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The unambiguous experimental detection of quantum spin liquids and, in particular, of the long-
sought Kitaev quantum spin liquid (KQSL) with its Majorana fermion excitations remains an out-
standing challenge. One of the major obstacles is the absence of signatures that definitively charac-
terize this phase. Here we propose the Landau levels known to form in the Majorana excitation spec-
trum of the KQSL when certain strain fields are applied as a direct signature of Majorana fermions
with Dirac-like dispersion. In particular, we show that the Majorana Landau level quantization of
strained films of the KQSL can be directly probed by Raman spectroscopy. Such experiments are
feasible in thin films of α-RuCl3, which are a promising place to search for the KQSL.

I. INTRODUCTION.

Two of the most prominent – but normally distinct –
routes for the experimental realization of topologically
ordered (TO) phases of matter are 2D electron gases in
strong magnetic fields and frustrated magnets. In the
former, the orbital magnetic field leads to Landau quan-
tization, introducing an extensive number of degenerate
single-particle states. In the presence of interactions, this
leads to TO fractional quantum Hall (FQH) phases. In
the latter, geometrically frustrated interactions between
the effective magnetic moments lead to a large classical
degeneracy, which can result in so-called quantum spin
liquid (QSL) phases at low temperature. Strain engineer-
ing of certain thin QSL films unifies these distinct lines
of research by inducing pseudo-magnetic fields1 for the
fractionalized, chargeless quasiparticles of QSL phases2.
In this work, we show that for at least one type of spin
liquid the resulting emergent Landau quantization can
be detected experimentally with inelastic light scatter-
ing. This allows both identification of the spin liquid
phase and characterization of the band structure of its
fractionalized fermionic excitations, which have thus far
proven experimentally elusive.

Our study focuses on the so called Kitaev QSL
(KQSL), which is the ground state of an exactly solvable
spin- 1

2 model with frustrated bond-dependent Ising inter-

actions on the honeycomb lattice3. There spins fraction-
alize into emergent static Z2 fluxes and dispersive Majo-
rana fermions which at low temperatures (corresponding
to few excited fluxes) display a linear Dirac spectrum sim-
ilar to graphene. The exact solubility makes this model
particularly amenable to theoretical study; indeed both
static properties (e.g. ground state degeneracy 4, entan-
glement entropy 5, and disorder 6,7) and dynamical corre-
lations (e.g. dynamical structure factor 8,9, Raman scat-
tering 10,11, and global quenches 12) of this model can be
computed.

Exact solubility also allows the effect of strain on the
KQSL to be characterized analytically. It is well known
that lattice strain couples to electronic degrees of free-
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FIG. 1. Schematic plot of a nano-bubble of a α-RuCl3 thin
film is shown in panel (a). The resulting lattice distortion in-
duces a strain pattern that acts as a pseudo-orbital magnetic
field for the Majorana fermions which emerge from spin frac-
tionalization in the QSL of the Kitaev model. The resulting
LL quantization can be directly probed by Raman scattering.
The evolution of the response for finite (s = 0.04) and zero
strain (s = 0) is shown in panel (b).

dom as an effective gauge field 13,14 which has led to the
prediction 1 that suitably strained graphene would dis-
play the characteristic energy scaling En ∝ sgn(n)

√
|n|

of Dirac electrons in an orbital magnetic field. This was
successfully demonstrated in subsequent experiments 15

where the strain pattern was generated by nano-bubbles
which can form when graphene is grown on a suitable
substrate. Recently, it was shown theoretically that the
Majorana fermions in a strained Kitaev model also expe-
rience pseudo-magnetic fields 2, leading to Landau level
(LL) quantization with the same energy scaling as for
graphene.
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The prediction that certain transition metal oxides
with strong spin orbit coupling and orbital degen-
eracies could be dominated by Kitaev spin-exchange
interactions16 has recently inspired a search for candi-
date KQSL materials. Initially, interest was focused on
A2IrO3 (A=Na, Li) 17–20 but currently α-RuCl3

21,22 ap-
pears to be the best KQSL candidate. Though all of
these compounds show magnetic order at low tempera-
ture 23, it has been argued that dynamical scattering ex-
periments – inelastic neutron scattering (INS) 24,25 and
Raman scattering 26,27 – can, at higher frequencies, nat-
urally be interpreted in terms of the fractionalized Ma-
jorana fermions 28. This suggests that α-RuCl3 may be
proximate to the KQSL, such that tuning material pa-
rameters could potentially drive the system into a QSL.
Further, strain engineering in these systems is conceiv-
able in the near future: As the material is highly two
dimensional, thin films can be generated by simple exfo-
liation techniques 29. Strain could therefore be generated
by placing these on different substrates or shapes.

This raises the exciting possibility of detecting KQSL
physics by probing the LL quantization of the deconfined
Majorana fermions. This would give a “smoking gun”
signature of the existence of Majorana fermions with a
linear Dirac spectrum characteristic of the KQSL. How-
ever, it is not obvious how to detect the Majorana LLs.
Since these fermions are charge neutral, the LLs cannot
be detected simply by means of scanning tunneling mi-
croscopy as for graphene15. Further, probes such as INS
or RIXS cannot produce adequate signal on very thin
films and do not have the necessary spatial resolution.
Here, we show that inelastic light scattering of strained
Kitaev films would probe the Majorana LL quantization
and the characteristic scaling En ∝ +

√
|n| related to the

Dirac dispersion.

The manuscript is organized as follows. In Sec. II,
we review how strain induces LLs in the Kitaev honey-
comb model, and the corresponding Raman response. We
derive an effective low-energy theory for the Majorana
fermions in a pseudo magnetic field, and show that at low
energies two different Raman channels (corresponding
to resonant and non-resonant Raman processes) probe
different sublattice symmetries, leading to different de-
pendencies on the Landau level index. In Sec. III, we
perform a full microscopic calculation of the Raman re-
sponse of a strained honeycomb flake which confirms our
analytical findings and allows us to provide quantitative
estimates how to observe the effect. We include an anal-
ysis of the finite temperature response; our method of
obtaining this is similar to that of30,31, and is described
in Appendix A. In Sec. IV, we discuss the experimental
situation and summarize our results.

II. LOW-ENERGY DESCRIPTION AND
SCALING.

The Kitaev honeycomb spin model is given by3

HK =
∑
〈ij〉α

Jασαi σ
α
j , (1)

with only one spin component α interacting on each of
the three distinct bonds of the honeycomb lattice. Ki-
taev’s solution decomposes spins into products of Ma-
jorana fermions via σαj = ibαj cj , such that HK =∑
〈ij〉α J

αu〈ij〉αicicj where u〈ij〉α = ibαi b
α
j are conserved

Z2 gauge variables. Since the gauge fluxes are gapped
and static we can first focus on the zero-flux ground-
state configuration, e.g. with u〈ij〉α = 1. This re-
duces the problem to that of a quadratic Hamiltonian
of the dispersing c Majorana fermions. For isotropic ex-
change couplings and no strain it gives a linear spec-
trum εk = 2|Γk|, with Γk = Jz + Jxeik1 + Jyeik2 and

ki = k · ai = (±
√

3kx + 3ky)/2, about the two Dirac
points k1 = −k2 = ±2π/3 similar to graphene.

A strain field modifies the parameters Jα in Eq. (1).
At lowest order the correction to the unstrained exchange
couplings is given by 2

δJαij/J
α = −β

(
|~δij | − 1

)
≈ −β(~δ0 · ~∇)(~U · ~δ0), (2)

where δ0 is the lattice vector in the absence of strain,
~Uj = ~R′j − ~Rj is the displacement field, and ~δij =
~R′i − ~R′j is the strained lattice vector. Expanding the
Hamiltonian around the Dirac points to first order in
strain and wave vector it is easy to show that it cou-
ples just like a vector potential Π = ~p + e

cA to the
canonical momentum. An out of plane magnetic field
(along the z-axis) is induced by strain fields of the form
B = −β

[
∂xuxy + 1

2∂y(uxx − uyy)
]
1 and β ≡ −∂ ln J

∂ ln δ is

the magnetic Grüneisen parameter32.
Before presenting numerical results for the lattice

model, we give an analytical treatment of the low-energy
physics. We work in the Landau gauge A = B(0, x)
and introduce the low-energy Majorana field operators

Ψ̂ν = (Ψa(r),Ψb(r))
T

. The index ν = ±1 labels the two
valleys while a and b refer to the two sublattices. Now
we can write the Hamiltonian as H =

∑
ν

∫
d2rΨ̂†νĤνΨ̂ν

with

Ĥν = i
3

2
J

(
0 νpx − i(py − νBx)

−νpx − i(py − νBx) 0

)
.

Note that B has opposite sign at the two Dirac points
leaving time reversal symmetry (TRS) unbroken, which
prevents the usual trick of combining the two Majo-
rana cones into a single cone of complex fermions34.
As long as there is no coupling between the two cones
we can concentrate on only one of them. We intro-
duce the ladder operator a = lB√

2~ (Πx − iΠy) with

l2B = c~
e|B| (in the following we absorb e, c into the
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FIG. 2. The DOS and all possible Raman correlation functions for finite strain (s = 0.04) [solid lines] and zero strain (s = 0)
[dotted lines] with r = 50 corresponding to 6∗ (50 + 1)2 = 15606 sites. DOS (a) shows peaks at

√
nωc (gray vertical lines) while

Inon-res (b) features them at (
√
n+
√
n+ 1)ωc and Ires (c) at 2

√
nωc. Ires is the resonant channel, which is anti-symmetric in

polarization, as discussed in Ref. 33.

definition of B and set ~ = 1) and expand the
field operators in terms of the standard Landau Level
wave functions Ψa(r) = 1√

2

∑
n,p Φn−1,p(r)ca,n,p and

Ψb(r) = 1√
2

∑
n,p Φn,p(r)cb,n,p, where the Majorana op-

erators cX,n,p (X = a, b) anticommute, with c2 = 1
[note the sign change of momenta from conjugation

Ψ†b(r) =
∑
n,p Φ∗n,p(r)cb,n,−p]. Using the standard prop-

erties of ladder operators, aΦn =
√
nΦn−1 and a†Φn =√

n+ 1Φn+1, we obtain the Hamiltonian

H+ =
3J

2

∑
n,p

cTn,−p

 0 i
√

2
lB

√
n

−i
√

2
lB

√
n 0

cn,p, (3)

where cTn,p = (ca,n,p, cb,n,p). We diagonalize H+

by the complex fermions fn,p with cb,n,p = fn,p +

f†n,−p and ca,n,p = i
(
fn,p − f†n,−p

)
such that H+ =∑

n,pE(n)
[
f†n,pfn,p − 1

2

]
. The energies35

E(n) = ωc
√
n (4)

obey the well known
√
n scaling of Dirac fermions with

ωc = 3J
√

2
lB

= 3
√

2J
√
B and n ∈ N≥0.

We are interested in the low-energy behavior of the
Raman response which has been discussed for unstrained
Kitaev models by some of us in the past10,11,33,36. The
Raman intensity is given by the correlation function
I(ω) =

∫∞
−∞ dteiωt〈R(t)R(0)〉, where the effective Raman

vertices R(t) depend on the in- and out-going polariza-
tion of the scattered photons. We concentrate on strain
patterns that do not alter the symmetries of the Hamil-
tonian such that there are only two independent Raman
intensities, the A1g = Eg channel and the A2g channel
which only couples to incident photons in resonance with
the minimal Mott gap. The main difference between the
non-resonant and resonant Raman vertices is that the lat-
ter can couple sites on the same sublattice, whereas the
former cannot33. As we are only interested in the scal-
ing form of the Raman response we omit the polarization

dependent prefactors to obtain

Rnon-res ∝ i
∫

d2rΨ†a(r)(t)Ψb(r)

∝
∑
n,p

[
fn,−p(t)− f†n,p(t)

] [
fn−1,p + f†n−1,−p

]
for the non-resonant processes, and

Rres ∝ i
∫

d2r
[
Ψ†a(r)(t)Ψa(r + δ)−Ψ†a(r)(t)Ψa(r− δ)

]
∝
∑
n,p

sin (pδ)
[
fn,−p(t)− f†n,p(t)

] [
fn,p + f†n,−p

]
for the antisymmetric combination of polarizations in the
resonant processes. Only the non-resonant combination
mixes states which differ by one LL index. From the time
dependence fn,p(t) = fn,pe

−itE(n) and fn,p|0〉 = 0 we can
directly calculate the low-energy Raman responses,

Inon-res ∝
∑
n

δ
[
ω − ωc

√
n− ωc

√
n+ 1

]
,

Ires ∝
∑
n

δ
[
ω − 2ωc

√
n
]
.

(5)

This is the central result of the paper: the Raman re-
sponse (5) is a direct probe of the LL quantization. The
two different scalings of the resonant and non-resonant
intensities in Eq. (5) originate from the sub-lattice selec-
tivity of the two vertices.

III. LATTICE CALCULATION.

We follow Refs.1,2,37 to study a honeycomb flake sub-
ject to triaxial strain preserving the C3v symmetry. The
strain pattern defined by the displacement field

~U(x, y) = C̄
(
2xy, x2 − y2

)
(6)

leads via uij = (∂iUj + ∂jUi)/2 to a uniform pseudo-
magnetic field with magnitude B = −4βC̄. We numer-
ically construct the honeycomb flake as r rings of hon-
eycombs placed around an initial single one 2,38. We let
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FIG. 3. A set of density plots showing the progression of Landau level peaks as a function of (a) strain s, (b) system size r,
and (c) temperature T . Where not specified we used parameters s = 0.04 and T = 0 with the system sizes (a) r = 30 and (c)
r = 15. The temperature of the crossover in (c) agrees well with the expected spinon-confinement transition for non-interacting
fluxes at T ∗ ≈ 0.02J (s = 0.04, r = 15).

C̄ = C̄(r) depend on system size so that the fractional

stretch in the maximal direction s = δL
L =

√
3(r + 1

2 )C̄

is fixed. Then B ≈ − 4β√
3r
s decays with system size. This

also fixes the maximum magnetic response: For linear

elasticity to hold δJ/J � 1, or s �
√

3
2β independent of

system size.

For concreteness we use β = 10 which gives for optimal
parameters strain of s = 0.01–0.04 in systems of flake
size r = 10–50 unit cells. The pseudo-magnetic field
needs to be sufficiently strong that the Landau levels are
easily distinguished from finite-size effects in the Raman
response; for these system sizes this requires at least B ≈
0.03 or strains of s = 0.02 if β = 10.

In Fig. 1 (b) we show how the characteristic Raman re-
sponse for an unstrained thermodynamically large system
transforms under strain. Without strain the linear slope
at low energies from the Dirac density of states (DOS)10

is apparent. The Figure also shows that the non-resonant
response of a strained flake obeys the characteristic dis-
crete scaling predicted by our low-energy theory [Eq.(5)],
which is a direct consequence of the emergence of Lan-
dau quantization. In Fig. 2 we concentrate on the low-
frequency window and compare the evolution of the Ma-
jorana fermion DOS [Fig. 2 (a)], non-resonant [Fig. 2 (b)]
and resonant Raman response [Fig. 2 (c)]. We recover the
distinct scaling of the resonant and non-resonant pro-
cesses (5).

In order to make contact with possible future experi-
ments, Fig. 3 traces the evolution of the LL peaks as a
function of strain (panel (a)) and flake size (panel (b)).
These follow the expected behaviour of the effective mag-
netic field |B| ≈ 4β√

3r
s. (Recall that the maximum strain

is fixed, so that the |B| decreases with system size).

Fig. 3 (c) shows the evolution of the LL with temper-
ature for a fixed finite system size. The figure shows a
cross-over temperature T ∗ > 0 above which the sharp
LL quantization is rapidly washed out. This is due to
the proliferation of thermally excited fluxes, which de-
stroy the low-energy Dirac spectrum. Since a uniform
thermal density ρ of fluxes effectively confines the Majo-
rana spinons on a length scale `C ∼ ρ−1/2, it is natural

to expect that when `C approaches the system’s effective
magnetic length the Landau levels dissappear.

However, in the strained system the nature of the
crossover between the zero flux density spin liquid regime
and the regime at finite flux density is qualitatively dif-
ferent than in the unstrained case (see Fig. 4), making
our LL peaks persist to somewhat higher flux densitites
than this naive estimate suggests. Specifically, as the
strain grows with the radial coordinate, there turns out
to be significant spatial anisotropy in the flux gap;2 in
contrast, at zero strain where the flux gap is essentially
uniform away from the sample boundaries. (See panel (3)
of each subfigure of Fig. 4). In the absence of strain, the
crossover therefore entails a proliferation of fluxes with a
uniform spatial probability distribution; the temperature
scale for this cross-over is set by the bulk flux gap. In
the strained system, however, fluxes first proliferate pre-
dominantly near the sample boundaries, only reaching a
uniform distribution at significantly higher temperature.
(See panels (2) and (4) of each subfigure of Fig. 4). This
has two important consequences: first the temperature
scale of this initial increase in flux density is set by the
flux gap near the flake’s boundary, which is considerably
lower than that of the un-strained system. For a fixed
value of strain s and the magnetic response β the spatial
flux gap anisotropy is expected to be independent of sys-
tem size, as it tracks the spatial strain anisotropy. We
can therefore predict a crossover temperature of around
T ∗ ≈ 0.02J for any system size with this strain pattern
at s = 0.04 and β = 10 based on our numerical results.
Second, because the fluxes are initially localized near the
boundary, the LL’s persist to an appreciable flux den-
sity of around ρ ≈ 0.1 at s = 0.04. Details of the finite
temperature calculation, including comparison to known
results 27,31, are given in Appendix A.

IV. DISCUSSION.

Our calculation of the Raman response in a strained
KQSL shows that it can be used to directly observe the
LL quantization and the corresponding low-energy scal-



5

0 0.05 0.1
T/J

0

0.2

0.4

ρ

0

0.05

0.1

0.15

0 0.05 0.1
T/J

0

5

10

15

r

0

0.1

0.2

0.3

-20 0 20

-20

0

20

0.1

0.11

0.12

0.13

0.14

-20 0 20

-20

0

20

0.05

0.1

0.15

0.2

0.25

0 0.02 0.04
T/J

0

0.2

0.4

ρ

0

0.05

0.1

0.15

0 0.02 0.04
T/J

0

5

10

15

r

0

0.2

0.4

-20 0 20

-20

0

20

0.04

0.06

0.08

0.1

-20 0 20

-20

0

20

0

0.1

0.2

0.3

0.4

(A) (B)(no strain) (strain)

(1) (2)

(3) (4)

(1) (2)

(3) (4)

∆
J

∆
J

FIG. 4. The nature of the crossover out of the KQSL phase is demonstrated for (A) an unstrained flake and (B) a strained
flake with s = 0.04. For uniform non-interacting fluxes the flux density in (1) is expected to follow a Fermi-Dirac distribution
at energy (ln 2)∆ where ∆ is the flux gap39. (2) shows the flux density resolved over the radial coordinate as a function of
temperature. (3) plots the single-flux gap as a function of position on the honeycomb flake2. (4) give the expectation value
of the flux operator as a function of position for one particular run at temperatures T = 0.057J in (A,4) and T = 0.020J in
(B,4), both corresponding to the critical flux density of the strained flake ρc ≈ 0.12. Although there is significant noise in (4)
we see that the flux distribution is largely random without strain (A,4) and it becomes focused away from the center under
stain. This effect is responsible for the appreciable critical flux density ρc ≈ 0.12 for Landau levels in the strained flake, for
which Landau orbits can form within the ‘clean’ center region.

ing. This gives direct evidence for the Dirac dispersion of
the Majorana fermions in the KQSL. This distinctive sig-
nature is remarkable because in general it is notoriously
difficult to measure asymptotic low temperature (or low
frequency) properties that can definitively identify the
QSL type in candidate materials.

We emphasize that this LL quantization – which pro-
duces a distinctive signature in the Raman response up to
energy scales that are an appreciable fraction of the band-
width (see Fig. 1) – is a feature of the low-temperature
crossover region T < T ∗ proximate to the zero temper-
ature quantum spin liquid phase. This is in contrast to
the broad continuum observed in unstrained α-RuCl3

26,
which compares favorably with the predictions for the Ki-
taev model even in samples with low-temperature mag-
netic order. For pure Kitaev interactions such a con-
tinuum is present even at relatively high temperatures
T � T ∗ throughout the correlated paramagnetic regime
up to a temperature set by the value of the Kitaev ex-
change27. In contrast, the sensitivity of the LL degener-
acy to flux disorder means that it disappears at tempera-
tures where fluxes proliferate in the bulk and destroy the
low-energy Dirac dispersion of the spin liquid.

In order for these Landau levels to be observable, it is
crucial that the LL quantization is a feature of the KQSL
phase, rather than of the finely-tuned Kitaev Hamilto-
nian. Adding additional spin-spin interactions to the
model introduces dynamical bound pairs of Z2 fluxes in
the ground state, with a characteristic binding length lF ,
and characteristic time scale τF . Since the LL quanti-
zation essentially stems from the fact that our fermions
perform cyclotron orbits whose size is set by lB , with

a characteristic time τB , LL quantization is expected to
persist as long as lF � lB and τF � τB such that the
fermions can on average still perform cyclotron motion.
Additionally, our finite-temperature data indicates that
the LL peaks persist up to a small but finite thermal
flux density of approximately ρflux ≈ 0.1. This suggest
that the LL quantization may be more robust than this
naive limit suggests: flux pairs will tend additionally to
be bound to the sample’s edges where the flux gap is
reduced.

Finally, we discuss the experimental feasibility of our
proposal. Currently, different routes for the realization
of α-RuCl3 thin films are being pursued, both via ex-
foliation of individual planes and by direct growth on
substrates 29. Strain could be generated either via spon-
taneously formed nano-bubbles, as for graphene15, or by
direct application of mechanical strain40–42. RuCl3 flakes
corresponding to our simulation would have diameters of
30–60nm. For larger systems with β = 10 the value of
s = 0.04 is expected to produce sharp LL peaks at a fre-
quency that decays with the system size as in Fig. 3(a).

Standard Raman experiments average their q = 0 re-
sponse over large areas of the sample, which makes obser-
vations challenging because it would average over differ-
ent strain patterns. In order to resolve the characteristic
scaling the deviations of the characteristic energy scale
between the Landau levels of different puddles should not
exceed ∆ωc 10% which translates roughly into deviations
of the maximum strain ∆s 1% which appears to be exper-
imentally challenging. However, using a so called Raman-
microscope with spatial resolution below 500nm43 is suf-
ficient for picking up signals of individual nano-bubbles
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(assuming similar bubble sizes as in Graphene15).
Our conservative estimate of a cross-over tempera-

ture, together with an estimated Kitaev coupling of
J ≈ 100K24,26, yields detectable LL peaks (see Fig.3(c))
at temperatures below roughly one Kelvin for the pure
Kitaev model. At these scales the separation of the LL
peaks would be easily discernible with current energy res-
olution better than one meV in Raman experiments44.
However, if the KQSL phase can be achieved in these ma-
terials they will not be strictly at the Kitaev point and
we expect the required energy and temperature scales to
be further reduced.

We have shown that Raman scattering can detect the
quantized LLs that arise in strained honeycomb flakes
of the Kitaev spin liquid, enabling a direct probe of the
Dirac dispersion of the underlying Majorana fermions.
Carrying out such an experiment on α-RuCl3 thin films
is challenging – but achievable – with current technol-
ogy. Given that bulk α-RuCl3 is believed to be proxi-
mate to the KQSL phase24, it is not unreasonable to ex-
pect that thin films are free of the residual long-ranged
magnetism because of their increased two-dimensionality,
making the prospect of identifying a KQSL an exciting
possibility in these systems.
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Appendix A: Finite Temperature Formalism

By the simple form of the canonical ensemble we can
write

I(ω) ∝
∑

flux patterns M

e−βE
M
0 IM (ω, β) (A1)

where EM0 is the energy of the lowest-energy state in the
flux-configuration M , and IM (ω, β) is the spectrum due
to the band fermionic excitations in the flux background
M , at temperature β. The proportionality constant is the

partition function Z =
∑

flux patterns M e−βE
M
0 ZM with

ZM being the free fermion partition function in a given
flux background. For a given flux-configuration M the
Hamiltonian can be written after Kitaev fermionization

as

H =
1

2

∑
〈rr′〉

Jαuα〈rr′〉icrcr′ ≡
1

2

∑
r,r′

Hrr′crcr′ , (A2)

where uα〈rr′〉 = ibαr b
α
r′ = ±1. In terms of these Majoranas

H has a chiral symmetry S that flips sign of cr on one of
two sublattices (so that {S,H} = 0). In the basis where
S is diagonal H takes the block-off-diagonal form

H = i

(
0 G
−G† 0

)
. (A3)

In this case the diagonalization ofH can be obtained from
the singular value decomposition of G2 (Supplemental
Material). Given unitary u and v such that u†Gv = ε/4,
then

U =
1√
2

(
u u
−iv iv

)
. (A4)

Now

U†HU = Ω =

[
diag(~ε) 0

0 −diag(~ε)

]
, (A5)

with εµ ≥ 0. We can define operators aλ = U†λλ′c′λ for
λ = 1, ..., n/2 to get the set of n/2 fermionic quasiparti-

cles, where n is the number of unit cells, {a†λ, aλ′} = δλ,λ′

so the Hamiltonian becomes

H =
1

2

∑
λ

εµ
[
2a†λaλ − 1

]
. (A6)

Therefore the excitation created by a†µ has energy εµ.
These quasiparticles correspond to twice the positive-
energy branch of the usual Dirac-fermions.

Following Ref.27 the Raman operator for the Kitaev
model is given by

R =
∑

α=x,y,z

∑
〈ij〉α

(εin · dα) (εout · dα) JαSαSα (A7)

=
∑
〈rr′〉

(εin · dα) (εout · dα)Hrr′crcr′ (A8)

=
1

2

(
cA
cB

)T
i

(
A B
−B† A′

)(
cA
cB

)
(A9)

=
1

2

(
a

(a†)T

)†(
C D
D† −C

)(
aλ′

(a†λ′)T

)
. (A10)

Here C = u†Bv + v†B†u and D = −u†Bv + v†B†u for
a Raman operator that is symmetric w.r.t. swapping
in and out polarizations and C = i

(
u†Au+ v†A′v

)
and

D = u†Au− v†A′v for an antisymmetric channel. dα is
the bond vector for a bond of type α = x, y, z, and εin

and εout are the in and out light polarizations in the ex-
perimental setup. Then finally,
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IM (ω, β) ∝
∑
λλ′

[
2|Cλλ′ |2f(ελ, β)[1− f(ελ′ , β)]δ(ω + ελ − ελ′) + |Dλλ′ |2[1− f(ελ, β)][1− f(ελ′ , β)]δ(ω − ελ − ελ′)

]
,

(A11)

where B and therefore C and D depend on the gauge cho-
sen for each flux configuration M , and f(ε, β) is the fa-
miliar Fermi distribution. The gauge chosen in each case
is obtained by creating the shortest-distance gauge string
from the nearest edge plaquette for every flux in the de-
sired configuration. Of course, all measurable quantities
discussed here are independent of the gauge choice39.

We evaluate the sum (A1) using Markov Chain Monte
Carlo (MCMC) of the usual kind, which we review now.
The Markov chain is a series of flux configurations that
represent ones taken from the Boltzmann distribution for
a fixed temperature. The chain is built by proposing
steps that either (1) flip a random plaquette, (2) move a
single plaquette to another empty space, (3) flip a pla-
quette that is a neighbor or next-nearest-neighbor (NNN)
of one of the current fluxes (including the fluxes them-
selves) and (4) shuffle the fluxes to a random pattern
with the same number. If a proposed flux configuration
is accepted, it is appended to the chain, otherwise it is
denied, and the current state is appended to the chain
again. To recreate the correct distribution, the probabil-
ity of acceptance is set to be

P(p′|p) = min

(
e−(E0

p′−E
0
p)Q(p|p′)
Q(p′|p)

, 1

)
, (A12)

where Q(p′|p) is the probability of proposing configura-
tion p′ given that you are in configuration p. For propos-
als (1), (2) and (4) Q(p′|p) = Q(p|p′), but for the case of
NNNs (3) the new configuration p′ can have a different
number of plaquettes that are NNNs of fluxes, making the
probability of flipping the same plaquette slightly differ-
ent. In this case the term can be interpreted as a relative
entropy of possible proposals before and after the given
proposal.

The error in the result is analyzed using Geyer’s ini-
tial convex sequence estimator (ICSE) g for the variance

along a Markov chain.45 This measure takes into account
the local correlation between events, thereby producing
a reliable, tight upper-bound estimate for the sample
variance given the data. Then the error in the mean
for a given observable can be computed as

√
(g(X)/N),

where X is the Markov chain of that observable, N is
the length of the chain. The ICSE was computed us-
ing the initseq function implemented in R by Geyer in
the mcmc contributed package on CRAN, translated to
Matlab for this project. In addition, the autocorrela-
tion time, or the number of steps/proposals required to
achieve an effective independent sample can be estimated
by τ(X) = g(X)/Var(X) where Var computes the usual
variance of the values in the chain X.
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FIG. 5. Plots of unstrained Raman and DOS to compare with
Ref.27 Fig. 3(a) and Ref.31 Fig. 3(a). resp. The comparisons
appear quite favorable, although the present study did not
involve the superlattice treatment that allowed Ref.31 to sup-
press the finite-size effects that are large in our plot of the
DOS. The system sizes used were r = 11 and r = 7 chosen to
most closely mimic the ones used in those references.

The algorithm was run until either the mean error rela-
tive to the mean value of each observable was below 1/65,
or 50,000 proposals steps were made. The mean expected
error relative to the mean value for a given temperature
was below 2% in all cases. Comparison with previous
work at zero strain is made in Fig. 5.
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