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Crystal truncation rods are used to study surface and interface structure. Since real surfaces
are always somewhat miscut from a low index plane, it is important to study the effect of miscut
on crystal truncation rods. We develop a model that describes the truncation rod scattering from
miscut surfaces that have steps and terraces. We show that non-uniform terrace widths and jagged
step edges are both forms of roughness that decrease the intensity of the rods. Non-uniform terrace
widths also result in a broad peak that overlaps the rods. We use our model to characterize the
terrace width distribution and step edge jaggedness on three SrTiO3 (001) samples, showing excellent
agreement between the model and the data, confirmed by atomic force micrographs of the surface
morphology. We expect our description of terrace roughness will apply to many surfaces, even those
without obvious terracing.

I. INTRODUCTION

Surface x-ray diffraction is a critical tool for under-
standing surface structure on an atomic scale.1 One use-
ful surface diffraction technique is analysis of crystal
truncation rods, which are streaks of scattering extending
away from the Bragg peaks parallel to the surface normal.
Crystal truncation rods have been used to solve surface
reconstructions,2,3 locate adatoms,4 study self-assembled
monolayers,5 and understand buried interfaces,6,7 solid-
liquid interfaces,8,9 and solid-gas interfaces.10 Thus, they
are a critical tool for understanding surface structure de-
termination.

There are two approaches to simulating the truncation
rod intensity. The first “continuum” approach presumes
that a crystal can be described as an infinite lattice mul-
tiplied by a shape function, which is unity in the bulk
and zero outside the crystal.11 The Fourier transform of
the shape function determines the shape of the trunca-
tion rod. The second “atomistic” approach is to add up
the scattering from every atom in the crystal, with an
appropriate phase factor that depends on the position of
the atom.12 The square of the magnitude of the sum is
proportional to the truncation rod intensity.

Roughness can be included in both models. In the
continuum approach, roughness is captured by a broad-
ening of the shape function.13 In the atomistic approach,
roughness is modeled as a series of partially occupied
layers near the surface. In the best-known formulation,
called β-roughness, the occupancy of each layer above
the bulk is a constant fraction, β, of the layer below.12

In both approaches, roughness reduces the intensity of
the truncation rod, with the largest effect at the anti-
Bragg points. Other models have also been developed.
For example, co-existence of two-dimensional and three-
dimensional growth modes in a thin film results in a more
complex roughness factor.14 These approaches generally
work well when the crystal surface is parallel to a low-
index plane.

However, no real surface is parallel to a low-index
plane. Even if the surface is locally parallel to the plane,
steps, often one unit cell tall, divide the surface into ter-
races whose lateral spacing depends on the miscut angle.
Provided the coherence length exceeds the terrace width,
a separate “sub-rod” will extend from each Bragg point,
as shown in Fig. 1(a). Measuring the truncation rods
from such a surface with a point detector is challeng-
ing because each sub-rod must be measured separately,
and small misalignments or imperfections in the diffrac-
tometer require frequent alignment scans to find the sub-
rods. Thus, experimentalists frequently use samples with
small miscuts (< 0.05◦) and align the miscut with the
low-resolution direction of the beam or diffractometer to
avoid the need to track the individual sub-rods.3,15 Re-
cently, area detectors have made the task of measuring
truncation rods from miscut samples much easier since
the detector usually intercepts several sub-rods simulta-
neously and small misalignments have minimal impact
on the data collection.16 In light of this much easier data
collection, it is necessary to develop a theory of trunca-
tion rods from miscut samples so that a wider variety of
samples can be studied.

In this paper, we develop a model for the crystal trun-
cation rods from miscut surfaces with terraces and steps
and show that it agrees well with data collected from
miscut SrTiO3 (001) surfaces, whose morphology is sep-
arately characterized by atomic force microscopy.

II. MODEL

It is well known that scattering from a surface en-
codes information about the height-height correlation
function.13,17 Several models have been developed to de-
scribe diffraction from vicinal, stepped surfaces that in-
clude a variety of terrace width distributions and step
edge roughnesses.18–21 Experimentally, the details of the
step distribution can be elucidated using these models.
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For example, step edge repulsion and phase separation
were observed in miscut silicon,22,23 and anisotropy in a
roughening transition was observed in Ag (110).24

These models for step distributions generally don’t de-
scribe the intensity along the entire truncation rod, but
rather only the in-plane shape. However, it has been
shown in a simple model with two terrace widths that un-
equal terrace widths reduce the truncation rod intensity,
especially at the anti-Bragg points.25 A numerical calcu-
lation of truncation rod intensities from an atomic force
microscope image of a terraced, miscut surface shows a
similar effect.15

Building on these principles, we develop an atomistic
model of a miscut surface, presuming a cubic crystal com-
prised of bulk unit cells (with structure factor Fb) cov-
ered by a single layer of a different surface unit cell (with
structure factor Fs). We presume that all step edges
are one bulk unit cell tall and that the average terrace
width is M unit cells, so the miscut angle is arctan(1/M).
However, we do not presume that the terraces edges are
straight, or that each terrace has the same width. As
shown in Fig. 1(b), the position of the step edge at the
end of the mth terrace, n unit cells along the step, is
((m + 1)M + Dm,n)a, where Dm,n is the deviation of
the position from the ideal value and a is the lattice con-
stant. For an ideal surface with straight-edged, uniformly
spaced terraces, all Dm,n = 0.

To begin, we add the structure factors from a single
row of unit cells, outlined in black in Fig. 1(b), to find

Fm,n =

xm,n/a−1∑
j=−∞

Fbe
iqxaj +

xm+1,n/a−1∑
j=xm,n/a

Fse
iqxaj


× eiqyane−iqzam. (1)

If the beam were perfectly coherent, the scattered am-
plitudes from the entire illuminated surface would add
coherently. To account for partial coherence, we add scat-
tered amplitudes from a local region or “patch,” weight-
ing amplitudes farther from the center of the patch less
than those near the center:

Fpatch =
∞∑

n=−∞

∞∑
m=−∞

Fm,ne
−m2M2a2/ξ2xe−n

2a2/ξ2y , (2)

where ξx and ξy are the coherence lengths in the x and
y directions. Presuming that any correlation in the devi-
ations Dm,n decays on a shorter scale than either coher-
ence length, the scattered intensity is proportional to

I =
Aa2

2π3ξxξy
〈FpatchF

∗
patch〉, (3)
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FIG. 1. Schematic of the truncation rods and the sample
surface. (a) Miscut results in splitting of the truncation rod,
with separate sub-rods extending away from each Bragg point
in a direction perpendicular to the surface. L is an integer
labeling the out of plane index of the Bragg points. We label
each sub-rod with a subscript indicating the Bragg point from
which it emanates. It is possible to intercept all sub-rods
from a given rod using an area detector. (b) Terraces are one
bulk unit cell tall with an average width Ma. The deviation
from the zero-roughness position of the step edge on the mth
terrace, n unit cells along the step is Dm,na. Fs and Fb are
the the structure factors of the surface unit cell and bulk unit
cell, respectively.

where A is the illuminated area, and the brackets denote
the spatial average over the whole sample. Expanding
this expression, we find
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I =
Aa2

2π3ξxξy

〈 ∑
m,n,m′,n′

Fm,nF
∗
m′,n′

× e−(m
2+m′2)M2a2/ξ2xe−(n

2+n′2)a2/ξ2y

〉
. (4)

Defining

F̃m,n ≡
(Fs − Fb) eiqxaDm,n − Fse

iqxa(M+Dm+1,n)

1− eiqxa (5)

and

θ ≡ qxaM − qza, (6)

the expression for intensity becomes

I =
Aa2

2π3ξxξy

∑
m,n,m′,n′

〈
F̃m,nF̃

∗
m′,n′

〉
eiθ(m−m

′)

× eiqya(n−n′)e−(m
2+m′2)M2a2/ξ2xe−(n

2+n′2)a2/ξ2y , (7)

where

〈
F̃m,n F̃ ∗m′,n′

〉
=

|Fs − Fb|2
〈
eiqxa(Dm,n−Dm′,n′ )

〉
−(Fs − Fb)F ∗s e

−iqxaM
〈
eiqxa(Dm,n−Dm′+1,n′ )

〉
−(Fs − Fb)∗Fse

iqxaM
〈
eiqxa(Dm+1,n−Dm′,n′ )

〉
+ |Fs|2

〈
eiqxa(Dm+1,n−Dm′+1,n)

〉
. (8)

In order to simplify the calculation, we assume that the
deviations Dm,n have zero mean and a Gaussian distribu-
tion. Then, we can use the Baker-Hausdorff Theorem26

to calculate the spatial average,

〈
eiqxa(Dm,n−Dm′,n′ )

〉
= e−(qxa)

2〈(Dm,n−Dm′,n′ )2〉/2. (9)

To proceed, we must calculate the average differ-
ence between the step positions at different locations,
〈(Dm,n−Dm′,n′)2〉. For most surfaces, this quantity is a
complicated function of m−m′ and n− n′ that depends
on the details of the step distribution on that particular
surface. In order to proceed, we use a simple step distri-
bution. As shown in Fig. 2, we presume that there are
only two non-idealities in the step edges. First, any sin-
gle step edge is jagged, with standard deviation from the
average position σs (“s” for “step”) and no correlation in
the jaggedness along the step. Second, the terrace width
changes from terrace to terrace, with standard deviation
from the average width σw (“w” for “width”) and no cor-
relation between widths on subsequent terraces. These

(a)

(b)

σs > 0

σw > 0

FIG. 2. Roughness on a terraced surface can arise from (a)
step edge jaggedness and/or (b) width variation from terrace
to terrace.

two types of roughness result in the average correlation
function

〈(Dm,n −Dm′,n′)2〉
2

=


0 n = n′,m = m′

σ2
s

a2
n 6= n′,m = m′

σ2
s + σ2

w

a2
m 6= m′

(10)

Many surfaces will have much more complicated forms
of this correlation function. However, this simple form
captures the main features of many terraced surfaces.
Evaluating the sum in Eq. (7) using Eq. (9) and Eq. (10),
we find three distinct components of the total intensity

I = Ip + Iw + Is, (11)

where Ip, Iw, and Is are all functions of qx, qy, and qz,
Fb and Fs, and the two roughness parameters σs and σw.
These functions are shown in Fig. 3 for fixed qz. Eq. (11)
is a significant result. It states that the scattering from
a miscut surface can be divided into three distinct parts
arising from 1) the splitting of the truncation rod due
to the miscut, 2) a broad peak due to variable terrace
widths, and 3) a diffuse background from jagged step
edges. We now discuss these parts in more detail.

A. Ip – Sharp Peaks from Sub-Rods

Most of the scattering in our model comes in a series
of sharp peaks, given by
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FIG. 3. The three components of the scattered intensity from
a miscut surface at fixed qz. (a) Ip – sharp peaks given by
Eq. (12). Itot,Lp is the intensity in a single peak integrated over
qx and qy. Itotp is the sum of the integrated intensity in all of
the peaks. (b) Iw – a broad peak that arises from variations
in terrace width from terrace to terrace given by Eq. (22). We
define Imax

w as the sum of the column containing the highest
intensity pixel. (c) Is – a diffuse background that arises from
jagged step edges given by Eq. (26). The intensity is usually
too low to observe experimentally. (d) The total scattered
intensity.

Ip =
Aa2

2π3ξxξy
H0(θ, ξx/Ma)H0(qya, ξy/a)

×
∣∣(Fs − Fb)− Fse

iqxaM
∣∣2 e−q

2
x(σ

2
s+σ

2
w)

4 sin2(qxa/2)
, (12)

(with “p” for “peaks”), where

H0(x, b) =

∞∑
j=−∞

πb2e−
1
2 b

2(x−2πj)2 . (13)

Eq. (12) is plotted in Fig. 3(a) for fixed qz. The function
H0(x, b) is a periodic series of peaks spaced by 2π in x.
Thus, the product of the two H0 functions in Eq. (12)
restricts scattering to a series of rods in reciprocal space.
With no miscut, there would be a single rod for each inte-
ger value of h and k, and the rods would be labeled (00l),
(10l), and so on, in the usual representation. As shown in
Fig. 1(a), miscut splits these rods into separate sub-rods
each emanating from a single Bragg point, which we call
the “primary” Bragg point for that sub-rod. Thus, we
label each sub-rod by the usual notation plus a subscript
noting the l value of the primary Bragg point, so the
(10l) rod now splits into several sub-rods, labeled (10l)0,
(10l)1, and so on. An area detector often intercepts sev-
eral of these sub-rods simultaneously, displaying a series
of sharp peaks. These peaks will be spaced by 2π/Ma in
qx. The larger the miscut, the larger the spacing between
peaks.

We have assumed that the coherence length is signifi-
cantly longer than the average terrace width, so that the
peaks from the sub-rods are well defined. If the coher-
ence length is shorter than or comparable to the average
terrace width, then the width of each sub-rod will be
broad enough that the individual sub-rods will be indis-
tinguishable, and the scattering will appear like a single
rod connecting Bragg peaks in the out-of-plane direction.
In that case, the analysis is more complicated.

The second line of Eq. (12) modulates the intensity
of the sub-rods in two ways. First, there is the stan-
dard interference between the surface and the bulk, in
which the bulk dominates near the primary Bragg point
(and whenever l is an integer), whereas they contribute
equally whenever l is a half-integer. Second, there is a
roughness factor which reduces the intensity of the sub-
rod away from the primary Bragg point. Larger terrace
width variation, σw, and larger step edge jaggedness, σs,
both result in a faster reduction of intensity moving away
from the primary Bragg point.

Experimentally, in a truncation rod measurement, Ip
will be observed as a series of peaks on an area detector,
one from each sub-rod. One useful way to treat such data
is to subtract a background from each peak and then add
the total intensity in all of the peaks. To calculate the
total integrated intensity observed in this case, we need
to integrate over qx and qy. We note that

∫ ∞
−∞

πb2e−
1
2 b

2x2

dx = π
√

2πb. (14)

Even though Fs and Fb are functions of qx and qy,
we treat them as constants during the integration since
only a few peaks contribute to the integral and Fs and
Fb vary only slightly from peak to peak (for M >> 1).
Since H0(θ, ξx/Ma) is peaked at θ = 2πL, where L is
an integer, we approximate it as a series of δ-functions
and make the substitution qx = (qza− 2πL)/Ma, which
allows us to write the result as a sum:

Itotp =
A

M2a2
∣∣(Fs − Fb)− Fse

iqza
∣∣2

×
∑
L

e−(qza−2πL)
2(σtot/Ma)2

4 sin2
(
(qza− 2πL)/2M

) , (15)

where

σtot ≡
√
σ2
s + σ2

w (16)

is the total “terrace roughness.” For M >> 1, only terms
near L = qza/2π contribute to the sum, so the argument
of sinx in the denominator is small. Expanding and re-
arranging, we find
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Itotp =
A

a2

∣∣∣∣Fs + Fb
e−iqza

1− e−iqza
∣∣∣∣2

×
∑
L

4
sin2(qza/2)

(qza− 2πL)2
e−(qza−2πL)

2σ̃2
tot , (17)

where σ̃tot ≡ σtot/Ma is the total roughness as a fraction
of the terrace length, and σ̃w and σ̃s are similarly defined.
Each term in the sum in Eq. (17) is the integrated inten-
sity in the sharp peak from the Lth sub-rod, which we
denote Itot,Lp .

In order to isolate the effect of roughness, we define

I0 ≡
A

a2

∣∣∣∣Fs + Fb
e−iqza

1− e−iqza
∣∣∣∣2 (18)

and a roughness factor

cp ≡
∑
L

4
sin2(qza/2)

(qza− 2πL)2
e−(qza−2πL)

2σ̃2
tot (19)

≈ 1−
(

4√
π
σ̃tot +O(σ̃3

tot)

)
sin2

(qza
2

)
, (20)

where the first order approximation in Eq. (20) is valid
for σ̃tot <∼ 0.3 (which limits the error to 3%).27 The ex-
pression for Itotp can then be written

Itotp = cpI0, (21)

where I0 is the intensity had there been no miscut, and cp
is a factor that depends only on qz and σtot and not on Fb

or Fs. It is unity when the total roughness is zero and less
than one otherwise. (We discuss the roughness factor in
detail in Sec. IV.) Thus, the total integrated intensity in
all of the peaks is proportional to the intensity had there
been no miscut and a roughness factor which depends
only on qz and σtot.

B. Iw – Broad Peak

If the terraces have non-uniform widths, regardless of
whether the step edges are straight or jagged, then a
broad peak develops underneath the sharp peaks, de-
scribed by

Iw =
Aa
√
π/2

2π3ξyM
H0(qya, ξy/a)

∣∣(Fs − Fb)− Fse
iqza
∣∣2

× e−q
2
xσ

2
s − e−q2x(σ2

s+σ
2
w)

4 sin2(qxa/2)
. (22)

Eq. (22) is plotted in Fig. 3(b) for fixed qz. The width
in qy is inversely proportional to the coherence length.

However, the width in qx is much wider than the inverse
of the coherence length and depends on the terrace width
nonuniformity. When the width variation σw is small, the
peak is weak and broad in qx. As σw increases, the peak
becomes narrower and stronger in such a way that the
integrated intensity increases. Step edge jaggedness (σs)
reduces the peak width in qx but does not change the
maximum intensity. In any crystal with uniform terrace
widths (but where the step edges may or may not be
jagged), σw is zero and Iw is zero.

Experimentally, the scattering from a sample with
nonuniform terrace widths is a series of sharp peaks from
the sub-rods with a broad peak underneath. One ap-
proach to analyzing such data is to integrate the total
intensity in all of these peaks. To calculate the total
integrated intensity observed in this case, we need to in-
tegrate Iw over qx and qy and add the result to Itotp .
Again treating Fs and Fb as constants since they vary
only slightly over the extent of the broad peak in qx and
qy, we find that the integrated intensity in the broad peak
is

Itotw =
A

a2

∣∣∣∣Fs + Fb
e−iqza

1− e−iqza
∣∣∣∣2

× sin2(qza/2)
4√
π

(σ̃tot − σ̃s) . (23)

Defining

cw ≡ sin2(qza/2)
4√
π

(σ̃tot − σ̃s) , (24)

the expression for Itotw can be written

Itotw = cwI0, (25)

where cw is a factor that depends on σw, σs, and qz, and
not on Fb and Fs. Thus, the integrated intensity in the
broad peak is always proportional to the scattering had
there been no miscut. Depending on how the detector
images from an experiment are analyzed, this scattering
may or may not need to be included during modeling.
As we discuss in Sec. IV, including it changes the shape
of the rod in qz.

C. Is – Diffuse Background

When the step edges are jagged, there is a diffuse back-
ground. It does not depend on σw and has the functional
form

Is =
A

4π2M

∣∣(Fs − Fb)− Fse
iqza
∣∣2 1− e−q2xσ2

s

4 sin2(qxa/2)
. (26)
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Eq. (26) is shown in Fig. 3(c) for constant qz. This
background is broad in all directions and cannot be easily
measured experimentally. It would be subtracted in most
reasonable background subtraction procedures.

III. EXPERIMENTAL RESULTS

To test our model, we prepared three SrTiO3 (001) sur-
faces with different terrace morphologies that correspond
to different values of σw and σs. We call the samples A,
B, and C. We etched the samples in 1:6 buffered oxide
etch for 2 minutes to achieve TiO2 termination.28 We
then annealed the samples differently: A at 1025 C in
1:10 O2:Ar for 1 hr, B at 950 C in 1:10 O2:Ar for 1 hr, C
no anneal. These three annealing conditions resulted in
three different surface morphologies, as shown by atomic
force microscopy (AFM) in Fig. 4(a)-(c).

We measured the specular crystal truncation rod from
the three samples at beamline 7-2 at SSRL in four cir-
cle mode with a double crystal Si (111) monochroma-
tor and a Rh-coated mirror to focus the beam to a spot
approximately 100 x 500 µm FWHM. The energy was
15.5 keV. Scattered photons were collected on a Pilatus
100k area detector located approximately 1 m from the
diffractometer center. Lorentz and illuminated area cor-
rections were applied to all data.29–31 The Supplemental
Material27 contains a complete discussion of the correc-
tions.

The scattering from the different surfaces agrees quali-
tatively with our theory. For all three samples, there are
several sharp peaks and a single broad peak, as shown
in Fig. 4(d)-(f). For Sample A, with the smoothest step
edges and the most uniform widths, the sharp peaks fall
off most slowly away from the center, and the broad peak
is only faintly visible. The larger width variations in Sam-
ple B result in a stronger, narrower broad peak, and a
faster falloff in intensity of the sharp peaks. For Sample
C, the broad peak is similar to sample B, suggesting that
the terrace width variance is similar, but the sharp peaks
fall off more quickly, consistent with the more jagged step
edges. The extra diffuse background from the jagged step
edges, Is, is too weak to be visible. The scattering pat-
tern is rotated for Sample C because the miscut direction
is rotated relative to the crystal axes (see Supplemental
Material27 for further discussion of miscut rotation).

To make a quantitative estimate of σw and σs, we com-
pare both the integrated intensity of individual sharp
peaks and the height of the broad peak to the total in-
tensity in all the sharp peaks.

Each sharp peak arises from the intersection of one
sub-rod with the detector. Each sub-rod emanates from
its primary Bragg point as an elliptic cylinder with its
axis slightly tilted relative to the [00l] direction, where
l = qza/2π. For the specular rod, the primary Bragg
points are located at (00L), where L is an integer. We
label the sub-rods using these integers. We plot the inte-
grated intensities of the sharp peaks from sub-rods L = 0

to L = 5 in Fig. 4(g)-(i). The integrated intensity in each
sub-rod reaches a maximum at its primary Bragg point.

The detector occupies a region of the Ewald sphere,
and thus in general intersects each sub-rod at a slightly
different value of l, as shown in Fig. 1(a). However, for
small miscut (Ma >> thickness of surface unit cell), the
intensity in the sub-rods varies slowly with l, and we
approximate the intersection as occurring at the same
value of l for each sub-rod.

With this approximation, we find using Eq. (15) and
(17) that, at a given l, the ratio of the integrated inten-
sity of the sharp peak from the Lth sub-rod to the total
intensity of all sharp peaks is

Itot,Lp

Itotp

=
sin2(πx)

π2x2
e−x

2π2σ̃2
tot/(

1− 4√
π
σ̃tot sin2(πx)

)
, (27)

where x ≡ l − L is the distance along the sub-rod, in
the qz direction, to the primary Bragg point. This ratio
depends only on the total roughness. Thus, by fitting the
observed ratios to this expression, shown in Fig. 5(d)-(f),
we can extract σ̃tot. Even though the intensities of the
sub-rods vary by many orders of magnitude, the ratios
collapse onto a single curve, and the fit is excellent.

The easiest way to find σw would be to compare the
integrated intensity in all of the sharp peaks to the inte-
grated intensity in the broad peak. However, since the
broad peak is often wide and weak, it is hard to accu-
rately measure the integrated intensity. Thus, we focus
on the maximum intensity. As shown in dashed box in
Fig. 3(b), we define Imax

w to be the sum of the intensi-
ties of the pixels in the column that contains the broad
peak maximum. Using Eq. (17) and (23), we calculate
the ratio

Imax
w

Itotp

= sin2(πl)
2σ̃2

w

π
∆

/(
1− 4√

π
σ̃tot sin2(πl)

)
, (28)

where ∆ is the width of a detector pixel in reciprocal
space. This ratio depends on σ̃w and σ̃tot. We plot
the observed ratio as red squares in Fig. 5(a)-(c). Us-
ing Eq. (28) and our best fit value for σ̃tot, we do a least
squares fit to extract σ̃w.

To complete the test of our model, we compare the
roughness parameters extracted from truncation rod fit-
ting to the roughness parameters found directly from the
AFM images in Table I. To find the roughness param-
eters from the AFM images, we use a correlation length
ξy of 100 nm, inferred from the width of the truncation
rods in qy, and presume that the ξx exceeds the width
of the image. We calculate the average step position and
the step edge jaggedness in horizontal 100 nm strips, and
then average over all strips to find σ̃w and σ̃s. As we
show in Table I, the agreement between the two methods
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FIG. 4. Specular truncation rod from miscut SrTiO3 (001). Atomic force micrographs of samples annealed at (a) 1025 C, (b)
950 C, and (c) no anneal, show different terrace morphologies. Each step is one unit cell (3.905 Å) high. (d), (e), (f) Detector
images where the center pixel is l = 1.6, with column sums below. The scale bar on the image indicates the change in the length
of q across the image, whereas the x-axis labels on the plot indicate the change in qx only. (g), (h), (i) The integrated intensity
of the sub-rods L = 0 to L = 5, plotted as a function of l. Each sub-rod is a different colored symbol. The Supplemental
Material27 contains a complete discussion of the correction factors applied to the data to obtain Itot,Lp .

Sample
A B C

Best fit to diffraction
pattern

σ̃w 0.07 0.11 0.14

σ̃s 0 0 0.14

AFM image, presuming
ξy = 100 nm

σ̃w 0.06 0.10 0.12

σ̃s 0.01 0.02 0.17

TABLE I. Comparison of roughness parameters extracted
from truncation rod fitting and AFM images. Confidence
intervals are less than ±0.01 for all parameters.

is excellent. However, σ̃s from the AFM images system-
atically exceeds σ̃s from the truncation rod fits, while
the opposite is true for σ̃w. We hypothesize in the Sup-
plemental Material27 how correlations in the step edge
jaggedness, which are not captured in our model, may
be responsible for this discrepancy. Overall, the good
agreement between the parameters extracted from the
two methods indicates that our model successfully de-
scribes the terrace roughness of the three surfaces.
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FIG. 5. Extracting roughness parameters. (a), (b), (c) The total intensity in the sharp peaks (Itotp , black triangles) and the
height of the broad peak (Imax

w , blue crosses). The black lines are the best fit to the ratio of these intensities using Eq. (28),
where σ̃w is the only fitting parameter. (d), (e), (f) The ratio of integrated intensity in a single sharp peak (plotted in Fig. 4
(g)-(i)) to the total intensity in the sharp peaks, as a function distance from the primary Bragg peak. The black lines are the
best fit to the ratio of these intensities using Eq. (27), where σ̃tot is the only fitting parameter.

IV. DISCUSSION

We have found that the truncation rods from miscut
surfaces have three components: 1) a series of evenly
spaced sharp peaks arising from the splitting of the trun-
cation rod into sub-rods, 2) a single broad peak arising
from terrace width variation, and 3) a diffuse background
arising from step edge jaggedness. One of the most no-
table aspects of our model is the separation between solv-
ing the surface structure and evaluating the roughness.
Indeed, we were able to characterize the terrace width
and step edge roughness on three different samples with-
out any knowledge of the surface or bulk structure fac-
tors, Fs and Fb.

However, to do so, we had to examine in detail the in-
tensities of the sub-rods and the broad peak. In a typical
measurement, with lower resolution or smaller miscut,
it might not be possible to resolve these peaks. As dis-
cussed in Sec. III, a typical analysis is likely to either
1) add integrated intensities from the sharp peaks and
subtract Iw and Is as background or 2) add integrated
intensities from the sharp peaks and the broad peak, and

subtract only Is as background. In the first case, the rod
intensity is I0 times a roughness factor (cp) that depends
only on σtot and l. This factor is shown in Fig. 6(a). It
is periodic in l, reaching unity at the Bragg points and a
minimum at the anti-Bragg points. In the second case,
the rod intensity is I0 times a factor (cp + cw) that de-
pends on σw, σs, and l. This factor is shown in Fig. 6(b).
It is also periodic in l, reaching a minimum at the anti-
Bragg points, where the minimum value depends on the
ratio of σw to σs in addition to σtot. For two samples
with the same σtot, the sample with larger σw will have
the shallower minimum.

The effect of terrace roughness is similar to other
roughnesses because it decreases the intensity away from
the Bragg peaks. As shown in Fig. 6(a), the l depen-
dence is different than for β-roughness. The effect of ter-
race roughness is concentrated near the anti-Bragg point,
whereas β-roughness results in a broader reduction in in-
tensity. We note that multiple types of roughness may
be present on a single sample. For example, it is possible
for a surface to have β-roughness or partial occupancy
across the entire surface in addition to having terrace
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FIG. 6. Roughness factors. (a) cp, the ratio of the total
intensity in the sharp peaks for a rough sample relative to an
ideally miscut sample for various values of the total terrace
roughness. The black dashed lines are β-roughness factors for
comparison, calculated assuming Fs = Fb, chosen to match
the cp factor at l = 0.5. (b) The total intensity in the sharp
peaks and the broad peak relative to the total intensity from
an ideally miscut sample. The total roughness is the same
for all curves, but it is split differently between terrace width
variation and step edge jaggedness.

roughness. In that case, β-roughness would only impact
I0, and terrace roughness would only impact cp and cw.

In conclusion, we have developed a new model for crys-
tal truncation rods from miscut surfaces and applied it to
a series of SrTiO3 samples, where we characterized the
terrace roughness without needing to solve the surface
structure. Our model gives a simple multiplicative factor
to account for this roughness in the crystal truncation
rods. Our approach is broadly applicable to analyzing
truncation rods from miscut samples and solving their
surface structure.
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