general, also re-

spected by the interactions. While this question has been

studied for some cases48–52, no systematic classification of

strongly correlated SPT states with crystalline symmetries has

been obtained so far.

In this paper, we present a systematic classification of

strongly correlated SPT states with order two symmetries that

leave the surface invariant, i.e., reflection and two-fold rota-

tions. In particular, we investigate the case where many body

interactions lead to a collapse of the classification of free-

fermion SPT phases. (The more exotic phases that cannot be

adiabatically connected to a free-fermion SPT state are be-

yond the scope of this paper52–55.) To derive the reduction

pattern we employ the QNSLM method, in which one consid-

ers quartic contact interactions which do not break the defin-

ing symmetries, neither explicitly nor spontaneously. The ef-

fect of these quartic interactions on the ν boundary modes

is then described by a QNLSM with a target space that de-

pends on ν. With this, the collapse of the classification fol-

lows from the smallest value of ν for which the target space

has trivial topology. This approach was first introduced by

Kitaev38,39 and later on used by Morimoto et al.35 to derive

the collapse of the ten-fold classification. For the case of

SPT states with reflection or two-fold rotation symmetry, we

find that the noninteracting Z2 classifications are stable in the

presence of quartic interactions, whereas the Z classifications

are all unstable and reduce from Z to ZN , where N depends

on the spatial dimension d [see Eq. (3.10)]. These results

are summarized in Table I and Table II. We illustrate this re-

duction pattern by a number of physically interesting exam-

ples, namely, a Majorana chain with two-fold rotation symme-

try, a two-dimensional spin-singlet superconductor with time-

reversal and reflection symmetry, and a class BDI reflection-

symmetric topological state (see Sec. IV). For the latter exam-

ple we show that the classification derived using the QNLSM

approach agrees with the stability analysis of the surface states

using bosonization (Sec. IV C 3).

The remainder of this paper is organized as follows. In

Sec. II, we briefly review the QNSLM method that we use

to study the collapse of the free-fermion classification of SPT

states with reflection and two-fold rotation. We also discuss

in this section how the Hamiltonians of the tenfold way can

be represented using either complex fermion or real Majorana

operators. It is checked that these two representations give a

consistent reduction pattern. The collapse of the free-fermion

classification of SPT states with reflection and rotation sym-

metry is presented in Sec. III. Sec. III D gives a brief sum-

mary of the procedure used to to obtain this result. In Sec. IV,

we illustrate the reduction pattern of the classification by con-

sidering three examples. For the case of a three-dimensional

topological insulator we show that the reduction pattern ob-

tained by the QNSLM approach is consistent with a stability

analysis of the boundary modes that relies on bosonization

techniques. Our conclusions and outlook are given in Sec. V.

Some technical details are relegated to three Appendices.

II. SYMMETRIES AND REVIEW OF QNLSM APPROACH

In this section we first discuss the symmetry classes in the

presence of reflection or two-fold rotation symmetry. We

then give a brief review of the QNLSM method and explain

how the Hamiltonians can be expressed either with interacting

complex fermion or real Majorana operators and discuss some

important differences and connections between these two rep-

resentations.

A. Symmetry classes of crystalline TIs and TSCs

If one disregards crystalline symmetries, all free-fermion

systems can be categorized by the ten Altland-Zirnbauer (AZ)

symmetry classes14,15, which are distinguished by the pres-

ence or absence of time-reversal symmetry (TRS), with oper-

ator T , particle-hole symmetry (PHS), with operator C, and

chiral symmetry (CHS), with operator Γ. For a brief review

on how these symmetries act on the Hamiltonians, either writ-

ten in terms of complex fermion operators or real Majorana

operators, see Appendix A.

An important point to note is that SPT states of a given AZ

symmetry class can be interpreted in different ways. That is,

for a given AZ symmetry class there are different symmetry

embedding schemes. To explain this, let us consider as an

example symmetry class BDI. One-dimensional systems that

belong to this symmetry class can be viewed either as Ma-

jorana chains with only time-reversal symmetry, or alterna-

tively, as polyactylene chains of complex fermions with time-

reversal (T 2 = +1) and sublattice symmetry. In the latter case

one has an additional U(1) symmetry due to charge conserva-

tion. The reduction pattern of the free-fermion classification

henceforth might, in principle, depend on which interpreta-

tion of the AZ symmetry class is used, i.e., which symmetry

embedding scheme is used. is also developed using Majorana

representation[see Appendix A 1 for symmetry operations and

TableIII for symmetry classes], which also yields the same ten

symmetry classes. We find that this is indeed the case for sym-

metry classes BDI, DIII and D with reflection/rotation, while

different symmetry embeding schemes give the same reduc-

tion pattern for classes CI, CII, and C with reflection/rotation

(see also the example in Sec. IV C).

1. Reflection symmetry

Let us now discuss how the presence of reflection symme-

try leads to a refinement of the ten AZ classes. Reflection

symmetry, with reflection operator R, is the invariance of the

Hamiltonian under a spatial reflection about a certain reflec-

tion plane. Without loss of generality, we assume that the re-

flection plane is perpendicular to the x1 axis. Hence, reflection

symmetry maps

x = (x1, x2 · · · xd)→ x̄ = (−x1, x2 · · · xd)
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in d dimensions56. Reflection R acts on the second-quantized

operators as57

R̂Ψi(x) R̂−1 = Ri jΨ j(x̄), (2.1)

where Ψi’s are complex fermion (real Majorana) operators.

The matrix R is unitary (real and symmetric in the Majorana

representation). Due to a phase ambiguity in the definition

of the unitary operator R, we can assume that R is Hermitian

(i.e., R2 = 1)58, which is in accordance with the conventions

used in Refs. 3, 18, and 20. With this convention the algebraic

relations between R and the symmetry operators of TRS and

PHS (in complex basis) are uniquely defined and we can orga-

nize the symmetry classes of reflection-symmetric TIs (TSCs)

in terms of these relations. We have

ΓR = ηΓRΓ, TR = ηTRT , CR = ηCRC, (2.2)

where the indices ηΓ, ηT , and ηC take values ±1 specifying

whether R commutes (+1) or anticommutes (−1) with the cor-

responding symmetry operator Γ, T , or C59. Hence, in the

presence of reflection symmetry R the ten symmetry classes

of the tenfold way are enlarged to 27 symmetry classes, which

are labelled by whether R commutes or anti-commutes with Γ,

T , or C. These 27 symmetry classes are listed in Table. I, la-

belled by RηT , RηΓ , and RηC for the symmetry classes AI, AII,

AIII, C, and D, and by RηT ηC for the chiral symmetry classes

BDI, CI, CII, and DIII.

Before we discuss rotation symmetries, let us remark that

in systems with charge conservation or with S z spin conserva-

tion there exists an additional symmetry, namely a continuous

U(1) symmetry generated by the charge operator Q. (This be-

comes apparent when one writes the Hamiltonian using real

Majorana operators, see Appendix A 1.) Hence, one can also

consider the algebraic relations between the reflection oper-

ator R and the charge Q. To simplify matters, we assume

in the following that R commutes with Q, i.e., [Q,R] = 0.

(Note, however, that when Q corresponds to a conserved S z

spin quantum number, it is possible that Q anticommutes with

reflection. But in that case, one can either map the system

onto another symmetry class, or use R to create a unitary on-

site symmetry that can be quotient out, see Appendix A 2.)

2. Two-fold rotation symmetry

Next, we examine the symmetry classes for systems with

a two-fold rotation symmetry. For simplicity we assume that

the rotation axis is along the xd direction. Hence the rotation

symmetry leaves the xd coordinate invariant, while it flips the

sign of the other d − 1 spatial coordinates, i.e.,

x = (x1, x2 · · · xd−1, xd)→ x̄ = (−x1,−x2 · · · ,−xd−1, xd).

Two-fold rotation U acts on the second-quantized operators as

ÛΨi(x)Û−1 = Ui jΨ j(x̄). (2.3)

Similar to the case of reflection symmetry, we assume that the

rotation operator U squares to +1, i.e., U2 = 1. With this con-

vention the commutation relations between U andT , C, and Γ

are uniquely defined, which we denote by UηT , UηΓ , UηC , and

UηT ηC . Just as in the case of rotation symmetric systems, there

is a total of 27 symmetry classes which are listed in Table II.

(Note that, as in Sec II A 1, we assume that U commutes with

the U(1) charge Q.)

B. QNLSM approach

Let us now describe the details of the QNLSM ap-

proach35,38,39 that we use to derive the reduction pattern of

the free-fermion classification. The basic idea behind this ap-

proach is to study whether the boundary modes of an SPT

state with a given set of symmetries can be gapped out by

symmetry-preserving interactions that are weak relative to the

bulk gap. Hence, as a first step, we need to derive the surface

Hamiltonian describing the dynamics of the boundary modes.

To that end, we start from a family of Dirac Hamiltonians rep-

resenting crystalline SPT states of fermions in d spatial di-

mensions

H (0) = −i

d∑

j=1

∂

∂x j
γ̃ j ⊗ 1 + m(x) β̃ ⊗ 1. (2.4)

Here, γ̃ j and β̃ are anti-commuting Dirac matrices and 1 is the

unit matrix of rank ν ∈ Z+ (the precise meaning of ν will be

explained below). We choose the rank r of the matrices γ̃ j and

β̃ to be the minimal dimension rmin which is needed to imple-

ment the defining symmetries of the crystalline SPT state. In

the following, we call the Hamiltonian H (0) with ν = 1 the

“root state” of the corresponding symmetry class. Mathemat-

ically speaking, the root state is the generator of the Abelian

group B, which indexes the different equivalence classes of

SPT states for a given set of symmetries. With this choice of

r, the dimension ν of the unity matrix 1 in Eq. (2.4) corre-

sponds to the number of copies of root states that we use to

test the stability of the boundary modes against interactions60.

Let us now determine the surface Hamiltonian of Eq. (2.4)

for the surface that is perpendicular to the xd direction. This

surface is left invariant by the reflection (or rotation) symme-

try, and thus exhibits boundary modes protected by the crys-

talline (and non-spatial) symmetries. The boundary Hamil-

tonian can be derived by considering a domain wall configu-

ration in the mass term m(x) along the xd direction61. One

finds that the Hamiltonian describing the boundary modes

with quartic contact interactions is given by62

Hbd = H
(0)

bd
+ H

(int)

bd
, (2.5a)

H
(0)

bd
=

∫
dd−1

xΨ†(−i

d−1∑

j=1

∂

∂x j
γi ⊗ 1)Ψ, (2.5b)

H
(int)

bd
= λ

∑

{β}

∫
dd−1

x [Ψ†βΨ]2, (2.5c)

whereΨ (Ψ†) represents either complex fermion or real Majo-

rana annihilation (creation) operators (depending on the cho-

sen representation) describing the boundary modes. The Dirac

matrices γi ⊗ 1 have dimension ν (rmin/2) and are obtained by
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TABLE I. Collapse of the classification of interacting reflection-symmetric topological crystalline superconductors (TCSCs)/topological crys-

talline insulators (TCIs). The first column denotes the algebraic relation of the reflection symmetry R with the protecting symmetries of the AZ

classes as explained in the main text. (Here, we impose R2 = 1.) By comparing with Table VIII of Ref. 3, one finds that the Z classifications

collapse, while the Z2 classifications remain stable. The columns “Clifford algebra” lists the relevant Clifford algebra encoding all associated

matrices in a certain symmetry class with reflection symmetry, written in complex fermion/real Majorana basis, respectively20. We note that

the collapse of the classification is given for any spatial dimension D, where the relation between D and n is given by D = 8n + d, where

d = 1, 2, · · · 8 and n = 0, 1, 2, · · · . For symmetry classes BDI, D, and DIII, which exhibit two different symmetry embedding schemes, the

reduction pattern from Z should be further reduced by two if we embed an additional U(1)⋊ZC
2

symmetry to the symmetry classes, since these

additional symmetry constraints enlarge the root states.

D = 8n + d, n = 0, 1, 2 · · ·

Ref. Class Clifford Algebra d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

R A Cld+2/Cld+2 Z24n+2 0 Z24n+3 0 Z24n+4 0 Z24n+5 0

R+ AIII Cld+3/Cld+3 0 Z24n+2 0 Z24n+3 0 Z24n+4 0 Z24n+5

R− AIII Cld+2/Cld+2 Z24n+2 0 Z24n+3 0 Z24n+4 0 Z24n+5 0

R+(+)

AI Cl2,d+2/Cl2,d+2 Z24n+2 0 0 0 Z24n+3 0 Z2 Z2

BDI Cld+1,4/Cl2,d+1 Z2 Z24n+3 0 0 0 Z24n+4 0 Z2

D Cld,4/Cl2,d Z2 Z2 Z24n+4 0 0 0 Z24n+5 0

DIII Cld,5/Cl3,d 0 Z2 Z2 Z24n+4 0 0 0 Z24n+5

AII Cl4,d/Cl4,d Z24n+1 0 Z2 Z2 Z24n+4 0 0 0

CII Cld+3,2/Cl5,d 0 Z24n+1 0 Z2 Z2 Z24n+4 0 0

C Cl2+d,2/Cld+3,1 0 0 Z24n+2 0 Z2 Z2 Z24n+5 0

CI Cl2+d,3/Cl2,d+3 0 0 0 Z24n+2 0 Z2 Z2 Z24n+5

R−(−)

AI Cl1,d+3/Cl1,d+3 0 0 Z24n+2 0 Z2 Z2 Z24n+5 0

BDI Cl2+d,3/Cl1,d+2 0 0 0 Z24n+3 0 Z2 Z2 Z24n+6

D Cld+1,3/Cl1,d+1 Z24n+3 0 0 0 Z24n+4 0 Z2 Z2

DIII Cld+1,4/Cl2,d+1 Z2 Z24n+3 0 0 0 Z24n+4 0 Z2

AII Cl3,d+1/Cl3,d+1 Z2 Z2 Z24n+3 0 0 0 Z24n+4 0

CII Cld+4,1/Cl4,d+1 0 Z2 Z2 Z24n+3 0 0 0 Z24n+4

C Cl3+d,1/Cld+2,2 Z24n+1 0 Z2 Z2 Z24n+4 0 0 0

CI Cld+3,2/Cl1,d+4 0 Z24n+1 0 Z2 Z2 Z24n+4 0 0

R−+ BDI Cld+4/Cld+2 Z24n+2 0 Z24n+3 0 Z24n+4 0 Z24n+5 0

R−+ CII Cld+4/Cld+4 Z24n+1 0 Z24n+2 0 Z24n+3 0 Z24n+4 0

R+− DIII Cld+4/Cld+2 Z24n+2 0 Z24n+3 0 Z24n+4 0 Z24n+5 0

R+− CI Cld+4/Cld+4 Z24n+1 0 Z24n+2 0 Z24n+3 0 Z24n+4 0

R+− BDI Cld+1,3/Cl1,d+1 Z24n+3 0 0 0 Z24n+4 0 Z2 Z2

R+− CII Cld+3,1/Cl4,d Z24n+1 0 Z2 Z2 Z24n+4 0 0 0

R−+ DIII Cld,4/Cl2,d Z2 Z2 Z24n+4 0 0 0 Z24n+5 0

R−+ CI Cl2+d,2/Cl1,d+3 0 0 Z24n+2 0 Z2 Z2 Z24n+5 0

projecting the matrices γ̃i ⊗ 1 in Eq. (2.4) onto the surface.

The interaction strength λ is assumed to be independent of β

and to be positive corresponding to repulsive interactions. In

order to gap out the boundary modes within a mean-field ap-

proximation, the boundary mass matrices β in the interaction

term (2.5c) must be chosen to anticommute with the Dirac

matrices γi. In addition, we assume that {β} is a pairwise an-

ticommuting set of matrices. We note that, if the SPT state

is topologically non-trivial in the free-fermion limit, then the

fermion (Majorana) bilinearΨ†βΨ has to break at least one of

the defining symmetries.

Now we can decompose the quartic interaction (2.5c) us-

ing Euclidean time path integrals and a Hubbard-Stratonovich

transformation with respect to the bosonic fields φβ conju-

gate to the bilinear Ψ†βΨ. This yields a dynamical bound-

ary Hamiltonian which is quadratic in the fermion (Majorana)

operators

H
(dyn)

bd
(τ, x) = H̃

(0)

bd
(x) +

∑
{β}

2i β φβ(τ, x), (2.6)

with the imaginary time τ and the Lagrangian

Lbd = Ψ
†[∂τ + H

(dyn)

bd
]Ψ + 1

λ

∑
β

φ2
β, (2.7)

where H̃
(0)

bd
= (−i

∑d−1
j=1

∂
∂x j γi ⊗1) is the free part of the Hamil-

tonian (2.5). We observe that, within a saddle-point approx-

imation, the amplitude fluctuations of the vector φ with the

components φβ are suppressed by the second term in Eq. (2.7).

Since the dynamical mass matrices β [we also call it Dirac

mass] are mutually anticommuting, the direction of φ within

the mean-field approximation is arbitrary. Hence, after rescal-

ing the length of the vector φ to one, the mean-field config-

uration of φ forms a (N(ν) − 1)-dimensional sphere S N(ν)−1,

where N(ν) is the number of anticommuting boundary mass

matrices β, which depends on ν, the chosen number of root

states. Therefore the direction of φ is chosen by spontaneous

symmetry breaking with N(ν)−1 associated Goldstone modes.

The low-energy effective theory describing the fluctuations

of these Goldstone modes is given in terms of a QNLSM,

which is obtained by use of a gradient expansion and by inte-
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TABLE II. Collapse of the classification of interacting two-fold

rotation-symmetric TCSCs/TCIs. The first column denotes the com-

mutation relation of the rotation symmetry U with the protecting

symmetries of the AZ classes. (Here, we impose U2 = 1.). Com-

pared with the noninteracting classification17, the Z classifications

collapse, while the Z2 classifications remain stable. We note that the

collapse of the classification is given for any dimension D = 8n + d,

where d = 1, 2, · · · 8 and n = 0, 1, 2, · · · . For symmetry classes

BDI, D, and DIII, that allow for two different symmetry embedding

schemes, the reduction pattern from Z should be further reduced by

two if we embed an additional U(1)⋊ZC
2

symmetry to the symmetry

classes, since these additional symmetry constraints enlarge the root

states.

D = 8n + d, n = 0, 1, 2 · · ·

Rot. Class d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

U A 0 0 0 0 0 0 0 0

U+ AIII Z24n+2 Z24n+2 Z24n+3 Z24n+3 Z24n+4 Z24n+4 Z24n+5 Z24n+5

U− AIII 0 0 0 0 0 0 0 0

U+(+)

AI Z24n+2 0 0 0 Z24n+3 0 Z2 Z2

BDI Z24n+3 Z24n+3 Z24n+3 Z24n+3 Z24n+4 Z24n+4 Z24n+5 Z24n+6

D Z2 Z2 0 0 0 0 0 Z2

DIII Z2 Z2 Z24n+3 0 0 0 Z24n+5 Z2

AII 0 0 0 0 0 0 0 0

CII Z24n+1 Z24n+1 Z24n+2 Z24n+3 Z24n+4 Z24n+4 Z24n+4 Z24n+4

C 0 0 0 Z2 Z2 Z2 0 0

CI 0 0 Z24n+2 Z2 Z2 Z2 Z24n+4 0

U−(−)

AI 0 0 0 0 0 Z2 Z2 Z2

BDI Z24n+2 0 0 0 Z24n+4 Z2 Z2 Z2

D 0 0 0 0 0 0 0 0

DIII Z24n+2 Z24n+3 Z24n+4 Z24n+4 Z24n+4 Z24n+4 Z24n+5 Z24n+5

AII 0 Z2 Z2 Z2 0 0 0 0

CII Z24n+1 Z2 Z2 Z2 Z24n+3 0 0 0

C 0 0 0 0 0 0 0 0

CI Z24n+1 Z24n+1 Z24n+2 Z24n+2 Z24n+3 Z24n+4 Z24n+5 Z24n+5

U−+ BDI Z2 0 0 0 0 0 Z2 Z2

U−+ CII 0 0 Z2 Z2 Z2 0 0 0

U+− DIII 0 0 0 0 0 0 0 0

U+− CI 0 0 0 0 0 0 0 0

U+− BDI 0 0 0 0 0 0 0 0

U+− CII 0 0 0 0 0 0 0 0

U−+ DIII Z2 Z2 Z2 0 0 0 0 0

U−+ CI 0 0 0 0 Z2 Z2 Z2 0

grating out the fermionic fields. The partition function for this

QNLSM reads35

Zbd ≈

∫
D[φ]δ(φ2 − 1)e−S QNLSM−S top , (2.8a)

where S top is a topological term and S QNLSM is the Euclidian

action

S QNLSM =
1

2g

∫
dτ

∫
dd−1

x (∂iφ)2, (2.8b)

with base space R(d−1)+1 and target space S N(ν)−1. The topo-

logical term S top can only be present in the QNLSM, if any

one of the homotopy groups πι
[
S N(ν)−1

]
, with ι = 0, 1, . . . , d+

1, is nonvanishing63. The presence of a topological term in

the QNLSM (2.8) signals the existence of zero modes of the

Hamiltonain (2.6) that are localized at topological defects in

the order parameter φ. These zero-modes, in turn, prevent the

interactions from gapping out the boundary modes of the SPT

state. It follows that ν copies of the root state of an interact-

ing SPT phase cannot be connected to a trivial state, whenever

πι
[
S N(ν)−1

]
is non-zero for some ι.

On the other hand, if

πι
[
S N(ν)−1

]
= 0, for all ι = 0, 1, . . . , d + 1, (2.9)

there is no topological term in the QNLSM. We denote the

smallest value of ν for which this happens by νmin. By com-

puting the homotopy groups of the spheres, one finds that νmin

must satisfy the condition

d + 1 < N(νmin) − 1. (2.10)

In the absence of a topological obstruction, Eq. (2.8) is sim-

ply a QNLSM on the sphere S N(νmin)−1. In that case the strong

coupling fixed point g → ∞ of the QNLSM is stable, which

corresponds to a quantum-disordered phase in which all the

the discrete Z2 symmetries are dynamically restored by quan-

tum fluctuations. In order to check that this strong-coupling

phase is also compatible with the continuous symmetries (e.g.,

a U(1) symmetry corresponding to fermion number conserva-

tion), one needs to verify that the Hubbard-Stratonovich fields

φβ are invariant as a set under conjugation with the generators

of the continuous symmetries. That is, the QNLSM target

space S N(νmin)−1 must remain invariant under the continuous

symmetry operations. If all of these conditions are satisfied,

then there exists a continuous symmetry-preserving deforma-

tion that connects ν copies of the root state to a trivial SPT

state. Hence, the free-fermion classification is reduced from,

e.g., Z to Zνmin
.

In closing this section, we remark that there exists an in-

teresting connection between interacting fermionic SPT states

and bosonic SPT states with the same symmetries. That is, the

QNLSM (2.8) in d − 1 spatial dimensions with N(ν) = d + 2

bosonic fields φ and a WZ topological term can be viewed as

an O(d + 2) nonlinear σ model describing the boundary of a

d-dimensional bosonic SPT phase40,64–66. Using this connec-

tion, the classification of bosonic SPT states can be inferred

from their interacting fermionic counterparts.

C. Complex fermion vs. real Majorana representation

As stated above, the reduction patterns of the free-fermion

classifications can be derived by expressing the Hamiltonians

of the SPT states using either complex fermion35 or real Majo-

rana operators36. Both choices give consistent reduction pat-

terns, which we demonstrate in Appendix A 2. In the main

text of this paper, however, we focus on the real Majorana rep-

resentation, since in this representation the continuous U(1)

symmetries are realized explicitly.

But before proceeding, let us briefly highlight the crucial

differences between the two representations. Using the Majo-

rana representation, the root state for a given symmetry class
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is written as

H (0) = −iχa


d∑

j=1

(
∂

∂x j
γ̃ j

)

ab

+ m(x) β̃ab

 χb, (2.11)

where χa are Majorana fields which are related to the fermion

operators ψ j via χ2 j−1 =
1
2

(
ψ j + ψ

†

j

)
and χ2 j =

1
2i

(
ψ j − ψ

†

j

)
.

The matrices γ̃i of the kinetic term in Eq. (2.11) are real sym-

metric matrices, which satisfy {γ̃i, γ̃ j} = 2δi j. They all anti-

commute with the real anti-symmetric mass matrix β̃. This

is in contrast to the complex fermion representation, in which

the matrices of both the kinetic and mass terms are Hermitian,

but not necessarily real and symmetric.

Another difference is that the defining symmetries of a

given AZ symmetry class depend on whether one uses the

complex fermion or the real Majorana representation, which is

summarized in Table III. For example, continuous U(1) sym-

metries (due to charge or S z spin conservation) with genera-

tor Q are realized trivially in the complex fermion representa-

tion, namely, as ψ j → eiθψ j. Hence, if one uses the complex

fermion representation, U(1) symmetries do not belong to the

defining symmetries. In the Majorana representation, on the

other hand, the U(1) symmetry is implemented explicitly, as

χa → eQθχa, with Q a real anti-symmetric matrix satisfying

Q2 = −1. This difference between complex and real Majorana

representations results in ambiguities for the interpretation of

the symmetry classes, cf. Table III.

A further point to note is that the rank of the Dirac matrices

in the root state can be different in the two representations.

(The dimension of the Fock space, however, is the same, see

Appendix. A 2.) That is, in the presence of a continuous U(1)

symmetry with charge Q, the rank of the Dirac matrices in

the complex fermion representation is half as big as in the

real Majorana representation, since the U(1) symmetry can be

realized in a trivial way in the complex fermion basis. Imple-

menting the U(1) symmetry trivially, however, is problematic

if one wants to include “superconducting fluctuations”, i.e.,

Dirac masses that break the U(1) symmetry. In that case one

needs to re-enlarge the rank of the matrices by introducing a

particle-hole grading67. Thus, using the complex fermion rep-

resentation leads to unnecessary complications, and we will

therefore put it aside for now.

III. REDUCTION OF THE FREE-FERMION

CLASSIFICATION OF SPT STATES WITH REFLECTION

AND ROTATION SYMMETRY

From the strategy described in Sec. II B, it becomes appar-

ent that the main task in deriving the reduction patterns is to

determine the largest possible QNLSM target space S N(ν)−1

for each value of ν. (Here, ν is the chosen number of root

states.) N(ν) is determined by the largest number of symme-

try allowed anti-commuting mass matrices β. Therefore, we

need to study the space of the normalized dynamical boundary

mass matrices (Dirac masses), which is determined, in parts,

by the classifying space of an extension problem of Clifford

algebras12,20,68.

Before proceeding with deriving the reduction patterns, we

first review some basics facts about Clifford algebras, their ex-

tensions, and how these are related to the classification prob-

lem of free-fermion SPT states.

A. Clifford algebras and their extensions

In the following we consider complex as well as real Clif-

ford algebras, which are associative algebras with generators

that anti-commute with each other. A complex Clifford al-

gebra Cln has n generators ei (complex Hermitian matrices)

satisfying

{ea, eb} = 2δa,b. (3.1)

The products e
p1

1
e

p2

2
· · · e

pn

n (pi = 0, 1) with complex coeffi-

cients form a 2n-dimensional complex vector space.

A real Clifford algebra Clp,q has p+ q generators ei (p anti-

symmetric real matrices and q symmetric real matrices) satis-

fying

{ei, e j} = 0 (i , j),

e2
i =

{
−1 1 ≤ i ≤ p,

+1 p + 1 ≤ i ≤ p + q.
(3.2)

Linear combinations of their products with real coefficients

form a 2p+q-dimensional real vector space.

The classification of free-fermion SPT states can be in-

ferred from possible extensions of the above Clifford alge-

bras. (This is possible using either the complex fermion or the

real Majorana representation of the SPT state.) For a given

AZ symmetry class let us consider a Dirac-Hamiltonian rep-

resentative with flattened spectrum. The kinetic matrices of

this Dirac Hamiltonian together with the symmetry operators

generate a complex Clifford algebra Cln (for classes A and

AIII) or a real Clifford algebra Clp,q (for classes AI, BDI, D,

DIII, AII, CII, C, and CI) 12,19,20. The mass matrix of the

Dirac Hamiltonian can be used as an extra generator, leading

to a bigger Clifford algebra Clp+1,q(Clp,q+1) or Cln+1. Hence,

the space of the symmetry-preserving mass matrices is deter-

mined by the classifying space of the Clifford algebra exten-

sions Clp,q → Clp+1,q(Clp,q+1) or Cln → Cln+1. The classi-

fying spaces for these Clifford algebra extensions are given

by

Cln → Cln+1 classifying space Cn,

Clp,q → Clp+1,q classifying space Rp−q+2, (3.3)

Clp,q → Clp,q+1 classifying space Rq−p,

Note that due to Bott periodicity Ra+8 = Ra and Cn+2 = Cn.

Now, one finds that distinct free-fermion SPT states cor-

respond to topologically distinct extensions of the algebra.

Hence, the free-fermion classification follows from the num-

ber of disconnected parts of the classifying spaces Ra or Cn,

which corresponds to the number of disconnected parts of the

space of the normalized mass matrices. This can be computed

from the zeroth homotopy groups π0(Ra) or π0(Cn), see bot-

tom row of Table IV.
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TABLE III. The protecting symmetries of the ten AZ symmetry classes in complex fermion and real Majorana fermion rerpresentation. For

symmetries in the Majorana rerpresenation the ±1 in “T (±1)” denotes the square of TRS. rcom and rreal denote the rank of the root state

Hamiltonian written in complex and real Majorana representation, respectively. SU(2) spin-rotation symmetry can be viewed as the three

continuous symmetries eQθ, eCθ , and eQCθ , with {Q,C} = 0. Hence, SU(2) symmetry corresponds to a U(1) symmetry and PHS C in the

AZ classes. The last column lists the relation between the root state rank in complex fermion and real Majorana representation. For the AZ

classes BDI, D, DIII , CI, C, and CII the last column also indicates the differences between different symmetry embedding schemes. (For the

classes BDI, D, and DIII these differences arise depending on whether or not one implements an additional U(1) symmetry. For the classes C,

CI, and CII there are different possibilities regarding the algebraic relations between T and the generators of the continuous symmetries, see

Appendix A and B.) The semiproduct ⋊ implies that elements of the two symmetry groups do not commute.

class AZ classes Majorana basis explanation

T̃ C Γ symmetries

A 0 0 0 U(1) rcom = rreal/2 by virtue of the U(1) symmetry. For AIII, the chiral symmetry Γ

is time-reversal in Majorana basis.AIII 0 0 1 U(1)×T (+1)

AI 1 0 0 U(1)⋊T (+1) rcom = rreal/2

BDI 1 1 1 T (+1) rcom = rreal (Nambu spinors in complex basis). Physical R/U always

commutes with “built-in” PHS C. For the symmetry embedding scheme with

U(1)⋊[ZC
2
× T ](C2 = 1, Majorana basis scenario (iv) in App. B) rreal doubles.

D 0 1 0 no sym.

DIII -1 1 1 T (−1)

AII -1 0 0 U(1)⋊T (−1) rcom = rreal/2

CII -1 -1 1 SU(2)×T (+1) T̃ = TC (in Majorana basis). rcom = rreal/2. The symmetry embedding

scheme with U(1)⋊[ZC
2
× T ](T̃ = T ,C2 = −1) (Majorana basis scenario (iv)

in App. B) yields the same Clifford algebra.

C 0 -1 0 SU(2)

CI 1 -1 1 SU(2)×T (−1)

Let us consider as an example d-dimensional SPT states in

symmetry class D, which have no symmetries when using the

Majorana representation. The relevant Clifford algebra exten-

sion problem is Cl0,d → Cl1,d, generated by
{
γ̃i, · · · , γ̃d

}
→

{
γ̃i, · · · , γ̃d, β̃

}
. (3.4)

The corresponding classifying space is R2−d. Thus the classi-

fication of class D SPT states in d dimensions is given by the

zeroth homotopy group π0(R2−d) .

B. Strategy to determine dynamical boundary mass matrices

Following the same logic as in Sec. III A, we can use Clif-

ford algebra extensions to infer the space of the dynamical

boundary mass matrices β. That is, for a given number ν of

root states we use the classifying space of a Clifford algebra

extension to determine the largest number of anticommuting

mass matrices β in Eq. (2.6), which in turn gives N(ν) and,

hence, the target space S N(ν)−1 of the QNLSM.

Before proceeding, let us take a moment to re-examine

the properties of the dynamical boundary masses. First, we

note that they are mutually anti-commuting, and that they

anti-commute with the kinetic Dirac matrices of the boundary

Hamiltonian (2.5b). Second, we recall from Sec. II B that the

dynamical boundary masses couple to the bosonic Hubbard-

Stranovich field φ, which is conjugate to Ψ†βΨ. Because

the strong-coupling phase of the QNLSM must be compati-

ble with the continuous symmetries (e.g., U(1) symmetry), the

bosonic fields φβ must be invariant as a set under these sym-

metries, which in turn is controlled by the type of the chosen

mass matrices β. In particular, one can, in principle, have a sit-

uation where the matrices β break the continuous symmetries,

but the QNLSM target space φ remains invariant under the

continuous symmetry. However, if the boundary masses com-

mute with the generators Q of the continuous symmetries, the

QNLSM target space is, of course, automatically symmetric

under the U(1) symmetries.

To simplify matters, we will first determine the dynamical

boundary masses that are allowed to break all discrete Z2 sym-

metries, but preserve the continuous symmetries. If so, one

needs to distinguish three different cases: (i) no continuous

symmetries (class D), (ii) a U(1) symmetry due to charge or S z

spin conservation (class A), and (iii) an SU(2) symmetry due

to spin conservation (class C)69. In the following we will call

these three cases the “parent symmetry classes”. We observe

that the algebraic relations of these continuous-symmetry pre-

serving mass matrices with the kinetic Dirac matrices of the

(d−1)-dimensional boundary Hamiltonian (2.5b) are the same

as those of the mass matrices of a (d − 1)-dimensional bulk

Hamiltonian in class D, A, or C. In other words, the task of

finding dynamical boundary masses preserving the continuous

symmetries can be reduced to the task of finding (extra) mass

terms β̃ of a (d−1)-dimensional bulk Hamiltonian [cf. (2.4)]18

in class D, A, or C, see Sec. III B 1.

As a second step, we then need to check whether addi-

tional dynamical boundary masses can be found that break the

continuous symmetries. As shown by detailed calculation70,

these continuous-symmetry breaking masses never lead to a

further reduction of the classification. Hence, one can disre-

gard these continuous-symmetry breaking masses, and there-

fore the QNLSM target space is always automatically invari-

ant under the continuous symmetries.

1. Mass matrices for the parent symmetry classes D, A, and C

Let us now determine the largest number of anti-commuting

boundary mass matrices for the SPT states of the three parent

symmetry classes. To this end, we consider an SPT state of

rank 2r in d spatial dimensions which consists of ν copies

of the root state. Assuming we have already identified one
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TABLE IV. Minimal number of root state copies νm = 2p (where p is listed in the table) for which one can construct a QNLSM without a

topological term for the three parent symmetry classes A, D, and C, in D − 1 spatial dimensions. (D denotes the spatial dimension of the

original bulk TCI/TCSC of interest.) VD−1 represents the classifying space in D − 1 spatial dimensions. The last two lines list the zeroth

homotopy group for classifying spaces, which we utilize to arrive at the minimal copy number νm for each parent symmetry class.

D = 8n + d, n = 0, 1, 2, 3 · · ·

class VD−1 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A C1−D 2 + 4n 2 + 4n 3 + 4n 3 + 4n 4 + 4n 4 + 4n 5 + 4n 5 + 4n

D R3−D 2 + 4n 3 + 4n 4 + 4n 4 + 4n 4 + 4n 4 + 4n 5 + 4n 5 + 4n

C R7−D 1 + 4n 1 + 4n 2 + 4n 2 + 4n 3 + 4n 4 + 4n 5 + 4n 5 + 4n

π0(C0)π0(C1) π0(R0) π0(R1) π0(R2) π0(R3) π0(R4) π0(R5) π0(R6) π0(R7)

Z 0 Z Z2 Z2 0 Z 0 0 0

boundary Dirac mass, say β1, we can view the boundary

Hamiltonian of these d-dimensional SPT states as a (d − 1)-

dimensional bulk Hamiltonian of rank r belonging to one of

the three parent symmetry classes. (The existence of at least

one boundary Dirac mass for all 27 symmetry classes of re-

flection and rotation-symmetric SPT states is proved later,

in Sec. III B 2.) Hence, the maximal number of dynamical

boundary masses can be inferred from the presence or absence

of additional mass terms of the (d − 1)-dimensional bulk sys-

tem. The existence of these additional mass terms (which re-

spect the symmetries of the parent symmetry classes D, A or

C) is obtained from the Clifford algebra extension problems

Cl0,d−1 → Cl1,d−1, for class D,

Cld−1 → Cld, for class A, (3.5)

Cld+1,0 → Cld+1,1, for class C,

with the classifying spaces R3−d, Cd−1, and R7−d, respec-

tively. The zeroth homotopy group π0 of these classifying

spaces determines the existence of an additional (normalized)

mass term. Namely, if π0 is non trivial, there exists no addi-

tional mass term, and hence the maximal number of dynam-

ical boundary masses is just one. (This means that the space

of the normalized mass matrix cannot be parametrized in a

continuous fashion.) On the other hand, if π0 is zero, there

exists an additional Dirac mass matrix, leading to two anti-

commuting masses β1 and β2. (This means that the choice of

the normalized mass for the (d − 1)-dimensional SPT state is

not unique in a continuous fashion, i.e, it can be written as

cos(θ)β1 + sin(θ)β2, with θ ∈ [0, 2π).) One can then continue

the search for additional mass matrices (with fixed matrix rank

r) by considering the extension problems

Cl1,d−1 → Cl2,d−1, Cl2,d−1 → Cl3,d−1, etc., for class D,

Cld → Cld+1, Cld+1 → Cld+2 etc., for class A,

Cld+1,1 → Cld+1,2, Cld+1,2 → Cld+1,3, etc., for class C,

until a nontrivial zeroth homotopy group of the corresponding

classifying spaces is encountered. This determines the max-

imal number of Dirac mass matrices N(ν) that preserve the

continuous symmetries of the given parent symmetry class.

From Sec. II B it follows that the QNLSM target space

for the determined set of Dirac mass matrices is S N(ν)−1 and,

hence, the homotopy groups πι
[
S N(ν)−1

]
determine whether

a topological term is allowed in the QNLSM. If the topo-

logical term is absent, the boundary modes for the ν copies

of the root state are unstable, and thus the classification re-

duces to ZN(ν). If a topological term in the QNLSM is still

allowed for the determined set of Dirac masses, we need to

multiply the number of root states by two (i.e., ν → 2ν, and

thus the rank of the boundary Hamiltonian increases from r to

2r)71 and check whether this enlarged Hamiltonian can have

more Dirac masses. The maximal number of Dirac masses

for this enlarged Hamiltonian are obtained, as before, from

the zeroth homotopy groups of the corresponding classifying

spaces. If the QNLSM for this enlarged Hamiltonian with 2ν

root states still has a topological term (topological obstruc-

tion), one needs to double the number of root states once

more, i.e., 2ν→ 4ν , and continue this process until the num-

ber of Dirac masses N(ν) is equal (or larger) than d + 3, see

Eq. (2.10).

In summary, to determine the largest target space for a given

ν, we need to count the number of nontrivial homotopy groups

in the sequence

π0(R3−d/C1−d/R7−d),

π0(R4−d/C2−d/R8−d),

· · · (3.6)

π0(R4/C2/R8),

for the parent symmetry classes D, A, and C, respectively.

From this follows the minimal number of root state copies νmin

for which one can construct a QNLSM without a topological

term, see Table IV. This in turn determines the reduction of

the classification, i.e., ZN → ZN(νmin).

2. Dynamical boundary masses for reflection and

rotation-symmetric SPT states

As stated above, there exists at least one boundary Dirac

mass for all 27 symmetry classes of reflection and rotation-

symmetric SPT states. This is the key assumption that we

used in the previous section to determine the maximal num-

ber of dynamical mass matrices for the three parent symmetry

classes. In this subsection we prove that this assumption is

indeed correct. We perform the proof using the real Majorana

representation of the SPT states. Before proceeding with the
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proof, it is important to recall that the dynamical Dirac masses

must anti-commute with all the kinetic matrices of the bound-

ary Hamiltonian and commute with the generators of the con-

tinuous symmetries. For example, for an SU(2) spin-rotation

symmetric system, the masses must commute with the gen-

erators Q and C, where eQθ, eCθ, and eQCθ (with {Q,C} = 0)

form the three continuous symmetries of SU(2).

a. Reflection-symmetric SPT states Reflection symme-

try R (Rx for example) acts on Hamiltonian (2.4), written in

reciprocal space, as

R−1H (0)(kx, ky, · · · )R = H
(0)(−kx, ky, · · · ), (3.7)

which implies that {R, γ̃x} = 0, [R, γ̃ j] = 0 for j , x, and

[R, β̃] = 0. For reflection-symmetric SPT states with spatial

dimension d > 1, we derive the boundary Hamiltonian by con-

sidering a domain wall configuration in the mass term along

the direction that is perpendicular to the reflection symmetry

direction (i.e., the x direction), i.e. m(x) = m0sgn(xd). The

boundary Hamiltonian describing the edge modes possesses

all protecting AZ symmetries together with rotation symme-

try Rbd, the projection of the reflection operator R onto the

boundary space.

We now construct the boundary Dirac masses for this

boundary Hamiltonian. In the following, C denotes one of the

generators of the SU(2) spin-rotation symmetry, cf. caption of

Table III. We distinguish between four different cases:

(i) R commutes with C (if it exists) and R2
bd
= +1. — In

this case, one verifies that

β = γxRbd (3.8a)

satisfies all algebraic relations that the Dirac mass term must

obey. Here, γx denotes the kinetic Dirac matrix of the x-

direction, projected onto the boundary space.

(ii) R commutes with C and R2
bd
= −1. — In this case, we

find that the mass term is given by

β = γxRbd ⊗ iσ2, (3.8b)

which is an anti-symmetric mass term in the Majorana repre-

sentation.

(iii) R anticommutes with C and R2
bd
= +1. — In this

case, the mass matrix is

β = γxRbdQ ⊗ iσ2 (3.8c)

(Q2 = −1. So in order for β2 = −1 we have to tensor product

with iσ2.)

(iv) R anticommutes with C and R2
bd
= −1. — In this

case, the mass matrix is

β = γxRbdQ. (3.8d)

One verifies that with the above choices the mass terms satisfy

all necessary conditions.

b. Rotation-symmetric SPT states Two-fold rotation

symmetry U acts on Hamiltonian (2.4) as

U−1H (0)(k1, k2, · · · , kd)U = H (0)(−k1,−k2, · · · , kd),

from which it follows that {U, γ̃i} = 0 for i , d, [U, γ̃d] =

0, and [U, β̃] = 0. The boundary Hamiltonian is derived by

considering a domain wall along the xd direction, such that

the boundary Hamiltonian inherits all symmetries of the bulk

Hamiltonian, including the rotation symmetry Ubd, i.e., the

projection of the rotation operator U onto the boundary space.

To construct the boundary mass terms we consider, as be-

fore, four different cases:

(i) U commutes with C (if it exists) and U2
bd
= +1. — In

this case the mass term is

β = Ubd ⊗ iσ2. (3.9a)

(ii) U commutes with C and U2
bd
= −1. — In this situa-

tion the mass term is

β = Ubd. (3.9b)

Here, U alone is enough as a mass term.

(iii) U anticommutes with C and U2
bd
= +1. — In this

case the mass term is

UbdQ. (3.9c)

(iv) U anticommutes with C and U2
bd
= −1. — The mass

term is

UbdQ ⊗ iσ2. (3.9d)

With these choices, the mass terms satisfy all necessary sym-

metry conditions, in particular, they anticommute with all γi’s

on the boundary.

Eqs. (3.8) and (3.9) prove the existence of boundary Dirac

masses for all 27 symmetry classes of reflection-symmetric

and rotation-symmetric TIs and TSCs. This means that for

any (d−1)-dimensional boundary Hamiltonian with reflection

(rotation) symmetry, we can always construct a bulk Hamilto-

nian in the corresponding parent symmetry class in d − 1 di-

mensions. This implies that all Z classifications of reflection-

symmetric and rotation-symmetric TIs and TSCs are unsta-

ble to quartic interactions, since it is always possible to find

enough number of allowed Dirac mass matrices that yield a

QNLSM low-energy theory without topological obstructions

(see also discussion in Sec. III D). This is an important differ-

ence from that of the case without reflection symmetry, where

Z classifications in even dimensions are stable35.72

C. Determining the rank of the root state

Having obtained the dynamical boundary masses, we can

add the pieces of the derivation together, to obtain the mini-

mal copies of root states needed for each scenario to arrive at a

QNLSM without topological obstructions. Since the number
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TABLE V. Periodic table of isomorphisms between irreducible rep-

resentations of real Clifford algebras Clp,q and matrix algebras. The

symbols R(N), C(N), and H(N) denote N × N matrices over R, C,

and H, respectively. With this, the rank of the root state [realized in

the Majorana basis, i.e., GL(R)] follows from the dimension of the

matrix algebras: dimR(N) = N, dimC(N) = 2N, dimH(N) = 4N.

For the case where the matrix algebra is a direct sum of two algebras

[denoted as 2R(N), 2H(N), and 2C(N)], the ranks of the root state

is determined by the dimension of the subalgebras of these direct

sums, since the subalgebras faithfully capture the algebraic relations.

By virtue of the isomorphism Clp,q+8 ≃ Clp+8,q ≃ Clp,q ⊗ R(16), we

get the rank of the root state for all real symmetry classes. The rank

of the root state of the complex symmetry classes, realized in the

Majorana basis, follows from dim(Cl2m) = dim(Cl2m+1) = 2m+1.

q \ p 0 1 2 3 4 5 6 7

0 R C H 2H H(2) C(4) R(8) 2R(8)

1 2R R(2) C(2) H(2) 2H(2) H(4) C(8) R(16)

2 R(2) 2R(2) R(4) C(4) H(4) 2H(4) H(8) H(16)

3 C(2) R(4) 2R(4) R(8) C(8) H(8) 2H(8) H(16)

4 H(2) C(4) R(8) 2R(8) R(16) C(16) H(16) 2H(16)

5 2H(2) H(4) C(8) R(16) 2R(16) R(32) C(32) H(32)

6 H(4) 2H(4) H(8) C(16) R(32) 2R(32) R(64) C(64)

7 C(8) H(8) 2H(8) H(16) C(32) R(64) 2R(64) R(128)

of allowed Dirac masses obeying certain symmetries only de-

pend on the matrix rank of the boundary Hamiltonian, which

is the product of the copy number and the rank of the root

state, we only need to determine the size of the root state

on the boundary for each case and compare it with that of

the corresponding parent classes (D, A or C) in d − 1 space

dimensions. Then one can determine the space of normal-

ized dynamical Dirac mass terms for each copy number of

the boundary root state from that of the corresponding parent

symmetry class we derived in Sec. III B 1.

To determine the rank of the root state we use the isomor-

phism between irreducible representations of Clifford alge-

bras and matrix algebras, see Table V. As before we use the

real Majorana representation to do this73. As discussed in

Sec. III B 1, for each AZ symmetry class in a given spatial

dimension there exists an associated Clifford algebra, which

is composed of the kinetic and mass Dirac matrices and the

symmetry operators of the AZ symmetries. For the three par-

ent classes A, D and C in d − 1 spatial dimensions we found

in Sec. III B 1 that the associated Clifford algebras are Cld−1,

Cl1,d−1, and Cld+1,1, respectively. Now, we need to incorpo-

rate the reflection (rotation) symmetry in the Clifford alge-

bra. This is done in Appendix B, where we derive the Clif-

ford algebras for all 27 symmetry classes of reflection- and

rotation-symmetric TIs and TSCs. For reflection-symmetric

TIs and TSCs the corresponding Clifford algebras are listed

in the third column of Table I. Having identified the associ-

ated Clifford algebras, we can then infer the size of the root

state for each of the 27 reflection (rotation) symmetry classes

(as well as for the parent symmetry classes) form the isomor-

phisms tabulated in Table V.

D. Summary of procedure to obtain the reduction pattern

To sum up, the derivation of the reduction pattern of the

free-fermion classification of crystalline SPT states consists

of the following steps:

(1) The first step is to determine the root state and its rank

rmin for a given symmetry class in d spatial dimensions. As

discussed in Sec. II B, the root state is given by the Hamilto-

nian H (0), Eq. (2.4), with ν = 1, i.e., the Hamiltonian with

smallest rank that accomodates all the defining symmetries of

the crystalline SPT state. The rank of the boundary Hamil-

tonian describing the gapless surface modes is then given by

rmin/2. For each root state there exists an associated Clifford

algebra, see Table I and Appendix B. The rank of the root state

is obtained by using the isomorphism between irreducible rep-

resentations of Clifford algebras and matrix algebras, see Ta-

ble V.

(2) The second step is to determine the dynamical boundary

masses for this root state that are allowed to break all discrete

Z2 symmetries, but should preserve the continuous symme-

tries. This task can be reduced to the task of finding (extra)

mass terms of a (d − 1)-dimensional bulk Hamiltonian in the

corresponding parent symmetry class D, A, or C, whose rank

we denote by rm. [For cases with only a U(1) continuous sym-

metry, the parent symmetry class is A; for cases with SU(2)

rotation symmetry, the parent symmetry class is C; without

continuous symmetries, the parent symmetry class is D, see

Sec. III B 1.] Then, one needs to find the minimal number of

copies νm for this (d−1)-dimensional bulk Hamiltonian in the

parent symmetry class D, A, or C, for which on can construct a

QNLSM without topological obstructions, cf. Table. IV. From

this it follows, that the boundary modes of
νmrm

rmin/2
copies of the

root state of the crystalline SPT state can be gapped out by

symmetry-preserving interactions. Hence, we conclude that

the free-fermion classification is, at the very least, reduced to

Z 2νmrm
rmin

. (3.10)

(3) Finally, we need to check whether additional dynami-

cal boundary masses can be found that break the continuous

symmetries (i.e., Dirac masses that belong to class D). This

could, in principle, lead to a further reduction of the classifi-

cation. However, as it turns out, these additional continuous-

symmetry breaking masses do not exist for any of the consid-

ered crystalline SPT states.

Following the above three steps, one obtains the interaction-

induced collapse of the free-fermion classification of

reflection-symmetric and rotation-symmetric TIs and TSCs,

see Tables I and II. Remarkably, we find that all Z2 free-

fermion classifications are stable against quartic contact in-

teractions, i.e., interactions cannot gap out a single copy of

the corresponding root state boundary system.

IV. EXAMPLES IN 1,2 AND 3 SPACE DIMENSIONS

Let us now illustrate the collapse of the classification of

free-fermion crystalline SPT states by considering three phys-
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ical examples.

A. Kitaev Majorana chain with two-fold rotation symmetry

The first example is the one-dimensional Kitaev Majorana

chain with a two-fold rotation symmetry. In the continuum

limit and using the Majorana representation40, the root state

Hamiltonian of this one-dimensional superconducting wire

reads

H (0) = i∂xX10 + mX20, (4.1)

where Xi j = σi ⊗ σ j denotes the tensor product of Pauli ma-

trices (σ1, σ2, σ3) and the unit matrix (σ0). We will use this

notation throughout this entire section. Eq. (4.1) satisfies both

time-reversal and rotation symmetry with the symmetry oper-

ators

T = KX30 and Ũ = iX02, (4.2)

respectively. Here, the two-fold rotation Ũ, which squares

to −1, is around the axis of the chain. We note that the dimen-

sion of the root state Hamiltonian is enlarged by two compared

to the original Kitaev chain model without rotation symmetry.

Hence, Eq. (4.1) can be viewed as two copies of the original

Kitaev chain, i.e., a model with four Majorana flavors in one

unit cell that transform as a spin-1/2 object.

To which symmetry class of Table II does Hamiltonian (4.1)

belong to? The algebraic relations between the symmetry op-

erators are [T , Ũ] = 0 and [C, Ũ] = 0, where C denotes the

operator of PHS, which is trivial in the real Majorana repre-

sentation. (If we use the complex fermion representation of

the root state, C becomes a nontrivial “built-in” PHS, once

written in Nambu representation, see Eq. (4.4) and Appendix

A 1.) As discussed in Sec. II A, the rotation operator needs

to square to +1 according to our conventions. Therefore, we

need to formally take U = iŨ, which converts the commu-

tation relations into anti-commutation relations. As a conse-

quence, the root state Hamiltonian (4.1) belongs to symmetry

class BDI with U−− in Table II. Alternatively, we can write

Eq. (4.1) in the complex fermion (Nambu) representation, i.e.,

H (0) = i∂xX20 + mX30, (4.3)

in which case the symmetry operators take the form

T = K , C = KX10, and U = X02. (4.4)

One verifies that U anticommutes with the TRS and PHS

operators of Eq. (4.4), thereby confirming that the root state

Hamiltonian belongs to class BDI with U−−.

The Dirac matrices γ̃x = X10 and β̃ = X20 of the root state

Hamiltonian (4.1) together with the symmetry operators T

and Ũ generate the Clifford algebra Cl3, i.e., {γ̃x,T ; β̃} ⊗ Ũ

generates Cl3. According to the caption of Table V, this Clif-

ford algebra has dimension four, i.e., dim(Cl3) = 4, which

agrees with the matrix rank of H (0). That is, the rank of the

root state is rmin = 4. Furthermore, we note that the boundary

Hamiltonian of H (0), Eq. (4.1), falls into class D, since there

are no continuous symmetries. That is, the parent symmetry

class is class D. The rank of the root state in zero spatial di-

mensions (d−1 = 0) in the parent symmetry class D is rm = 2,

since the relevant Clifford algebra is Cl1,0 (cf. Table V). Now,

according to Table IV, νm = 22 = 4 copies of the class D

root states in d − 1 spatial dimensions are needed to gap out

the edge modes. From Eq. (3.10) it follows that the classifi-

cation is Z 2νmrm
rmin

= Z4. So we need 4 copies of the Majorana

chain (4.1) to gap out all its edge modes and smoothly connect

it to the trivial phase, cf. Table II.

Alternatively, this result can also be derived by directly an-

alyzing the dynamical boundary Hamiltonian of Eq. (4.1).

We will now do this using the complex fermion (Nambu)

representation of our example system35, i.e., Eq. (4.3). The

boundary Hamiltonian of Eq. (4.3) is obtained by con-

sidering a domain wall configuration in the mass term

mX30. Adding quartic contact interactions and performing

a Hubbard-Stratonovich transformation yields the dynamical

boundary Hamiltonian (cf. discussion in Sec. II B)

H
(dyn)

bd
(τ) = M(τ). (4.5)

Since the boundary Hamiltonian has zero spatial dimension,

it contains only the dynamical mass term M(τ), which de-

pends on imaginary time τ. M(τ) is a 2ν × 2ν Hermitian ma-

trix, where ν denotes the number of root state copies. On the

boundary TRS, PHS, and rotation symmetry are represented

by

Tbd = KX01, Cbd = KX01, and Ubd = X21, (4.6)

respectively, where 1 is the ν × ν unit matrix. Generic quartic

contact interactions that respect the BDI symmetries lead to a

dynamical mass term M(τ) in symmetry class D. Hence, due

to PHS the mass term must satisfy M∗(τ) = −M(τ). (Note that

M(τ) is allowed to break TRS and rotation symmetry.) Fur-

thermore, we require that M(τ) squares to the 2ν×2ν unit ma-

trix. With these conditions, the space of the dynamical mass

matrices is topologically equivalent to3

Vν = O(2ν)/U(ν), (4.7)

which in the limit ν → ∞ corresponds to the classifying

space R2.

The edge modes of Hamiltonian (4.3) can be gapped out

dynamically, if the QNLSM for the dynamical masses M(τ)

does not contain a topological term (topological obstruction),

cf. Sec. II B. In order to check whether the QNLSM contains

such a topological term, let us now explicitly construct the

spaces of the dynamical mass terms M(τ) for the copy num-

bers ν = 1, ν = 2, and ν = 4 in the following.

Case ν = 1. — For ν = 1 the only allowed Dirac mass term

is proportional to X2. (There does not exist any extra mass

term since π0(R2) = Z2, cf. Sec. III B 1). Hence, the number

of anti-commuting mass matrices is N(1) = 1 and therefore

the QNLSM target space is S N(1)−1 = S 0. Since π0(S 0) = Z2,

there exists a topological obstruction, which takes the form of

a domain wall in imaginary time, e.g., ∼ sgn(τ)X2. Due to this

domain wall obstruction the edge modes cannot be gapped out

dynamically for ν = 1.
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Case ν = 2. — For ν = 2, i.e., two copies of the root

state (4.3), the space of the dynamical Dirac masses is spanned

by

X20, X12, and X32. (4.8)

That is, the number of allowed anti-commuting Dirac mass

matrices is N(2) = 3. (There is no fourth mass term that can be

added since π0(R4) = Z.) Hence, the space of the normalized

boundary masses is homeomorphic to S 2, i.e., the QNLSM

target space is S N(2)−1 = S 2. Because π2(S 2) = Z, a Wess-

Zumino topological term can be added to the QNLSM. Due

to this WZ topological term, the boundary Hamiltonian for

ν = 2 remains gapless in the presence of interactions.

Case ν = 4. — For ν = 4 there exist seven anti-commuting

Dirac mass matrices, i.e., N(4) = 7. There does not exist an

eighth mass matrix since π0(R8) = Z. Hence, the QNLSM

target space is S N(4)−1 = S 6. Since πι(S
6) = 0 for ι = 0, 1, 2,

no topological term can be added to the QNLSM. As a conse-

quence, for ν = 4 the edge modes are gapped out dynamically

by interactions. (Note that for the purpose of gapping out the

edge modes, one can choose, for example, the four pairwise

anticommuting Dirac masses X200, X320, X332, and X102.)

Therefore, we conclude that the classification of Hamil-

tonian (4.3) collapses to Z4 in the presence of interactions,

which agrees with the previous derivation.

B. Two-dimensional spin-singlet superconductor with

time-reversal and reflection symmetry

As a second example we consider a two-dimensional spin-

singlet superconductor with time-reversal and reflection sym-

metry. In the Majorana representation the root state Hamilto-

nian of this superconductor reads

H (0) = i∂xX3100 + i∂yX0202 + mX0302, (4.9)

where Xi jlk denotes the tensor product of four Pauli/identity

matrices. Hamiltonian (4.9) is invariant under time-reversal

and reflection symmetry x → −x with the symmetry operators

T = iX2100K and Rx = X2002, (4.10a)

respectively. The root state (4.9) also satisfies SU(2) spin-

rotation symmetry with the generators

C = iX0123 and Q = iX0002. (4.10b)

Hence, it follows that Hamiltonian (4.9) belongs to AZ sym-

metry class CI, since it is invariant under SU(2)×T with

T 2 = −1, see Table III. We infer that the symmetry T com-

bined with the symmetry C in the Majorana representation

corresponds to the time-reversal symmetry T̃ in the complex

fermion representation, i.e., T̃ = TC, with T̃ 2 = +1. Since

{R, T̃ } = {R,C} = 0, our example Hamiltonian is in symmetry

class CI with R−− in Table I.

From Eq. (4.9) we find that the rank of the root state is

rmin = 16. Since the boundary Hamiltonian of Eq. (4.9) has a

continuous SU(2) spin-rotation symmetry, the parent symme-

try class that we need to consider is class C. The rank of the

(d − 1)-dimensional (i.e., one-dimensional) root state Hamil-

tonian in parent symmetry class C is rm = 8, because the rel-

evant Clifford algebra is Cl3,1 and dim Cl3,1 = dimH(2) = 8,

see Table V. We note that for the present example rm is equal

to the rank of the boundary Hamiltonian. Using Table IV, we

find that for νm = 21 = 2 copies of the class D root state in

d − 1 = 1 spatial dimensions, it is possible to gap out the

edge states. Hence, according to Eq. (3.10), the classification

is Z 2νmrm
rmin

= Z2. In other words, the SPT state (4.9) forms a Z2

group, which is in agreement with Table I.

As in the previous example, we now present an alternative

derivation of this result by explicitly constructing the dynam-

ical mass terms for the boundary Hamiltonian of Eq. (4.9).

The boundary Hamiltonian is derived by considering a do-

main wall configuration along the y direction in the mass term

mX0302 of Eq. (4.9). After introducing quartic contact interac-

tions and performing a Hubbard-Stratonovich transformation,

we obtain

H
(dyn)

bd
= i∂xX300 ⊗ 1 + M(τ, x), (4.11)

where 1 is the ν × ν unit matrix and the mass term M(τ, x) is

an anti-symmetric 8ν × 8ν matrix, with ν the number of root

state copies. On the boundary, the operations for TRS and

reflection symmetry are represented by

Tbd = iX200K and Rbd,x = X202, (4.12)

respectively, and the generators of the continuous SU(2) sym-

metry read

Cbd = iX023 and Qbd = iX002. (4.13)

The dynamical mass matrix M(τ, x) anti-commutes with the

kinetic term of Eq. (4.11), commutes with the generators of

the SU(2) symmetry (i.e., [M,Qbd] = [M,Cbd] = 0), and is

required to square to unity. (Note that M(τ, x) is allowed to

break TRS and reflection symmetry.) Thus, the space of the

SU(2) symmetric boundary matrices M(τ, x) is topologically

equivalent to the space

Vν = Sp(ν), (4.14)

which in the limit ν → ∞ becomes the classifying space R5.

As in the previous example, we now explicitly construct the

dynamical boundary mass terms for the copy numbers ν = 1

and ν = 2.

Case ν = 1. — There are N(ν = 1) = 4 dynamical mass

matrices that are allowed on the boundary, namely,

X200, X112, X120, and X132. (4.15)

(We can add three additional mass matrices since π0(R5) =

π0(R6) = π0(R7) = 0. There does not exist a fifth mass matrix

since π0(R8) = Z.) The space of the dynamical mass matri-

ces is homeomorphic to S N(1)−1 = S 3. Since π3(S 3) = Z,

a WZ topological term can be added to the QNLSM. In the

presence of this WZ term, the boundary Hamiltonian remains

gapless in the presence of interactions. In passing we note that

the masses X112, X120, and X132 in Eq. (4.15) satisfy TRS and

SU(2) symmetry, but break reflection symmetry. This means
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that a two-dimensional class CI superconductor is topologi-

cally trivial in the absence of reflection symmetry.

Case ν = 2. — For ν = 2 we find that there are N(2) = 5

anti-commuting mass matrices, since π0(R9) = Z2. Hence the

QNLSM target space is S N(2)−1 = S 4. Because πι(S
4) = 0, for

ι = 0, 1, . . . , 3, no topological term is possible in the QNLSM.

As a consequence, for ν = 2 the boundary zero modes

are gapped out dynamically, which confirms that Hamilto-

nian (4.9) is classified as Z2.

One can check that allowing for SU(2) symmetry breaking

mass terms will not further reduce this classification.

C. Three-dimensional class BDI insulator/superconductor

with reflection symmetry

The third example is a three-dimensional class BDI topo-

logical state with reflection symmetry. As discussed in

Secs. II A and II C, SPT states in AZ class BDI can be in-

terpreted in two different ways (i.e., there are two differ-

ent symmetry embedding schemes): (i) as superconductors

with time-reversal symmetry but broken U(1) charge symme-

try and (ii) as insulators with U(1) charge symmetry, time-

reversal symmetry, and particle-hole symmetry. In the follow-

ing we discuss both of these symmetry embedding schemes

and show that they lead to different reduction patterns of the

free-fermion classification.

1. BDI superconductor with reflection symmetry

In the Majorana representation the root state Hamiltonian of

a three-dimensional class BDI superconductor with reflection

symmetry is given by

H (0) = i∂xX303 + i∂yX103 + i∂zX001 + mX002, (4.16)

where Xi jk denotes the tensor product of three Pauli/identity

matrices. This Hamiltonian is invariant under time-reversal

symmetry and reflection symmetry x → −x with the symme-

try operators

T = X223K and Rx = X100, (4.17)

respectively. We note that in the Majorana representation PHS

with operator C is implemented trivially. (Here, TRS with

T 2 = +1 could be viewed as a combination of a π spin-

rotation symmetry times a TRS T̂ with T̂ 2 = −1 for spin-

1/2 particles.) Since T 2 = +1, C2 = +1, [R,T ] = −1, and

[R,C] = +1, Hamiltonian (4.16) belongs to class BDI with

R−+ in Table I.

The rank of the root state Hamiltonian (4.16) is rmin = 8.

Since the boundary Hamiltonian of the superconductor (4.16)

has no continuous symmetry, its associated parent symmetry

class is class D. The two-dimensional root state Hamiltonian

of parent symmetry class D has rank rm = 2, because the as-

sociated Clifford algebra is Cl1,2, whose matrix representa-

tion is 2R(2) with rank two. From Table IV, we infer that in

d − 1 = 2 spatial dimensions νm = 24 = 16 copies of the

class D root state can be continuously connected to the triv-

ial state. Hence, according to Eq. (3.10), the classification of

Hamiltonian (4.16) is Z 2νmrm
rmin

= Z8. That is, for eight copies

of the root state Hamiltonian (4.16) the surface states can be

gapped out by quartic interactions, which is in agreement with

Table I.

Let us now explicitly construct the allowed Dirac masses

for the boundary Hamiltonian of Eq. (4.16). The boundary

Hamiltonian is derived by considering a domain wall along

the z-direction in the mass term mX002. Introducing quartic

interactions and performing a Hubbard-Stratonovich transfor-

mation yields

H
(dyn)

bd
= (i∂xX30 + i∂yX10) ⊗ 1 + M(τ, x, y), (4.18)

where the mass term M(τ, x, y) is a 4ν × 4ν matrix, with ν the

number of root state copies. On the boundary, the operators

for TRS and reflection symmetry are given by

Tbd = X22K and Rbd,x = X10, (4.19)

respectively. Generic symmetry-preserving contact interac-

tions lead to a dynamical boundary mass term M(τ, x, y) in

symmetry class D. Therefore, we can parametrize the space of

the dynamical mass matrices as M(τ, x, y) = σ2 ⊗ M̃(τ, x, y),

where M̃ is a 2ν × 2ν real-valued and symmetric matrix. The

space of the matrices M̃ is topologically equivalent to

Vν = ∪
2ν
n=0O(2ν)/[O(2ν− n) × O(n)], (4.20)

which in the limit ν → ∞ becomes the classifying space R0.

Similar to the previous two examples, we now explicitly con-

struct the allowed dynamical boundary masses for the copy

numbers ν = 2n, with n = 0, 1, 2, 3, in the following.

Case ν = 1. — For ν = 1, the space of the mass matrices

M(τ, x, y) is spanned by the pair of anti-commuting matrices

X21 and X23. (There does not exist a third mass term since

π0(R1) = Z2.) Thus, the QNLSM target space is S N(1)−1 = S 1.

Because π1(S 1) = Z, there exists a topological obstruction

of the vortex type, which prevents the gapping of the surface

states.

Case ν = 2. — For ν = 2 there exist only N(2) = 3

pairwise anti-commuting mass matrices, since π0(R2) = Z2,

namely X213, X233, and X201. The space spanned by these three

mass matrices is homeomorphic to the two-sphere S 2. Since

π2(S 2) = Z, M(τ, x, y) can support monopole defects. That

is the QNLSM possesses a topological term of the monopole

type and, hence, the surface modes cannot be gapped out.

Case ν = 4. — For four copies ν = 4, we find the five pair-

wise anti-commuting Dirac masses X2333, X2331, X2130, X2122,

and X2010. (There does not exist a sixth Dirac mass since

π0(R4) = Z.) These five matrices span the space of the mass

matrices M(τ, x, y), which is homeomorphic to the four-sphere

S 4. That is, the QNLSM target space is given by S N(4)−1 = S 4

Because π4(S 4) = Z, it is possible to add a WZ topologi-

cal term to the QNLSM and, hence, the surface states remain

gapless in in the presence of interactions.

Case ν = 8. — For ν = 8 one finds that there exist nine

pairwise anti-commuting Dirac masses. (This is becuase the

next nontrivial homotopy group is π0(R8) = Z.) Hence, the
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QNLSM target space is S N(8)−1 = S 8. Since πι(S
8) = 0, for

ι = 0, 1, . . . , 4, it is not possible to add a topological term

to the QNLSM. As a consequence the surface modes can be

gapped out by interactions.

Therefore, the classification of Hamiltonian (4.16) reduces

from Z to Z8, in agreement with the derivation given above.

2. BDI insulator with reflection symmetry

Let us now interpret the class BDI topological state as an

insulator with U(1) charge conservation, i.e., as a topological

insulator with particle-hole symmetry, time-reversal symme-

try that squares to +1, and U(1) symmetry. In other words,

the protecting symmetries are U(1)⋊[ZC
2
× T (1)]. In order to

implement these symmetries the rank of the root state (4.16)

needs to be doubled. We obtain

H (0) = i∂xX3010 + i∂yX1010 + i∂zX0022 + mX0032, (4.21)

with the symmetry operators

T = X2203K , Rx = X1000, C = X0013, and Q = iX0002,(4.22)

where Q is the generator of the continuous U(1) symmetry.

The rank of the root state (4.21) is rmin = 16. Since

the boundary Hamiltonian of Eq. (4.21) exhibits a U(1)

continuous symmetry, the parent symmetry class that we

need to consider is class A. (In this case, the space of the

dynamical boundary masses is topologically equivalent to

∪2ν
n=0

U(2ν)/[U(2ν − n) × U(n)], which in the limit ν → ∞

corresponds to the classifying space C0.) The rank of the two-

dimensional root state of parent symmetry class A is rm = 4,

since dim Cl2 = 4. From Table IV we find that νm = 23 = 8

copies of the two-dimensional class A root state are needed to

gap out the edge modes. Hence, if we allow only for U(1)

symmetric dynamical masse, then the reflection-symmetric

BDI topological insulator (4.21) has a Z 2νmrm
rmin

= Z4 classifi-

cation.

Upon relaxing the constraints from the U(1) symmetry, the

dynamical masses fall into class D. (In this case the space

of the dynamical masses is equivalent to ∪4ν
n=0

O(4ν)/[O(4ν −

n) × O(n)], which in the limit ν → ∞ becomes the classi-

fying space R0.) The rank of the two-dimensional root state

in class D is rm = 2. By use of Table IV, one finds that

νm = 24 = 16 copies of the root state can be connected to

the trivial state. Hence, the classification is again Z 2νmrm
rmin

= Z4

(even without checking the invariance of the target space un-

der U(1) operation). With this we conclude that the reflection-

symmetric BDI topological insulator (4.21) is indeed classi-

fied as Z4 (cf. caption of Table I.) This is in contrast to the

reflection-symmetric BDI topological superconductor (4.16)

which is classified as Z8.

3. Bosonization analysis for the boundary Hamiltonian

In this section we use the bosonization technique to perform

a stability analysis of the surface states of the BDI supercon-

ductor (4.16) and the BDI insulator (4.21). We will see that

the classification obtained from this stability analysis agrees

with the QNLSM appraoch.

a. BDI superconductor with reflection symmetry We

first consider the BDI superconductor (4.16). Following

Refs. 74 and 75, we introduce a spatial modulation in the mass

term of the boundary Hamiltonian (4.18). That is, we consider

the boundary Hamiltonian

Hbd = i∂xX30 + i∂yX10 + m(x)X23, (4.23)

where the mass term m(x) = m0sgn(x) describes a domain

wall with a kink at x = 0. Observe that Hbd, Eq. (4.23), sat-

isfies both TRS and reflection symmetry x → −x with the

symmetry operators given by Eq. (4.19). (In passing we note

that the surface Hamiltonian (4.23) with a spatially indepen-

dent mass term m ≡ m0 can be viewed as a two-dimensional

bulk system with TRS and an internal Z2 symmetry with op-

erator X03. In fact, there exists a general connection between

d-dimensional systems with reflection symmetry and (d − 1)-

dimensional systems with an internal Z2 symmetry, see Ap-

pendix C for more details). In the presence of the domain wall

m(x), the surface Hamiltonian (4.23) exhibits two counter-

propagating helical modes that are localized at the kink of the

domain wall x = 0. The dynamics of the these two gapless

modes is described by the low-energy Hamiltonian

Hdw = i∂yX3. (4.24)

The two helical modes at the domain-wall transform into each

other under TRS (with operatorT = X1K) and are symmetric

under reflection x→ −x with operator Rx = X3.

We now use bosonization to study the stability of the gap-

less domain-wall states in the presence of interactions. Tak-

ing two copies of the system, we combine two gapless Ma-

jorana domain-wall modes with a given propagation direction

to form one complex fermion mode. These complex fermion

modes are then converted into bosonic fields φ = (φ1, φ2)T us-

ing the standard bosnization procedure76,77. The Lagrangian

for these bosonic fields describing the domain-wall modes is

given by

L =

∫
dx

4π
[KI,J∂tφI(x)∂xφJ(x) − ∂xφI(x)∂xφI(x)], (4.25)

where K is the third Pauli matrix and summation over repeated

indices is assumed. The bosonic fields φ = (φ1, φ2)T represent

domain-wall modes moving in the +y and −y directions, re-

spectively. That is, the vertex operators : eiφ1 : and : eiφ2 : cre-

ate left- and right-moving fermionic modes. (Here, the colons

denote a normal-ordered operator, as usual.) The commuta-

tion relations among the bosonic fields are given by

[φI(x), φJ(y)] = iπKI,J sgn(x − y) + iπ sgn(I − J). (4.26)

From Eq. (4.24), we infer that TRS and rotation symmetry act

on the bosonic fields as

Tφ(x)T −1 = −σ1φ(x), (4.27a)

Rxφ(x)R−1
x = φ(−x) + πe2, (4.27b)

where ei denotes the unit vector whose ith entry is one and the

other entries are zero.
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Let us now examine whether interactions can gap out ν

copies of the gapless helical domain-wall modes, described

by Lagrangian (4.25), without breaking the symmetries. (Ob-

serve that ν copies of Lagrangian (4.25) correspond to 2ν

copies of the original system, Eq. (4.23).) Interactions among

the domain-wall modes, such as backscattering and umklapp

processes, are described by cosine terms of the form

Lint =

ν∑

α=1

Cα

∫
dx : cos (lα · φ + aα) :, (4.28)

where Cα and aα denote real-valued coupling constants and

phase factors, respectively. The vectors lα (α = 1, . . . , ν)

are a set of v independent integer-valued vectors, chosen

such that Lint respects all symmetries and the fields satisfy78

[lα · φ(x), lβ · φ(y)] = 0 up to 2πin, with n ∈ Z. Furthermore,

to ensure that there is no spontaneous symmetry breaking, the

set of elementary bosonic variables31,75,79 {vα · φ} must stay

invariant modulo 2π under the symmetry transformations in

Eq. (4.27). With these conditions, we find that for ν = 4 copies

of L the domain-wall states can be gapped out by the symme-

try preserving interactions (4.28) with the gapping vectors lα
given by

l1 = (1, 0 | 1, 0 | 0,−1 | 0,−1)T,

l2 = (0, 1 | 0, 1 | − 1, 0 | − 1, 0)T ,

l3 = (1,−1 | − 1, 1 | 0, 0 | 0, 0)T,

l4 = (0, 0 | 0, 0 | 1,−1 | − 1, 1)T , (4.29)

and with all aα’s equal to zero and Cα = 1. In Eq. (4.29), the

vertical lines separate copies of helical edge modes. It is easy

to check that the gapping vectors (4.29) satisfy the symme-

try constraints and all other necessary conditions. Hence, for

2ν = 8 copies of the BDI superconductor (4.16) [i.e., ν = 4

copies of L, Eq. (4.25)] the surface modes are completely

gapped out by the interaction (4.28) with (4.29). There-

fore, three-dimensional BDI superconductors with reflection

symmetry form a Z8 group, which is in agreement with the

QNLSM approach of Sec. IV C 1.

b. BDI insulator with reflection symmetry A similar

analysis can be performed for the BDI insulator (4.21), in

which case the defining symmetries are U(1)⋊[ZC
2
× T ]. To

this end, we first rewrite Hamiltonian (4.21) in complex

fermion representation, in which the rank of the Hamiltonian

is halved. We find

H (0) = i∂xX301 + i∂yX101 + i∂zX002 + mX003. (4.30)

Within the complex fermion representation the U(1) charge

conservation symmetry with generator Q is realized trivially.

The operators of TRS, reflection, and PHS are given by

T = X220K , Rx = X100, and C = X001K , (4.31)

respectively. Following similar steps as above, we first in-

troduce a domain wall along the z-direction in the mass term

mX003 to derive the surface Hamiltonian. Subsequently, we

consider an odd-parity spatial modulation in the mass term

mX23 of the surface Hamiltonian, i.e., m0sgn(x)X23. In the

presence of the domain wall m0sgn(x) the surface Hamiltonian

exhibits two counter-propagating helical modes localized at

the kink of the domain wall x = 0. The low-energy dynamics

of these two helical modes is described by Hamiltonian (4.24),

except that now we are using the complex fermion represen-

tation.

Using the bosonization procedure, the two counter-

propagating complex modes at the domain wall are trans-

formed into two bosonic fields denoted by φ = (φ1, φ2)T . Un-

der TRS and reflection symmetry the bosonic fields transform

according to Eq. (4.27), just as before. In the present case,

there are two additional constraints due to U(1) charge con-

servation and PHS, which are implemented by

eiQ̃θφe−iQ̃θ = φ + θ(e1 + e2), (4.32a)

CφC−1 = −φ, (4.32b)

where Q̃ denotes the generator of the U(1) symmetry writ-

ten in the complex fermion representation. As it turns out,

for ν = 4 copies of the surface domain-wall Hamiltonian

the helical edge modes can be gapped out by interaction

Lint, Eq. (4.28), with the same gapping vectors (4.29) as

above. One can check that the gapping vectors (4.29) satisfy

all symmetry constraints. Hence, the classification of three-

dimensional BDI insulators with reflection symmetry reduces

to Z4, in agreement with Sec. IV C 2.

V. CONCLUSIONS

In this paper, we have determined, in all generality, whether

the surface states of topological crystalline insulators (TCIs)

and topological crystalline superconductors (TCSCs) with

order-two symmetries (i.e., reflection or twofold rotation) are

stable in the presence of quartic fermion-fermion interactions.

To achieve this, we have described the interaction effects on

the surface states in terms of a quantum non-linear σ model

(QNLSM), whose target space is derived from Clifford alge-

bra extensions (see Sec. III). Whether the boundary modes can

be gapped out by symmetry-preserving interactions depends

on the presence or absence of a topological obstruction (i.e., a

topological term) in the action of the QNLSM. The existence

of this topological term, in turn, follows from the homotopy

group of the QNLSM target space. By performing this analy-

sis for multiple copies of a given topological phase, we have

derived a systematic classification of interacting topological

crystalline insulators and superconductors, which is summa-

rized in Tables I and II. Interestingly, the noninteracting Z2

classifications are stable in the presence of interactions, while

the Z classifications reduce to ZN , see Eq. (3.10).

Tables I and II contain many interesting TCIs/TCSCs with

a reduced classification in physical dimensions d = 1, d = 2,

and d = 3. For three of these we have discussed explicit exam-

ples in Sec. IV, namely, a Majorana wire with two-fold rota-

tion symmetry, a two-dimensional reflection-symmetric spin-

singlet superconductor, and a three-dimensional BDI insula-

tor/superconductor with reflection symmetry. Some of the en-

tries in Table I describe TCIs/TCSCs that have been previ-

ously studied in the literature, e.g., the two-dimensional DIII
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superconductor with reflection symmetry35,49 [DIII+R−−, re-

duced to Z8] and the three-dimensional AII insulator with

reflection symmetry24,35 [AII+R−, reduced to Z8], which is

physically realized in the rocksalt SnTe23–25 and in the an-

tiperovskites A3PbO26,27. It would be exciting to experi-

mentally verify the interaction-induced collapse of the free-

fermion classification in a physical system. Particularly suited

for this purpose are one-dimensional systems, e.g., the Ma-

jorana chain with two-fold rotation symmetry discussed in

Sec. IV A. This TCSC could be realized, for example, in terms

of Shiba bound states induced by magnetic adatoms on the

surface of an s-wave superconductor80. Another suitable sys-

tem to experimentally test the classification collapse is the

Su-Schrieffer-Heeger (SSH) dimer chain with two-fold rota-

tion symmetry81, which belongs to class BDI with U++ in Ta-

ble II82. It has recently become possible to fabricate the SSH

dimer chain in designer platforms, for example, using cold

atoms83 or chlorine vacancy lattices on top of Cu(100)84. Fur-

ther progress in this direction may allow to fabricate multiple

SSH chains and to study the interactions among them.
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Appendix A: Symmetries of many-body Hamiltonian &

connection between real Majorana and complex fermion

representations

In this appendix we show how the symmetries act on the

many-body Hamiltonian written in terms of complex fermion

operators or real Majorana operators (Sec. A 1). We also show

that the reduction patterns of the free-fermion classifications

can be derived using both the real Majorana and the complex

fermion representations. Both representations give consistent

results (Sec. A 2).

1. Symmetries of many-body Hamiltonian

In the complex fermion basis, we write a generic gapped

fermionic many-body Hamiltonian

H =

∫
ddx

∫
ddy

∑

i j

Ψ
†

i
(t, x)Hi j(x, y)Ψ j(t, y) (A1)

where the second quantized fermionic operators obey the

canonical equal time anticommutation relations.

Time-reversal symmetry (TRS) T = TK (K denotes com-

plex conjugation) acts on the operator level as

Tψ j(t, y)T −1 = T ∗j′ jψ j′ (−t, y) (A2)

If we assume translation invariance in the system and

consider mapping the real-space Hamiltonian into reciprocal

space, TRS requires

T H∗(k)T−1 = H(−k) (A3)

which in the notation of Eq. (2.4) amounts to {γ̃i,T } =

0, [β̃,T ] = 0 if we consider the massive Dirac Hamiltonian.

In addition, T ∗T = ±1 distinguish two different TRS.

Particle-hole symmetry (PHS, also called charge-

conjugation symmetry) is a unitary symmetry which reverses

the sign of the fermion number ψ
†

i
(x)ψi(x) − 1

2
δ(x = 0) and

acts on the operator level as

Cψ j(t, y)C−1 = C j′ jψ
†

j′
(t, y) (A4)

Assuming the Hamiltonian is traceless, one could verify

that PHS requires

CH∗C−1 = −H (A5)

namely PHS is realized anti-unitarily on the first-quantized

Hamiltonian. One could formally write PHS as C = CK

to represent its operation on the first-quantized Hamiltonian.

PHS dictates that {β̃,C} = 0, [γ̃i,C] = 0 for the Dirac Hamil-

tonian. C∗C = ±1 distinguish two different PHS.

Chiral symmetry (CHS) is an anti-unitary symmetry S =

ΓK that combines TRS and PHS. It’s realized as

Sψ j(t, y)S−1 = Γ j′ jψ
†

j′
(t, y) (A6)

Assuming traceless condition of the Hamiltonian, CHS

dictates the condition on the first-quantized Hamiltonian

ΓHΓ−1 = −H, which means {Γ, γ̃i} = {Γ, β̃} = 0. We note

that it’s unitarily realized in the first-quantized Hamiltonian

level.

When writing a BdG Hamiltonian, we arrange the Ψ as

Nambu spinors Ψ = (ψ1, ψ2, · · ·ψN , ψ
†

1
, ψ
†

2
, · · ·ψ

†

N
)T . This

renders Ψ and Ψ† as not independent from each other, Ψ =

σ1(Ψ†)T (σ1 acts in the Nambu space), which is in the form

of PHS. So the BdG Hamiltonian has a “built-in” particle-hole

symmetry σ1H∗σ1 = −H. This symmetry is actually trivially

realized written in the Majorana basis.

Working in the real Majorana basis {χa}, where the fermion

annihilation operator is written as ψi = χ2i−1 + iχ2i, we write

down a generic Dirac Hamiltonian in d spatial dimension

H = iχa[

d∑

i=1

(∂iγ̃i)ab + mβ̃ab]χb (A7)

with real symmetric kinetic matrices {γ̃i} satisfying {γ̃i, γ̃ j} =

2δi j and they all anticommute with real anti-symmetric mass

matrix β̃. We could flatten the spectrum by choosing (mβ̃)2 =

−1.
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A global U(1) symmetry takes χ → eQθχ where Q is a real

anti-symmetric matrix satisfying [Q, γ̃i] = [Q, β̃] = 0,Q2 =

−1.

A unitary Z2 symmetry C is represented by a real matrix

C satisfying [C, γ̃i] = [C, β̃] = 0,CTC = 1, {Q,C} = 0. If

Q corresponds to charge conservation and C corresponds to

particle-hole symmetry, we have C2 = 1; on the other hand, if

Q represents S z spin conservation and C is the generator for

S y spin rotation [χ→ eCθχ], then C2 = −1.

TRS is written as T = TK with a real matrix T satisfying

{T, γ̃i} = {T, β̃} = 0, T T T = 1. T 2 = ±1 depends on whether

T is symmetric or anti-symmetric. T may commute/anti-

commute with Q depending on the specific symmetry group.

The PHS could be either a real Z2 particle-hole symmetry

with C2 = ±1 or a fictitious one representing a continuous

spin rotation symmetry χ→ eCθχ satisfying C2 = −1 with the

above U(1) symmetry identified to be the spin rotation sym-

metry around another axis [these together enforce the S U(2)

symmetry of the system, with the third generator of spin ro-

tation being QC]. We further have {Q, T } = 0 when Q cor-

responds to particle number; while in the case of S U(2) spin

rotation symmetry, thing are more complicated: In the case

of S U(2) spin rotation, when T is physical TRS, we have

[Q, T ] = [C, T ] = 0; when T is the combination of TRS and

π spin rotation, we could always choose to make [C, T ] = 0

while dictating {Q, T } = 0; this corresponds to the second em-

bedding scheme of class CI denoted as U(1)⋊[ZC
2
× T ] in the

explanation column of Table III. It’s also verified that we can

always choose to have [T,C] = 0.

The reflection symmetry is represented as, say, RxP where

P represents the operation in real space that takes x → −x

and Rx is the matrix acting on internal degrees of freedom. It

requires {Rx, γ̃x} = 0, [Rx, γ̃i(i , x)] = 0, [Rx, β̃] = 0.

For two-fold rotation symmetry U, the invariance of the

Hamiltonian Eq.(2.4) under this rotation symmetry

U−1H (0)(k1, k2, · · · , kd)U = H (0)(−k1,−k2, · · · , kd) (A8)

dictates that {U, γ̃i(i , d)} = 0, [U, γ̃d] = [U, β̃] = 0.

2. Connection between real Majorana and complex fermion

representations

While the symmetry conditions for “AZ” symmetry classes

in terms of complex fermions are long well-known , there’s

ambiguity concerning whether there’s additional U(1) sym-

metry [depending on whether it’s written in terms of Nambu

spinor form] and whether the PHS is real Z2 particle-hole sym-

metry or a fictitious one coming from, say, continuous spin

rotation symmetry3. While in the Majorana basis, we could

resolve the uncertainties.

The U(1) symmetry corresponds to a nontrivial orthogo-

nal transformation in Majorana basis χ → eQθχ(θ ∈ [0, 2π))

with Q being a real anti-symmetric matrix with QT Q = 1.

There’s a conserved “particle number” N = iχbQbaχa [re-

peated indices are assumed to be summed over]. The eigen-

vectors of Q corresponding to eigenvalues ±i are η± j’s sat-

isfying [N, η± j,aχa] = ±η± j,aχa, which have one-to-one cor-

respondence i and −i eigenvalues by complex conjugation

of their coefficients. The conserved quantity dictates that

the Hamiltonian only involves fermion bilinears in form of

(η+ j,aχa)(η−k,bχb). Reorganizing the Majoranas into complex

fermionsψi = η+i,aχa(ψ
†

i
= η−i,aχa), the first quantized Hamil-

tonian could be written asΨ†H(0)Ψ with the dimension of H(0)

in complex fermion basis halved by virtue of U(1) symmetry.

Another noteworthy point is that since {Q,C} = 0, the op-

eration of C will take an eigenvector η±i,aχa of Q to η∓ j,aχa

and loosely amounts to Ψ → (Ψ†)T , which is consistent with

the definition of PHS in complex basis. If reflection also

anticommutes with Q, then in the same logic it’s also anti-

unitarily realized in the first-quantized level. We note that

γxRx (assuming reflection in the x direction) is equivalent to

a global TRS in this case. So if TRS is absent in the original

symmetry class, the scenario will become another AZ class

with an additional TRS (T 2 depends on R2
x), which has al-

ready been resolved in previous work; if TRS is present, then

two anti-unitary symmetries is equivalent up to a global uni-

tary symmetry which can be made trivial by block diagonal-

izing Hamiltonian in terms of the irreducible representation

spaces.3,4 So we only consider cases where [Q,R] = 0.

If one wants to work in complex fermion basis to deduce the

reduction pattern, in principle one can follow the same proce-

dure outlined in section III D with several caveats. The rank of

root state in complex basis should be determined by virtue of

its relation to that written in Majorana basis stated above. For

cases with U(1) or SU(2) continuous symmetries, it should be

kept in mind to include “superconducting fluctuations” by a

particle-hole grading discussed in section II C. We check by

explicit calculation that complex basis yields the same results

as that in Majorana basis.

Appendix B: Relevant Clifford algebra for the 27 cases

In this section, we briefly overview how to represent the ki-

netic/mass matrices along with symmetry operations as the

generators of Clifford algebras19,20 and therefore determine

the rank of their matrix representation (hence the size of the

root states).

We first consider writing in complex fermion basis. Intro-

ducing an “imaginary unit” J that anticommutes with TRS and

PHS with J2 = −1. The original Clifford algebra for the ten

symmetry classes without reflection symmetry is as follows

(we take γi, M to represent γ̃i, β̃ below. TRS and PHS can be

made to commute with each other.):

i) For complex class A: {γi, M} constitutes a complex Clif-

ford algebra Cld+1. For class AIII, {γi, M, Γ} constitutes a com-

plex clifford algebra Cld+2.

ii) For classes with only TRS (AI,AII): {γi, JM, T, T J} con-

stitutes a real Clifford algebra Cl1,d+2(AI),Cl3,d(AII).

iii) For classes with only PHS (C,D): {Jγi, M,C,CJ} con-

stitutes a real Clifford algebra Cl2+d,1(C),Cld,3(D).

iv) For classes with both symmetries (BDI,DIII,CI,CII):

{Jγi, M,C,CJ, TCJ} constitutes a real Clifford algebra

Cld+1,3(BDI),Cld,4(DIII),Cld+2,2(CI),Cld+3,1(CII).
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With reflection symmetry Rx, we note that iγxRx anticom-

mutes with all other matrices in the Hamiltonian. In class

AIII, if reflection anticommutes with CHS, then ΓγxRx com-

mutes with all the generators in the original Clifford algebra,

which won’t enlarge the Clifford algebra; else γxRx is a new

generator. For the other cases with no or only one protecting

anti-unitary symmetry, we could always add γxRx or JγxRx

to the original complex/real clifford algebra to form the new

Clifford algebra [note that J will change the anti/commutation

relation to TRS/PHS, so we could always manage to make

this new element anticommute with the generators containing

symmetry operators]. For the cases with both TRS and PHS,

if reflection symmetry anti/commutes with both the two sym-

metries, one can verify that either γxRx or JγxRx could serve

as a new generator. In the case of R−+,R+−, either the gener-

ator M̃ = TCγxRx or the generator M̃ = JTCγxRx commutes

with all the original generators. If M̃2 = 1, then this won’t

change the original relevant Clifford algebra. If M̃2 = −1, this

would change the original real Clifford algebra Clp,q to a com-

plex one Clp+q [Clp,q ⊗Cl1,0 ≃ Clp+q]. The complete Clifford

algebra is listed at the first in the third column of Table I.

Next we state how to incorporate reflection symmetry in

Clifford algebra for real Majorana basis.

i) For class D with no symmetry: The relevant Clifford al-

gebra without reflection is:

{γi, M} (B1)

The relevant Clifford algebra reads {γi, M, γxRx}.

ii) For class with only TRS, the relevant Clifford algebra

without reflection symmetry reads

{γi, T, M} (B2)

. If [Rx, T ] = 0, γxRx serves as a new generator. If {Rx, T } = 0,

γxRxT commutes with all original generators. This would not

alter the Clifford algebra or change Clp,q to Clp+q depending

on the square of the additional element.

iii) U(1)⋊T : Clifford algebra without reflection:

{γi, T, T Q, M} (B3)

We could add γxRx(R+), γxRxQ(R−) to be another generator.

iv) U(1)⋊[ZC
2
× T ] ({Q, T } = 0): Clifford algebra without

reflection:

{γi, T, T Q, T QC, M} (B4)

We could add γxRx(R++), γxRxQ(R−−) to be another gener-

ator. Or the generator γxRxTC(R−+), γxRxT QC(R+−) com-

mutes with all the original generators.

v) S U(2) × T ([Q, T ] = 0): Clifford algebra without reflec-

tion:

{γi, TC, T Q, T QC, M} (B5)

We could add γxRx(R++), γxRxQ(R−−) to be another generator.

Or the generator γxRxT (R−+), γxRxT Q(R+−) commutes with

all the original generators. [Here we use the anti/commutation

relation of Rx with T̃ = TC to define the scenarios.]

vi) S U(2) or U(1)⋊ZC
2

: Clifford algebra without reflection

reads

{γiQ,C,QC,QM} (B6)

We could add γxQRx(R+), γxRx(R−) to the original Clifford

algebra.

vii) For the complex classes with U(1) generator Q, after

choosing the basis where Q reads σ2⊗1, the kinetic and mass

terms (time reversal T ) are represented as a generator in the

complex Clifford algebra19.

{γi, M, (T )} (B7)

we could add γxRx for A,AIII(R+) to the complex algebra or

γxRxT Q for AIII(R−) commutes with the original generators.

The relevant Clifford algebra obtained as stated above is

summarized at the second in the third column “Clifford Alge-

bra” in Table I.

For the case with two-fold rotation symmetry U along the

xd direction, we note that the elements defined by

S = U

d−1∏

i=1

γ̃i (B8)

(anticommutes)commutes with all kinetic matrices γ̃i’s and

mass matrix β̃ in (even)odd spatial dimensions. Depending

on its specific relation with global symmetries, the element

S (Q)(T ) could either serve as another generator of the origi-

nal Clifford algebra or commutes with all original generators

as defined for Majorana basis above in eqs. (B1) to (B7).

Appendix C: The connection between d-dimensional

reflection-SPT phases and d − 1-dimensional SPT phases with

internal Z2 symmetry

1. Strategy overview

We work in the complex fermion basis below. A noninter-

acting topological phase in d-dimensional space is represented

by the many-body ground state of the massive Dirac Hamil-

tonian (with respect to some particular choice of particle cre-

ation/annihilation fermionic operators)

H =

∫
dd

xψ†(x)(
∑

i

−i∂iγ̃i +mβ̃)ψ(x) (C1)

consisting of mutually anticommuting hermitian matrices

where the first terms represent the kinetic contribution and the

second one is the mass term (m ∈ R). In addition, the Hamilto-

nian may commute/anticommute with some anti-unitary oper-

ator which we denote as time-reversal (T )/particle-hole sym-

metry (C), respectively. There might exist an additional uni-

tary symmetry that anticommutes with the Hamiltonian as chi-

ral symmetry Γ. One could analyze the topological properties

of this ground state by taking the stability analysis of the cor-

responding edge theory, i.e., the gapless edge modes on the in-

terface between two phases which are generated by a “domain
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wall” configuration in the mass term, can be gapped if and

only if these two phases could be connected without breaking

any existing symmetries or closing the bulk gap.

To construct the edge theory, we could write the Dirac

mass term as m0sgn(z)M which is used to distinguish two

topologically-inequivalent phases. The state e−|m0||z|χ where

χ is the eigenvector that satisfies iβ̃γ̃zχ = sgn(m0)χ describes

an edge mode that’s localized to the domain wall in z direc-

tion. The boundary Hamiltonian containing the dynamics of

the edge modes is thus obtained by projecting the other ki-

netic terms (except z direction) onto the subspace consist-

ing of the eigenvectors with one certain eigenvalue of iβ̃γ̃z

which commutes with these kinetic γ̃ matrices, as well as

time-reversal/particle-hole symmetry operators (if exist). We

write the boundary Hamiltonian as

Hsur f ace =
∑

i,z

−i∂iγi (C2)

(γi’s denote the projected matrix of the original kinetic matri-

ces from now on).

Now we assume the original Hamiltonian also possesses an

additional reflection symmetry in x direction Rx satisfying

R2
x = 1, {Rx, γ̃x} = 0, [Rx, γ̃i(i , x)] = 0, [Rx, β̃] = 0. (C3)

The boundary Hamiltonian in the previous paragraph inher-

its all the symmetries and their corresponding algebraic re-

lations from the original model. As conceived by Isobe and

Fu, if we add another spatially-dependent mass term m(x)em

where m(x) = m0sgn(x) and {em,Rx} = 0 that preserves all

symmetries (the existence of the matrix em will be discussed

below in Sec C 3), the low-energy degrees of freedom are con-

fined to the domain wall where the gapless chiral edge modes

lie. Therefore, if one manages to gap out the d − 2 dimen-

sional edge modes, the entire boundary of the original Hamil-

tonian is gapped. We write the boundary Hamiltonian with

the reflection-odd mass em as

Hsur,d−1 =
∑

i,z

−i∂iγi + m(x)em (C4)

One can further obtain the d − 2 dimensional boundary

hamiltonian governing the chiral edge modes by similar pro-

cedure. Next, inspired by the idea of Isobe and Fu in Ref.74,

we demonstrate that for certain cases, the d − 2 dimensional

edge theory could also be obtained as the edge theory of a

d − 1 dimensional system with all symmetries except that we

substitute an internal symmetry for the spatial reflection sym-

metry (the algebraic relations, nevertheless, stay invariant). If

the above statement holds, this will yield insight into the clas-

sification of reflection-symmetry protected topological phases

using that of internal SPT phases in system with one dimen-

sion fewer.

2. Equivalence of d-dimensional reflection SPT and

d − 1-dimensional Z2 SPT phases

We first choose a particular basis, where the operator we

use to construct the edge modes iemγx(≡ E) is represented as

1 ⊗ σz, namely we block diagonalize E into its eigen sub-

space(choosing an orthonormal basis vectors that have eigen-

value +1 as |1〉, |2〉, · · · ). We further denote the basis as

|1〉, |2〉 · · · , γx|1〉, γx|2〉 · · · since {γx, E} = 0. So we also fix

γx as 1 ⊗ σx and em = −iEγx = 1 ⊗ σy. All kinetic matrices

other than γx as well as other symmetries T ,C, Γ are block

diagonalized in this basis since they commute with E. Since

〈n|γxγiγx|n
′〉 = −〈n|γi|n

′〉, the other kinetic matrices can be

represented as Γi ⊗σz. Similarly, T ,C, Γ,Rx is represented as

eT ⊗ σzK , eC ⊗ σ0K , eΓ ⊗ σz, eR ⊗ σzP (here P denotes the

operation in real space that changes x to −x. eT , eC , eΓ, eR’s

simply denote some Hermitian matrix acting on the remain-

ing degrees of freedom). Under this choice of basis, the d − 1

dimensional surface Hamiltonian C4 reads

Hsur,d−1=−i∂x1⊗σx +
∑

i,x,z

−i∂iΓi⊗σz + m(x)1⊗σy

T = eT ⊗ σzK(if exists),C = eC ⊗ σ0K(if exists)

Γ = eΓ ⊗ σz(if exists),Rx = eR ⊗ σzP (C5)

and the d − 2 dimensional boundary Hamiltonian can be ex-

pressed as

Hbd,d−2 =
∑

i,x,z

−i∂iΓi

T= eTK(if exists),C = eCK(if exists),Rx = eR (C6)

(Note that Rx no longer contains real space operator P and is

an on-site symmetry in the edge theory).

If we interpret Hamiltonian (C7) as describing a d − 1 di-

mensional system with the same time-reversal and/or particle-

hole symmetries, albeit the reflection operation Rx = eR⊗σzP

is changed to a new operator g = eR ⊗ σ0. This alter-

ation, notwithstanding, won’t revise the algebraic relation of

T ,C, Γ, γi(i , x) with g/Rx, yet it will make γx, em commute

with g. So now g serves as an internal symmetry operator that

shares the same algebraic relation with other symmetries as

Rx.

Hsur,d−1=−i∂x1⊗σx +
∑

i,x,z

−i∂iΓi⊗σz + m1⊗σy

T = eT ⊗ σzK(if exists),C = eC ⊗ σ0K(if exists)

Γ = eΓ ⊗ σz(if exists), g = eR ⊗ σ0

The edge theory obtained from this d − 1 dimensional system

with the same domain wall configuration in the mass term is

the same as that of the d dimensional system. The interaction

terms that gap out this d − 1 dimensional system boundaries

therefore also respect all the symmetries of the d-dimensional

system.

This connection would yield an upper bound for the Zn

classification of d dimensional SPT phase. Next we show

that this is the case for the example illustrated in the paper

by Isobe and Fu (which is later elaborated on by Yoshida

and Furusaki). Written in the basis | + y〉0, | − y〉0, (γx =

)σy ⊗ σ0| + y〉0, σy ⊗ σ0| − y〉0 as demonstrated in eqn (31b),

eqn(31c) in Ref.75, the surface Hamiltonian of the 3d TCI

eqn(30) can be expressed as

Hsur,d−1 = (i∂xσx − i∂yσz) ⊗ σz + m(x)σ0 ⊗ σy
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and the symmetries are T = −iσy⊗σzK ,Rx = iσz⊗σz. Simi-

larly, for the 2d system Hamiltonian eqn(1), written in the ba-

sis [eqn (4b)]|±y〉0, (γx =)σy⊗σz|±y〉0, it reads the same as the

above Hamiltonian with the symmetries T = iσy ⊗ σzK , g =

iσz ⊗ σ0. So the only difference is between symmetries g,Rx

where we change σz in Rx to σ0 in g. Thus the classification

of the 3D TCI Z8 is given by the Z4 classification of the 2D

model with internal symmetry g. (The difference of factor two

originates from the fact that in order to find the em matrix in

the surface Hamiltonian of the 3D system, we have to enlarge

the dimension of the matrix by two which means using two

copies of the surface.)

3. Existence of em

Next we will discuss exhaustively whether the mass term

em in Eq.(C4) exists for each symmetry class and differ-

ent commutation relations with reflection symmetry. Define

RxT = ηTTRx and RxC = ηCCRx where ηT , ηC are ±1. We

first note that in the d − 1 surface Hamiltonian of the original

d-dimensional system, the term iγxRx already anticommutes

with other kinetic gamma matrices as well as Rx itself (i.e., al-

ready satisfy the algebraic relation of em with these terms), we

only need to make it consistent with other protecting symme-

tries of the symmetry class. If it falls into one of the following

three scenarios

(i)the unitary class A

(ii)there’s only one anti-unitary symmetry (T /C)

(iii)there’re two anti-unitary symmetries and the algebraic

relations of reflection with the two anti-unitary symmetries

(for real chiral symmetry class) are the same (i.e., ηT = ηC),

then we can always manage to render the above term con-

sistent with other protecting symmetry(ies) by leaving it in-

tact [for the case where reflection commutes with the sym-

metry(ies)] or tensor producting it with σy to reverse its orig-

inal (anti-)commutation relation with protecting symmetries

[in the case where reflection anti-commutes with protecting

symmetry(ies), note that T /R are anti-unitary]. We could

confirm that this is indeed the case in Ref. 75 where the orig-

inal representation for their three dimensional surface Hamil-

tonian contains [eqns (27),(29) of Ref.75]

Rx ∼ σxP,T ∼ σyK , γx = σy

with {Rx,T } = 0 and that the additional mass term

em = σz ⊗ σy ∼ iRxγx ⊗ σy.

The above discussion leaves out two scenarios:

(i) the chiral complex class AIII;

(ii) the chiral real class with ηTηC = −1.

We first prove that the above SPT equivalence doesn’t ap-

ply to the case for chiral complex class when the reflec-

tion symmetry anti-commutes with chiral symmetry Γ and

the case (ηT , ηC) = (1,−1) for class BDI and CII as well as

(ηT , ηC) = (−1, 1) for class DIII and CI [there’re two possibil-

ities accounting for the ineffectiveness, either because of the

non-existence of em or the original reflection-protected classi-

fication is already trivial/Z2 yet we need to enlarge the dimen-

sion by two to construct such a matrix which means that this

equivalence relation won’t modify the original classification

scheme].

We relax the restriction that em must anti-commute with Rx

first [We could infer about this by examining the noninteract-

ing classification: If the noninteracting classification is Z and

yet we find such a mass term then it’s guaranteed that it anti-

commutes with reflection. If the original noninteracting clas-

sification is already trivial/Z2, this equivalence relation won’t

give information about the collapse of the classification.]. Ac-

cording to Appendix B, the addition of reflection symmetry on

the original Hamiltonian doesn’t alter the associated clifford

algebra, so the classification is actually the same as the orig-

inal “AZ” classes without reflection symmetry. The presence

of em corresponds to the gapping of the surface Hamiltonian.

If the classification is Z, then no such mass term exists in the

surface Hamiltonian irrespective of its relation with reflection

symmetry; if it’s Z2, we have to use two copies of the system

to gap out the surface Hamiltonian, etc. So in these cases the

equivalence relation we find won’t yield meaningful outcome

for the collapse of the classification.

For the remaining possibilities

(i)AIII when reflection commutes with Γ,

(ii)(ηT , ηC) = (−1, 1) for class BDI and CII,

(iii) (ηT , ηC) = (1,−1) for class DIII and CI.

we could determine the existence of the reflection-odd mass

term em in the surface Hamiltonian as following: first we de-

termine the rank of root state for a certain scenario using Clif-

ford algebra. Their relevant clifford algebras in the presence

of the reflection symmetry are Cld+3 for AIII with commut-

ing reflection symmetry and Cld+4 for the last four real chi-

ral symmetry classes. We denote the dimension of its surface

Hamiltonian (which is half of that of the bulk) as rsur. Then we

denote the dimension of the root state of the Hamiltonian in

the same symmetry class albeit without reflection symmetry in

d−1-dimensional system as r1. The complete clifford algebras

for d−1 dimensional systems without reflection symmetry are

Cld+1 for AIII and Clp,q = Cld,3/Cld+2,1/Cld−1,4/Cld+1,2 for

symmetry classes BDI/CII/DIII/CI, respectively. If r1 ≤ rsur,

then we are sure to find such a mass term, which is the case for

AIII by virtue of Cln+2 � Cln ⊗C C(2); otherwise, if rsur =
r1

2
,

we switch to find the minimal dimension upon trading the

mass term in the Hamiltonian for a kinetic term [namely the

rank of Clp+1,q−1] and denote it as r2. If r2 = rsur, this means

we can find an additional kinetic term in the representation of

the surface Hamiltonian, then by tensoring this withσy we can

make it a legitimate mass term. If all the above procedure fails

to yield a mass term, then it’s impossible to find one. By this

algorithm with some calculation, we conclude that the mass

term doesn’t exist for d = 8n+ 5/8n+ 1/8n+ 7/8n+3 dimen-

sion systems for symmetry classes BDI/CII/DIII/CI, respec-

tively, with the abovementioned reflection symmetries. While

in other dimensions for real chiral classes as well as for AIII

in all dimensions with commuting Rx, a mass term is sure to

exist and we could exploit this equivalence to extract informa-

tion of the collapse.
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