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 The symmetry of single-molecule magnets (SMMs) dictates their spin quantum dynamics, 

influencing how such systems relax via quantum tunneling of magnetization (QTM).  By 

reducing a system’s symmetry, through the application of a magnetic field or uniaxial pressure, 

these dynamics can be modified. We report measurements of the magnetization dynamics of a 

crystalline sample of the high-symmetry [Mn12O12(O2CCH3)16(CH3OH)4]·CH3OH SMM as a 

function of uniaxial pressure applied either parallel or perpendicular to the sample’s “easy” 

magnetization axis. At temperatures between 1.8 and 3.3 K, magnetic hysteresis loops exhibit the 

characteristic step-like features that signal the occurrence of QTM. After applying uniaxial 

pressure to the sample in situ, both the magnitude and field position of the QTM steps changed. 

The step magnitudes were observed to grow as a function of pressure in both arrangements of 

pressure, while pressure applied along (perpendicular to) the sample’s easy axis caused the 

resonant-tunneling fields to increase (decrease). These observations were compared with 

simulations in which the system’s Hamiltonian parameters were changed. From these 

comparisons, we determined that parallel pressure induces changes to the second-order axial 

anisotropy parameter as well as either the fourth-order axial or fourth-order transverse parameter, 
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or to both. In addition, we find that pressure applied perpendicular to the easy axis induces a 

rhombic anisotropy E ≈ D/1500 per kbar that can be understood as deriving from a symmetry-

breaking distortion of the molecule. 

 

I. INTRODUCTION 

Single-molecule magnets (SMMs) are quantum systems that behave at low temperatures as single 

“giant” spins that exhibit uniquely quantum dynamics such as tunneling and interference effects. They 

provide an important testbed to study the boundary between the quantum and classical worlds and, in 

tandem, for investigation of the mechanisms of decoherence that suppress quantum dynamics.  Since the 

initial discovery of Mn12-acetate, many SMMs have been synthesized, 1–4 including  mononuclear systems 

5–10, and a “wheel” built of two ferromagnetically coupled halves 11,12.  SMMs have been examined in 

bulk crystals, on the individual scale 13–16 and as ensembles on a surface 17,18, demonstrating a range of 

stable environments and applications. They are often synthesized in crystalline form, consisting of lattices 

of identical and well separated magnetic centers. Their relatively large net spins originate from a strong 

exchange interaction between intramolecular ions, producing at times a large net spin angular momentum, 

or from a single magnetic ion, typically possessing a sizable spin-orbit coupled angular momentum 

ground state.  

Many properties of an SMM, such as quantum tunneling of magnetization (QTM), can be 

understood from its spin Hamiltonian. A simple bistable model for such a system can be represented by 

the “double-well” potential generated by the Hamiltonian (see Figure 1) 

(1)   



3	
	

For D<0, the first term defines two energy minima corresponding to the parallel/antiparallel orientation of 

the spin vector S along an “easy” z-axis. The second (Zeeman) term expresses the coupling of the spin to 

the component of the external magnetic field parallel to the easy axis, effectively tilting the double-well 

potential. The last term, H', contains terms that do not commute with Sz.  Without H', Sz is a conserved 

quantity and its eigenvalues m are good quantum numbers.  The presence of H' breaks the symmetry of 

the system, and therefore produces tunneling. Figure 2 shows a diagram of the energy levels for this 

system (including higher-order axial anisotropy terms, e.g. B0
4 Sz

4 – see below) as a function of field.  

When levels come into resonance, sometimes indicated with black dots in Figure 2, tunneling between 

wells takes place, leading to a marked increase in the rate of inter-well relaxation 4,19,20.  Since level 

“anticrossings” between one pair of levels can occur at nearly the same field as for another pair, at 

temperatures of a few Kelvin, tunneling may typically involve more than one pair of levels 

simultaneously. 

Figure 1 Double-well potential generated from the second-order anisotropy term in Eq. 
(1) for an S = 10 system. The horizontal axis is the classical projection angle of the spin 
vector along the “easy” (z) axis. The energies of the eigenstates are labelled by their 
associated magnetic quantum number m. 
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Figure 2 Log plot of relaxation rate data Γ from ambient pressure data 
taken in the parallel configuration, overlaid on an energy level diagram 
generated from the Mn12-Me Hamiltonian. The thick lines correspond 
to data acquired at a sweep rate of 19.9 mT/s, while the thin lines are 
smoothed curves generated from data acquired using a sweep rate of 
1.1 mT/s. The contributing resonances assumed in the two-state 
approximation (see text and Table ) are indicated by the black dots, 
with the dashed lines aligned with the corresponding resonance fields. 

The transverse anisotropy terms in H' reflect the molecule’s symmetry.  For example, the Fe8 

SMM has approximate two-fold symmetry for rotation about its easy axis.  This implies a rhombic 

transverse anisotropy:  

 (2) 

The spin raising and lowering operators S± in this transverse anisotropy couple eigenstates of Sz, giving 

rise to tunneling between such states. Moreover, since S± appears squared, this H' imposes a selection 

rule:  in the absence of other perturbations, tunneling can only take place between states with m values 

that differ by integer multiples of 2.  The symmetry of the molecule also allows for a fascinating 

geometric-phase interference effect 21–23:  tunneling between Sz directions can take place along two 

equivalent least-action paths, one passing through the y axis and the other through the –y axis, allowing 

for interference between these paths.  By applying a magnetic field along the “hard” x axis, reflection 

symmetry in the x-z plane for the system is preserved, maintaining the equivalence of the two least-action 

  



5	
	

paths; nevertheless, the phase of the paths is modulated by the field, allowing tunneling to be dramatically 

suppressed when the interference between paths becomes destructive. 

The Mn12 SMM has nominal four-fold rotational symmetry in which H' would have the form 

(3) 

Here the fourth power of S± implies the tunneling selection rule  (integer n).  However, in the 

archetypal Mn12-acetate, the four-fold symmetry is broken by hydrogen-bonding between the Mn12 

molecules and the lattice solvent molecules in the crystal, leading to the introduction of an additional 

second-order transverse anisotropy in the spin Hamiltonian for most molecules in the crystal 24–26. A 

geometric-phase interference effect in this system involves the interplay of a transverse field with the two 

different anisotropy terms 26.  In more recent years, new forms of Mn12 have been produced in which 

solvent effects are effectively eliminated, removing the second-order transverse anisotropy.  In one of 

these variants, Mn12-tBuAc, a geometric-phase interference effect can be observed 23 due to the effect of 

the fourth-order transverse anisotropy in which, at least at zero field, the tunneling involves four 

interfering equivalent paths 27,28.   

In 2008, Foss-Feig and Friedman 29 predicted a novel geometric-phase interference effect in 

which the interference in a four-fold symmetric molecule is modulated not by an applied transverse field, 

but by an induced second-order symmetry-breaking anisotropy that could arise from uniaxial pressure 

applied along one of the hard-axis directions.  This predicted interference between the four tunneling 

paths provides the motivation for the experiments described herein.  Even in the absence of an 

unambiguous observation of the interference effect, we expect that a physical distortion of the molecule 

will induce measurable effects in the observed tunneling dynamics.  Applications of pressure parallel or 

perpendicular to the molecular easy axis should manifest as changes to different elements of the 

Hamiltonian and therefore produce different behaviors as seen through QTM. In particular, pressure 

applied transverse to the easy axis may induce a rhombic anisotropy E (cf. Eq. (2)) that affects the 

4m nΔ = ±
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tunneling between certain pairs of levels. Even if the pressure is not applied precisely along one of the 

hard axes, a significant change in QTM should still be observed.  In this case, where the pressure axis is 

in the x-y plane at an angle φ from the hard x axis, the rhombic anisotropy would be given by  

.  In contrast, pressure applied along the easy axis should preserve the molecule’s 

symmetry, leaving E = 0. Our general aim is to look for evidence of appreciable changes in the QTM 

behavior that can be ascribed to modifications of the molecule’s anisotropy. 

 

II. EXPERIMENTAL SETUP 

The sample under study here has the chemical formula [Mn12O12(O2CMe)16(MeOH)4]·MeOH, 

henceforth called “Mn12-Me” (cf. Figure 3(b)), and is a high-symmetry analog 30,31 of the first SMM to be 

discovered, [Mn12O12(MeCOO)16(H2O)4], a.k.a. “Mn12-Ac”. Both systems have an S = 10 ground state, a 

large energy barrier to spin reversal, Ueff ~ 70 K, and exhibit magnetic hysteresis below ~3.5 K.  In 

crystalline samples like those examined here, the large step-like features associated with QTM are 

observed in the low-temperature hysteresis loops, visible every ~0.45 T or so. Since the lattice MeOH 

molecules form no hydrogen-bonding contacts with Mn12 molecules, Mn12-Me presents resonant features 

with minimal broadening as compared to Mn12-Ac. 

Numerous studies have been conducted in the effort to characterize pressure-induced effects in 

the magnetic behavior of SMMs 32–36, with pressure applied hydrostatically through the compression of a 

fluid medium. In contrast, our experiment was designed to deliver pressure along a particular crystalline 

axis of the sample. The samples studied here were small, narrow cuboid crystals with a length no greater 

than a millimeter. In order to aid placement and reduce the risk of crystal fracture, a method following 

that outlined by Campos et al. 37 was employed in which the samples were first set in epoxy (Stycast 

1266) and then machined after curing in a mold. First, after removal from the mother liquor and a brief 

( )2 2 2 2

2
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drying, the samples were placed into wet, degassed epoxy within a Teflon mold and then oriented by the 

application of a 4 T magnetic field held fixed for >8 hours until the completion of the curing process. The 

product was then machined into a small cuboid “pellet”, with short dimension not much longer than the 

length of the sample itself, such that one of the flat faces of the crystal was close to one of the flat faces of 

the pellet.  

The cured epoxy pellet containing the embedded crystal was placed within a “bracket” designed 

to hold a Hall Bar magnetometer and G10 “fingers” that served to deliver pressure to two opposing faces 

of the crystal. The sample was aligned with the active area of the Hall sensor to achieve good coupling. 

Figure 3 (c and d) schematically illustrates the low-temperature portion of the apparatus.  The bracket 

containing the embedded sample and sensor was inserted into a stainless-steel cell at the bottom of an 

apparatus designed to deliver pressure to the sample from a pneumatic piston outside of the cryostat. 

Pressure was applied by supplying compressed nitrogen gas through a regulator to the piston. The 

pressure applied to the sample was calculated using the dimensions of the piston and the cross section of 

the epoxy pellet containing the sample. The apparatus was essentially identical to that used in a previous 

experiment 38.  
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Two Quantum Design PPMS systems were used for measurements39, each with similar 

instrumentation but different orientations of the magnetic field axis. In the first system, the field axis was 

aligned with the bore of the sample space. In the second, the field axis was perpendicular to the sample-

space bore. In the first system, the sample was aligned such that its easy axis (collinear with the long axis 

of the crystal) was parallel to the magnetic field, which was also parallel to the pressure axis P. This is the 

“parallel pressure” configuration (Figure 3(c)-left). In the second system, the easy axis and magnetic field 

are again collinear, but P is oriented orthogonally to both. This is the “perpendicular pressure” 

configuration (Figure 3(c)-right).  In this latter configuration, the pressure was applied along the “hard” 

anisotropy axis of the sample 40. 

Hall resistance from our sensors was measured using a lock-in amplifier. The applied field was 

swept at rates of 1.1 mT/s and 19.9 mT/s in the parallel-pressure configuration and 8 mT/s in the 

perpendicular configuration. Measurements were performed across a range of temperatures from 1.8 to 

3.3 K, as read from a calibrated thermometer placed on the back of the Hall bar in the parallel case, and 

according to the PPMS system thermometer at the sample-space position in the perpendicular case. After 

(a)	
(b)	 (c)	

(d)	

Figure 3 (a) Temperature dependence of hysteresis loops acquired under ambient conditions in the perpendicular-pressure 
configuration at a longitudinal-field sweep rate of 8 mT/s, labelled by their resonance number k = -(m + m’). (b) Schematic of the 
molecular core of Mn12-Me, from ref. [30], with the dark blue/green arrows illustrating relative spin orientations of the individual 
Mn ions and a large blue arrow representing a collective “giant spin”. (c) Diagram showing the relative orientations of the sample 
and magnetic field within the pressure apparatus. The sample’s easy magnetization axis is along the long dimension of the sample 
(black rectangle). (d) Detailed schematic of the high-pressure cell within the low-temperature portion of the apparatus showing 
the arrangement of the Hall-bar sensor and the elements that deliver pressure to the sample, taken from ref. [38]. Note that the 
shape of the epoxy “pellet” used in this experiment is close to a cuboid. 
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each adjustment of the pressure, hysteresis data was collected at several temperatures before moving on to 

the next pressure. For the parallel experiment, the sequence of pressures began with ambient pressure 

(“zero” pressure in the piston) and was then followed by pressures of 0.55, 1.1, 1.64, 0.27, 0.82, 1.37, and 

1.92 kbar. For the perpendicular experiment, the sequence was 0.41, 0.82, 1.23, 1.64, 2.05, and finally 0 

kbar. The upper limit of the pressures was constrained by the expected compressive strength of the epoxy 

at low temperatures. The same pellet/crystal was measured in both experiments; it was rotated between 

experiments to accommodate the different pressure configurations. 

 

III. RESULTS 

Figure 3(a) shows hysteresis loops for several temperatures acquired in the perpendicular 

pressure configuration while at ambient pressure.  The measured hysteresis curves show clear QTM steps 

that can be labelled by the conventional resonance-numbering system, as indicated in Figure 3(a). 

Relaxation associated with the resonance condition for a single resonant pair of levels is not discernible 

due to the broadening present at these temperatures. 

From the hysteresis data, one can determine the spin relaxation rate Γ:  

(4) , 



10	
	

where M represents the instantaneous magnetization of the sample and Meq the equilibrium magnetization.  

Meq can be calculated using Boltzmann statistics, and converges to the magnetization of a “saturated” 

sample Msat at sufficiently large fields.  Figure 4 shows the B dependence of Γ for the k = 2 and 4 

resonances for several values of pressure applied in the parallel and perpendicular configurations, 

respectively.  The data show that pressure in both configurations enhances the relaxation rate (α, which 

characterizes the rate for a given resonance as described below) at tunneling resonances.  In addition, the 

resonance fields (β, which characterizes the resonance’s center field) appear to shift, with opposite trends 

between the two different orientations of pressure:  the resonance field shifts to larger values with 

increasing pressure in the parallel configuration and towards lower fields in the perpendicular case (see 

the insets of Figure 4, as well as Figure 5 below). The results imply no significant permanent deformation 

of the sample, given that the data follow the same general pressure dependence, regardless of the fact that 

pressure was not changed monotonically. 

To further analyze the data, we assume that Γ can reasonably be expected to follow the 

convoluted lineshapes of the levels involved in tunneling.  To wit,  

                  	 ( )f BΓ =  (5) 

Figure 4 Extracted relaxation rate for the (a) k = 2 and (b) k = 4 resonances. The k = 2 data were 
acquired at 2.7 K with a sweep rate of 19.9 mT/s in the parallel configuration. The k = 4 data shown 
represents an adjacent-average smoothing of actual data acquired in the perpendicular configuration, 
which were taken at 2.3 K with a sweep rate of 8.0 mT/s. The solid lines are curve fits to the data. The 
insets show the pressure dependence of the fit parameters α and β, with linear fits (red lines). 

(a)	 (b)	
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where f(B) is the lineshape function associated with the tunnel resonance, such as a Lorentzian, 

 or Gaussian, , where w is the line width, β is 

the resonance center and α characterizes the “strength” of the tunneling resonance (the amplitude or area 

of the peak).  In fitting our data, we employed a “pseudo-Voigt profile” function 41:  

( ) ( ) (1 ) ( ),L gf B f B f Bξ ξ= + − 																																																	(6) 

with a free parameter, giving the relative weights for the Lorentzian and Gaussian functions. 

Fitting using this expression yields values for α, β and w for each QTM step, with a single value for each 

parameter shared between the Lorentzian and Gaussian components.  Prior to fitting, a correction was 

made to account for the contribution of the mean internal dipole fields to the effective local field as seen 

by the spins 42, with a value of 22.5 mT used for a fully magnetized sample.  

Due to the significant broadening we observe, not only are individual level pairs within a given 

step indistinct, but it is moreover impossible to completely separate the steps and attribute all the 

observed relaxation to a particular k, as appreciable relaxation is often found at field values between the 

step “centers” (e.g. between k = 1 and 2), albeit at a slower rate. The fitting was performed with this in 

mind by allowing the possibility of overlap between neighboring fit functions. A range of data (spanning 

~4500 Oe) centered about the “target” step was selected to which three functions were fit, two of which 

represented contributions from “neighbor” resonances on either side of the target step. In the first step of 

an iterative process, the function fit to the “target” step contained free parameters for α, w and β whereas 

the associated parameters for the “neighbor” steps were held fixed. Subsequently, one of the other two 

“neighbor” functions was “unlocked” and the process repeated with the other two held fixed. This process 

was repeated many times until the parameter estimates reached stable values.  
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 Some of the extracted values for parameters α and β are shown in the insets of Figure 4, where 

they are plotted as a function of pressure. Linear fits were made to the pressure dependence for each set of 

data identified by its associated step k, temperature, sweep rate, and orientation of pressure. The slopes of 

the fits were normalized by the zero-pressure intercept to generate (∂α/∂P)/α(0) and (∂β/∂P)/β(0). 

Extracted values for the resonance widths, w, show no clear trend and/or large error bars, and as such we 

omit their analysis. (Analysis of the estimates for  also did not reveal any clear trends with pressure.)   ξ
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Figure 5 shows the collected data for these two quantities (open squares), delineated by the 

resonance label k. Generally, we find that when the pressure was parallel to the easy axis, the resonances 

grew noticeably larger ((∂α/∂P)/α(0) ≲10%/kbar) and shifted towards higher field ((∂β/∂P)/β(0) 

≲0.3%/kbar) as the pressure was increased. For pressure perpendicular to the easy axis, the magnitudes 

again increased ((∂α/∂P)/α(0) ≲5%/kbar), but the steps instead shifted towards lower field with increasing 

pressure ((∂β/∂P)/β(0) ≲-0.4%/kbar).  Previous work performed with this apparatus in which a sample of 

the lower-symmetry Mn12-Ac was placed in a parallel-pressure configuration exhibited an increase in the 

resonance positions of 0.11-0.14%/kbar.     

Figure 5 Comparison of calculated and measured changes in the values of α and β. Colored 
circles/diamonds/triangles show the results of simulations/fitting (labelled in the legend by the 
anisotropy terms being modified in that simulation) while hollow squares are taken from experimental 
data, using the normalized slopes of the fits in the insets of Figure 4 and fits to other similar data. 
Some of the simulation data points represent extrapolations/interpolations of the observed 
(approximately linear) trends. The panels are sorted into different parameters and pressure 
configurations, with offsets to differentiate step number k and temperature, as labelled above and 
below the plots. For the parallel configuration data, the duplicate entries at some temperature/step 
combinations represent data from two different sweep rates. 

(a)	 (b)	

(c)	(d)	
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IV. ANALYSIS & INTERPRETATION 

 To understand the observed pressure dependence, we calculated how changes to different 

anisotropy parameters in the molecule’s spin Hamiltonian would affect the magnetization relaxation rate. 

In general, changes in the axial parameters will act to shift eigenstates up or down in energy, affecting 

their Boltzmann populations for a given temperature and changing the fields at which levels in opposite 

wells cross (the resonance fields). In contrast, tuning the transverse anisotropy parameters can result in 

pronounced changes in the expected tunneling rate while leaving the resonance fields largely unchanged. 

In the absence of a symmetry-breaking perturbation such as perpendicularly applied pressure or 

field, the spin Hamiltonian for Mn12-Me can be taken to be  

 , (7) 
 

where O4
4 = (S+

4 + S-
4)/2, and O4

6 = {11Sz
2 - S(S+1) - 38, (S+

4 + S-
4)} are Stevens operators, with the curly 

brackets representing the anticommutator operation: {a,b} = ab + ba.  We use the ambient-pressure 

values for the anisotropy parameters determined previously for a similar high-symmetry Mn12 molecule 43: 

D = -0.557 K, A = -6.36×10-4 K, F = -3.33×10-6 K, B4
4 = 2.88×10-5 K, and B4

6 = -1.44×10-7 K.   

For initial characterization of the parallel-pressure results, we performed regression fitting in 

conjunction with a Hamiltonian without transverse B4
4 and B4

6 terms: 

 (8) 

In the absence of a transverse field, this Hamiltonian contains no terms that would permit tunneling (i.e. 

there are no off-diagonal terms to mix different spin eigenstates). Figure 2 shows the energy levels 

calculated using this restricted Hamiltonian superimposed on relaxation-rate data taken under ambient 

pressure for several temperatures, as indicated.  We focus on resonances k = 1, 2, 3, and 4, for which we 

2 4 6 4 4 4 4
4 4 6 6z z z BH DS AS FS B O B O g S Bµ= + + + + − •

v v

. 
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have data at several temperatures in both the parallel and perpendicular cases.  We assume that, for a 

given k, substantial tunneling takes place via no more than two resonances (level anticrossings), a 

paradigm we refer to as the “two-state approximation”. We choose levels that match closely with 

observed resonance positions, as indicated in Figure 2, and describe the total transition amplitude as a 

Boltzmann-weighted linear sum of contributions from the two levels, i.e. αTot = α1exp(-E1/kBT) + α2exp(-

E2/kBT), where the subscripts refer to levels with values m1 and m2, as given in Table I. 

Table I – List of initial (m) and final (m') states used in modelling tunneling in the two-state approximation for each resonance k 
= -(m + m'). 

Resonance k m1, m1'  m2, m2' 
1 -7, 6 -6, 5 
2 -7, 5 -6, 4 
3 -7, 4 -6, 3 
4 -8, 4 -7, 3 

 

By taking estimates for the amplitudes α1 and α2 to be constant as a function of pressure, we can 

interpret changes in the observed resonance magnitudes as alterations of the Boltzmann populations 

induced by changes in D and A. The sixth order constant F was held constant in order to limit the number 

of free parameters and because good agreement could be found without letting it vary. Fitting the 

temperature dependence of the zero-pressure intercepts from the linear fits of the amplitude α generated 

initial estimates for α1 and α2. Simultaneously, we fit the temperature dependence of the ambient β data to 

an expression that approximates the resonance field as a sum of the two individual resonance fields of the 

contributing levels, weighted by their Boltzmann populations and transition amplitudes α1 and α2, i.e. βTot 

= β1α1exp(-E1/kBT) + β2α2exp(-E2/kBT). In this way, we could produce estimates for changes in the 

Hamiltonian parameters by fitting to the parallel data as a function of pressure and temperature and letting 

D and A vary. The results of this fitting give values of (∂D /∂P)/D = 0.57%/kbar and (∂A /∂P)/A = -

6.9%/kbar.  
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 To analyze the data more fully in both the parallel and perpendicular configurations, we 

employed a master-equation approach to calculate the relaxation rate Γ by accounting for spin-phonon 

interactions 23,44,45: 

(9) 

where the  are the populations of the system’s energy eigenstates (diagonal elements of the density 

matrix).  In this so-called secular approximation, eigenstates were calculated using a Hamiltonian that 

included transverse anisotropy terms up to sixth order:  

 (10) 

where the coefficients have the “ambient” values given above, and E has an ambient value of zero. We 

consider only diagonal elements in the density matrix to conserve computational resources; this reduces 

the applicability of the model near the resonance condition where off-diagonal elements might play an 

important role. Nonetheless, this model allows us to discriminate the effects of varying different 

anisotropy parameters. The spin-phonon transition rates are given by 44,45  

 

(11) 

 

(12) 

 

where ρ is the mass density of the sample, cS is the speed of sound in the sample, sij
(1) = 〈i|{Sx,Sz}|j〉, sij

(2) = 

〈i|Sx
2-Sy

2|j〉, Δij is the energy difference between levels i and j, and N(Δij) = 1/(exp(-Δij /kBT)-1) is the 

phonon thermal-distribution function. The rate Γsim is taken as the smallest non-zero eigenvalue of the 

matrix generated from Eq. (9) 23. In our simulation, we assumed a constant field Hx = 10 mT in order to 

ip

  

  

,	

,	
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represent the effects of internal (dipole or hyperfine) transverse fields that have been demonstrated to play 

a significant role in the magnitudes of QTM resonances 46. 

In order to extract estimates for resonance fields from calculations of Γsim we used a weighted 

integral over a field range centered around the resonances of interest (such that it included all “peaks” 

associated with a given resonance number k):  

(13) 

in which the bounds Bi and Bf about a resonance k are taken to be 0.45k ± 0.15 T. The spin-phonon rate 

simulation produces data in which Γsim is small except near a resonance condition and as such, Eq. (13) is 

essentially an average of the peaks’ abscissas weighted by their area. The amplitude αsim of a resonance 

was simply taken as the total area under the peaks for the same bounds. To conserve computational 

resources, contributions from specific resonances were omitted when we could safely assume they were 

small, i.e. resonances closest to the ground state that were calculated to occur at fields far from where 

relaxation was observed.  

 

	

	 Figure 6 (a) Numerical simulation of the relaxation rate for resonances involved in the k = 2 step, using the 
“ambient” anisotropy parameters as well as altered values, indicated in the legend, intended to mimic the effects 
of parallel and perpendicular pressures. The different transitions involved in each resonance are indicated above 
the set of peaks. (b) Estimated resonance position β as a function of transverse anisotropy parameter E, extracted 
from the simulations; the inset illustrates an exaggerated distortion of a molecule’s symmetry induced by the 
introduction of the rhombic E term. 

(a)	 (b)	
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Inserting the estimated values for (∂D/∂P)/D and (∂A/∂P)/A extracted from the parallel, two-state 

approximation scheme outlined above into the master-equation simulations reproduces changes in the 

calculated amplitudes and resonance fields (i.e. as estimated by Eq. (13)) similar to those found from the 

two-state approximation (i.e. via the Boltzmann weighted sum that determines βTot), confirming the 

consistency of the two models.  

The red line in Figure 6(a) shows the simulated relaxation rate as a function of field for the k = 2 

resonance generated using modified values for the anisotropy parameters, as indicated, including the 

values for (∂D/∂P)/D and (∂A/∂P)/A discussed above. The dashed blue line corresponds to an alternative 

model in which D and the tetragonal transverse anisotropy term B4
4 were simultaneously varied, while A is 

held fixed at its ambient value. In this scenario, a slight increase in D of 0.072% (±0.018) and an increase 

in B4
4 of 6.0% create a small shift in the observed step center away from zero field and an enhancement of 

the tunneling rate in the vicinity of all resonances; in this model, the effect of dD/dP is almost negligible, 

as most of the observed effects can be attributed to a change in B4
4. A model in which only D is allowed to 

vary fails to adequately reproduce the observed behavior.   

The green lines in Figure 6(a) show the result of introducing a rhombic term |E|< 0.4 mK (≈ 

D/1500), oriented along one of the hard axes, without changing other parameters. Contrary to the effects 

produced through changes in D, A or B4
4, the introduction of the rhombic term “opens” certain resonances 

(e.g. the one near 0.85 T – see also Figure 7) while leaving the resonance positions largely unchanged. 

The most dramatic effects appear at positions corresponding to excited states near the top of the barrier, 

which (for the same resonance k) are always closer to zero field than lower-energy states (cf. Figure 2) 

since both D and A are negative. This implies that an average over these resonances would shift towards 

lower field as the rhombic component is increased, a conclusion borne out by the estimates of βsim, as 

illustrated in Figure 6(b), which shows the results of simulations for three experimentally relevant 

temperatures.  One can see that the resonance field decreases with increasing temperature as a greater 

portion of the tunneling takes place through higher excited states. 
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 The βsim and αsim dependences were calculated while either D and A or D and B4
4 were varied (for 

the parallel configuration) or an E term was introduced (for the perpendicular case). These scenarios were 

simulated for three temperatures, 2.1 K, 2.7 K, and 3.3 K. This generated data qualitatively similar to that 

shown in Figure (b), with approximately linear trends evident. Lines were fit to these calculations to 

determine the dependence of βsim and αsim upon D and A, D and B4
4, or E. Figure 5 shows the estimated 

changes in the amplitude (∂α/∂P)/α(0) and center positions (∂β/∂P)/β(0) resulting from our simulations, 

plotted on top of the equivalent estimated changes extracted from our data. The simulations correspond to 

changes in the anisotropy parameters of (∂D/∂P)/D(0) = 0.57%/kbar and (∂A/∂P)/A(0) = -6.9%/kbar (red 

points, generated from the two-state methodology outlined above and representing the case of P ∥ z), or 

(∂D/∂P)/D(0) = 0.072%/kbar and (∂B4
4/∂P) /B4

4 (0)  = 6.0%/kbar (blue points, also representing P ∥ z), or 

∂E/∂P = -0.38 mK/kbar (for P ⊥ z). In all cases, the simulations show good agreement with the trends 

observed in the experimental data, matching the directions and the relative sizes of the changes of the 

shifts in both parameters. The scatter present in the values derived from the experimental data (the open 

squares in Figure 5) would likely accommodate a range of scenarios involving different changes to the 

anisotropy parameters, such as the alteration/introduction of additional higher-order operators, but we 

Figure 7 Details of the calculated relaxation rate for “ambient” parameters (black) and for a system with an additional rhombic 
term with E = -0.38 mK (green) for several resonances at the k = 2 and 3 steps. The k = 2 data is also shown in Figure 6. The 
specific transitions are identified by the magnetic quantum numbers m and m’ of the bare eigenstates at the level anticrossing, 
assuming a transition out of the metastable well. The change Δm associated with each peak is identified, along with the 
anisotropy parameters involved (to leading order in perturbation theory) in mixing the states and enabling tunneling, highlighting 
the observed dependence on E. 

(a)	 (b)	
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believe the estimates we have proposed represent the simplest scenarios capable of reproducing results 

similar to our data. 

 

V. DISCUSSION 

For the parallel-pressure case, we find that pressure induces changes consistent with two possible 

models: a reduction in the fourth-order axial anisotropy A and a slight increase in the second-order axial 

anisotropy D or an increase in the transverse tetragonal anisotropy B4
4 and a very slight increase in D. In 

the former case, the anisotropy changes combine to produce an increase in the resonance positions while 

simultaneously reducing the energies of the excited levels and thereby increasing the relaxation rate. In 

the latter case, the increased relaxation is due to an increase in the tunneling produced by the larger value 

of B4
4. As we discuss below, these variations in A or B4

4 may be due to pressure-induced modulations of the 

intramolecular exchange interactions coupling the constituent manganese ions,34,47–49 caused by changes 

in the structure of the Mn12 molecule. 

The results here stand in some contrast to those produced in an analogous experiment on Mn12-Ac 

in which the effect of parallel pressure was to shift the resonances to higher field by about half the amount 

per kbar of that seen here. The difference may be due to the solvent disorder in Mn12-Ac possibly 

dominating changes in the molecular anisotropy when compared with the effect of pressure.  To wit, if, in 

the parallel configuration, the pressure serves to increase B4
4, Mn12-Ac would be less susceptible to the 

effects of pressure since tunneling is already determined by the substantial value of E induced by the 

solvent-bonding effect.  Thus, the dramatic difference in the effect of parallel pressure for the two systems 

would favor the model that pressure is increasing B4
4, over the one that it is decreasing A.   

Figure 7 illustrates the effect that introduction of a rhombic term has on the simulated relaxation 

rate for different resonances at the steps k = 2 and 3. For the k = 2 step, resonances that represent Δm 

values that are integer multiples of the dominant transverse symmetry (in this case four, as the molecule 



21	
	

has tetragonal symmetry) are largely unaffected, as can be seen in the peak labelled by m = -5 → +3, for 

which Δm = 8. However, transitions for which Δm = ±2n (n odd), such as the m = -4 → +2 peak, show 

large increases in associated relaxation rates as the introduction of rhombic transverse anisotropy opens 

up a new pathway to tunneling that is otherwise largely forbidden by the Δm = 4n selection rule. A 

similar mechanism is at work in the resonances at odd steps, as some transitions allowed by the 

combination of dominant anisotropy terms and a transverse field remain largely unaffected by the 

introduction of a rhombic term (see the peaks labelled m = -4 → +1 and m = -6 → +3 in Figure 7(b)), 

while other resonances become somewhat more intense when a significant E term is present (such as the 

m = -5 → +2 peak). Each peak is labelled in terms of the transverse Hamiltonian terms that, to leading 

order of perturbation theory, produce the tunneling for that peak.  For example, the m = -5 → +2 peak is 

labelled “B4
4 + E + BT”, indicating that this transition requires third-order perturbation theory involving B4

4 

to first order (Δm = 4), E to first order (Δm = 2) and a transverse field, BT, to first order (Δm = 1).  For E 

= 0, the transition is still possible in the same order (B4
4 twice and BT once), and so E will enhance this 

transition only when the two processes have comparable magnitude.   We find that transitions occurring 

closer to the top of the potential barrier (i.e. where Δm is less) typically show larger increases in the 

calculated relaxation rate for a given change in E, as they require lower order of perturbation theory to 

mix the states involved. 

 Our results suggest that at the highest pressure we applied (~2 kbar), we induced a transverse 

anisotropy of approximately E = D/730 ≈ 0.8 mK.  Foss-Feig and Friedman 29 showed that for Mn12, the 

introduction of a rhombic component E ≈ 15 mK is capable of inducing strong destructive Berry-phase 

interference, resulting in quenching of the dominant tunneling mechanism. Unfortunately, the upper limit 

of pressure imposed by our apparatus is limited by the compressive strength of the epoxy encasing the 

crystalline sample. Tests of the epoxy cooled in liquid nitrogen showed that it will fracture before ~5 

kbar.  Thus, substantial changes to the experimental apparatus would be necessary to observe the Berry-

phase interference in this SMM. 
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The spin dynamics in polynuclear SMMs arise from a competition between the single-ion 

anisotropies originating from spin-orbit coupling, and the inter-ion exchange interactions.  When the latter 

are substantially stronger, an SMM can be well described with a giant-spin Hamiltonian up to second 

order in the axial spin operator (DSz
2), assuming a high molecular symmetry. However, for inter-ion 

exchange couplings comparable to the single-ion anisotropies, higher-order axial (ASz
4) and/or transverse 

(B4
4O4

4) corrections to the leading anisotropy term need to be included in the giant-spin approximation. The 

nature of high-order anisotropy corrections in the giant-spin approximation, and their relation to inter-ion 

exchange couplings, have been well established and discussed at length in previous work 43,47,50–55. In 

brief, these corrections arise from mixing of different spin multiplets separated by an energy proportional 

to the exchange interaction strength. In the limit of infinite exchange, quantum spin fluctuations vanish 

completely (i.e. the molecular spin is well defined), and the allowed terms in the Hamiltonian are limited 

to second order.  Note that, although the exchange is not directly responsible for the higher-order 

corrections to spin-orbit coupling, its magnitude dictates the degree of spin mixing, consequently 

determining the appearance of higher-order terms. In this way, pressure-induced changes to the inter-ion 

exchange couplings, most likely via mechanical distortion of the respective Mn-O-Mn superexchange 

bonds (e.g., change in the Mn-O-Mn twist angle has been reported to affect exchange 56–59),   provide a 

highly plausible explanation for the observed changes in tunneling rates. However, pressure-induced 

changes in the orientations of the single-ion anisotropy tensors with respect to the molecular symmetry 

axis provide an alternative mechanism for the observed changes in tunneling rates. Indeed, in the case of 

purely axial single-ion anisotropy (single-ion e = 0), tilts of the corresponding tensors away from the 

molecular symmetry axis would be the only viable source of transverse anisotropy (provided moderate 

exchange energies). In that case, variations of these tilts (e.g., by uniaxial pressure) could have a sizeable 

effect on the tunneling rates and positions of QTM resonances. However, the single-ion anisotropies of 

the Mn ions are typically rather rhombic (both d and e terms).46,47 In this case, the molecular transverse 

anisotropy results from projections of both d and e onto the molecular transverse symmetry plane. Hence, 

small changes of the orientations of the local anisotropy tensors induced by pressure will produce less 
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pronounced changes in the tunneling rates and resonance positions, although such effects cannot be 

completely ignored. Most likely, the effects observed in this work have contributions from both 

mechanisms, i.e., pressure-induced variations of both the inter-ion exchange and the orientations of the 

local Mn anisotropy tensors. The relatively weak changes in relaxation obtained within the range of 

pressures employed in this work do not allow us to discern the relative role of the two mechanisms. 

Fitting the parallel-pressure data could be improved by allowing all three parameters (D, A & B4
4) 

to vary independently.  In fact, one might expect A and B4
4 to follow similar behavior, given their 

relationship to intra-molecular exchange.  However, fitting using a model that requires these two 

parameters to change proportionately yielded unsatisfactory results.  Given the precision of the data 

presented here, a three-parameter fit would not be illuminating.  Experiments performed either under 

different conditions, e.g., lower temperatures, or employing other methods, such as electron-spin 

resonance spectroscopy or X-ray diffractometry, may be able to discriminate between the different 

models and reveal finer details of the mechanisms involved. However, none of these approaches are 

currently compatible with the uniaxial pressure apparatus employed in this study. On the other hand, the 

interpretation that perpendicular pressure induces an E term, increasing tunneling by breaking the 

molecule’s symmetry, appears relatively unambiguous and our results provide the first evidence of such a 

uniaxial-pressure-induced effect in an SMM. 

In summary, we have demonstrated that uniaxial pressure applied parallel or perpendicular to the 

easy axis of a crystalline sample of Mn12-Me alters the process of QTM relaxation with behavior that 

depends on the direction of the pressure.  The observations can be explained as arising from pressure-

induced changes to the molecule’s anisotropy parameters. 
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