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Density-functional theory forces, stresses and energies comprise a database from which the optimal
parameters of a spline-based empirical potential combining Stillinger-Weber and modified embedded-
atom forms are determined. Accuracy of the potential is demonstrated by calculations of ideal
shear, stacking fault, vacancy migration, elastic constants and phonons all between 0 and 100
GPa. Consistency with existing models and experiments is demonstrated by predictions of screw
dislocation core structure and deformation twinning in a tungsten nanorod. Lastly, the potential is
used to study the stabilization of fcc tungsten at high pressure.
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I. INTRODUCTION

Tungsten is an exceptional transition metal exhibit-
ing the highest tensile strength, melting point, and elas-
tic modulus of any pure metal and has important ap-
plications in aerospace, energy and armament indus-
tries. Much interest has been focused on α-W (bcc)
and β-W (A15) nanostructures including nanorods1–3,
nanoparticles4–7, and thin films8–10. Due to the tech-
nological importance of tungsten, classical interatomic
potentials of various forms have been developed to study
this metal11–18.

Classical potentials – popular for their favorable scal-
ing compared to first-principles methods – were tradi-
tionally developed by choosing analytic functional forms
with a handful of free parameters determined by fit-
ting directly to experimental bulk data such as cohe-
sive energy, lattice and elastic constants. The force-
matching method of Ercolessi and Adams19 has facili-
tated the development of interatomic potentials based
on ab initio calculations of relaxed crystallographic de-
fects, metastable structures and other non-equilibrium
configurations. However, many such potentials still pos-
sess a small number of free parameters and analytic
functional forms which limit their transferability, re-
quiring researchers to take great caution in choosing a
potential suitable for their region of interest. It is thus
desirable to produce a single potential which can be em-
ployed to study the range of materials physics, here in
tungsten.

To meet this challenge we develop a unique semi-
empirical potential based on a robust database of ab
initio calculations that samples much of the potential-
energy landscape. Our model combines the Stillinger-
Weber (SW)20 form with the modified embedded atom
method21 (MEAM) form with functions parameterized
by quintic splines. Section II describes the functional
form of the model, the density-functional theory (DFT)
calculations comprising the large fitting database, and
the genetic algorithm optimization scheme. Accuracy
of the fitted potential is demonstrated in Section III
by comparing MEAM to DFT for the various struc-

tural and elastic properties to which it was fit. Given
that the potential is fit directly to important crystal-
lographic defects, structural properties and elastic con-
stants, transferability is demonstrated in Section IV by
examining MEAM predictions for 1

2 〈111〉 screw disloca-
tion core structure, deformation twinning and detwin-
ning of a nanorod, and dynamics of bcc and fcc tungsten
at high pressure. Conclusions are given in Section V.

II. OPTIMIZATION OF THE EMPIRICAL
POTENTIAL WITH FIRST-PRINCIPLES

CALCULATIONS

We present a spline-based empirical potential fit to
a large database of highly-converged density functional
theory (DFT) calculations using a global optimization
scheme based on an evolutionary algorithm.

A. Empirical extension of the MEAM potential

The embedded-atom (EAM)21,22 and MEAM12,23,24

methods have been applied to many systems includ-
ing semiconductors21–26 and transition metals12,27–30.
The original MEAM formalism involves a parametrized
analytical functional form which accounts for bond-
bending through angular functions with explicit s-, p-,
d- and f -orbital characteristics. Lenosky et al.25 first
parametrized the MEAM formalism through the use of
cubic splines for the study of defects in Si. The use of
splines for parameterizing empirical potentials increases
model flexibility and efficiency, and has been success-
fully applied to the study of martensitic transformations
in pure titanium28, shock-loading in niobium29,31 and
dislocation dynamics in molybdenum30. SW potentials,
initially developed for the modeling of cubic-diamond
Si, have been successfully applied to amorphous Si32 as
well as Ge33 and other systems.

Model flexibility is paramount when constructing em-
pirical potentials. The addition of distinct terms to the
model can improve flexibility, as demonstrated by the
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success of MEAM over EAM34,35. However, care must
be taken when parameters are added to ensure that
one is not over-fitting the database and added func-
tions should in general have a physical interpretation.
Without careful balance of database inputs and model
flexibility, a potential can have a low fitting error with
little physical meaning or a large fitting error with little
practical use.

In the present work, we propose an empirical exten-
sion of MEAM which includes a SW-type three-body
term in the energy. Our model employs functions pa-
rameterized by quintic splines which improve perfor-
mance for properties requiring continuous third deriva-
tives of the interatomic potential, e.g. Cij vs. P rela-
tions, over cubic splines. The total potential energy is
that of SW with the addition of an embedding term U ,

Vtot =
∑
i>j

φ(rij) +
∑
i

U(ni)

+
∑
i,j>k
j 6=i

p(rij)p(rik)q(cos θjik),
(1)

where the “electronic density” ni at atom i involves two-
and three-body contributions

ni =
∑
j 6=i

ρ(rij) +
∑
j>k
j 6=i

f(rij)f(rik)g(cos θjik),
(2)

and θjik is the angle of the triplet centered on atom
i. This is the simplest extension of MEAM which
does not include four-body terms and cannot be gauge-
transformed back to the original model. It contains as
special cases the SW (U = 0), MEAM (q = 0), and
EAM (g = q = 0) forms. This flexibility gives us the
ability to fit to a large ab-initio database described in
the next section.

B. Density-functional theory database

DFT calculations performed with vasp36–39 us-
ing a projector-augmented planewave basis40 and
Perdew-Burke-Erzenhof (PAW-PBE)41,42 generalized-
gradient exchange correlation approximation comprise
a database of forces, stresses and energies for fitting via
the force-matching method. In addition to 6s and 5d,
the 5p electrons are treated as valence to improve accu-
racy at high pressures, where the overlap of these semi-
core states is not necessarily negligible. A planewave en-
ergy cutoff of 600 eV and first-order Methfessel-Paxton
smearing width of 0.1 eV are used for all calculations;
k-points are sampled on a Γ-centered 40×40×40 mesh
in the bcc brillouin zone. These quantities are chosen
to ensure convergence of the total energy to within 0.1
meV/atom. Additional computational details are pre-
sented in Fellinger43.

The ab-initio fitting database contains 596 configu-
rations with a total 14,690 unique force components,

stress components and energies to be fit. The potential
contains 194 fitted parameters.

Configurations in the database include volumetric
strains of bcc, fcc, hcp, β-W (A15), β-Ta (β-U) and
ω-Ti. Tetragonal strains are included for hcp and ω-Ti
structures to ensure accurate c/a values. The database
also contains elastic constants of the bcc phase at pres-
sures between 0 and 100 GPa, in increments of 25 GPa,
using volume-conserving orthorhombic and monoclinic
strains of 0.5 % for C ′ = 1

2 (C11−C12) and C44, respec-
tively. At zero pressure, configurations with orthorhom-
bic strains up to 10 % and monoclinic strains up to 40
% are added. Unrelaxed symmetry-inequivalent config-
urations of 〈110〉 and 〈112〉 γ-surfaces, ideal shear strain
and vacancy migration are included at five equally
spaced pressures between 0 and 100 GPa. Relaxed zero-
pressure structures containing a vacancy at the lattice
site and halfway along the 〈111〉 migration path are
also added. A 7×7×7 bcc supercell with a single atom
displaced by 0.006 Å is included to promote accurate
force-constants and phonons via the small-displacement
method44,45. Using a supercell of this size reduces the
interaction of the displaced atom with its images across
periodic boundaries and thus improves the accuracy of
calculated force-constants and phonon dispersions. Re-
laxed low-index free surfaces as well as crowdion, octa-
hedral, 〈111〉-split and 〈110〉-split self-interstitial config-
urations are included. Ab-initio MD snapshots of 125-
atom bcc supercells at 1620 K, 2960 K and a liquid
tungsten at 6730 K are added to improve performance
for simulations at high temperature. A 36-atom hcp su-
percell at 100 K is also included. Lastly, a mesh of 36
points on the Bain46 (bcc-fcc) and Burgers47 (bcc-hcp)
energy surfaces at pressures of 0 GPa and 700 GPa in
addition to 600 GPa for the Bain path and 800 GPa for
the Burgers path are included to ensure that the po-
tential can be used to explore properties of these close-
packed phases at high pressure.

C. Genetic algorithm optimization

Development of the optimized potential is an iterative
process of fitting, testing and database refinement. Ten
to twenty fits are performed simultaneously and the re-
sultant potentials are tested for accuracy on a range of
properties. The fitting database is refined based on the
results of these tests: new structures are added to cor-
rect spurious behavior or structures are removed when
under-fitting is suspected. For example, points on the
Bain and Burgers paths at high pressure were added
when previous iterations gave unsatisfactory results for
these tests. Re-tuning of algorithm inputs and/or error
weights often accompanies this refinement.

A global optimization scheme combining a genetic al-
gorithm (GA) with a local downhill optimizer provides a
method for determining the spline parameters of the po-
tential. At each iteration of the GA all potentials in the
population of ten are locally optimized with 60 steps of
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a Powell48 conjugate direction algorithm, then the pop-
ulation is sorted and bred according to total weighted
least-squares error. For the presented potential forces,
stresses and energies are given weights of equal mag-
nitude in the least-squares error. Units employed are
eV/Å, eV/Å3 and eV respectively.

Breeding is done by a stochastic combination of spline
knots from two parent potentials. The following con-
straints are enforced by introducing a “punishment” er-
ror when not satisfied: (i) |max[f(r)]| = |max[p(r)]| = 1
and (ii) ni lies within the domain of U(n) for all i. If
the latter constraint is violated, the embedding func-
tion is evaluated at its nearest endpoint. At each GA
step, for every potential in the population, there is a
10% chance for the embedding function domain and to-
tal density (Eq. 2) to be rescaled by a transformation
where U(n) → U(n/α) and n → αn, where α is de-
termined by the minimum and maximum densities at
the current step. When this occurs, additional gauge
symmetries in the three-body terms of Eqs. 1 and 2 are
exploited so that the maximal knot values of |f | and |p|
are equal to 1.

While forces and energies are invariant with respect
to these transformations, the total error is not because
constraints (i) and (ii) are always satisfied after rescal-
ing. Because during fitting the embedding function is
not extrapolated but rather evaluated at the nearest
endpoint when densities lie outside the domain, energies
for such configurations are not invariant under the afore-
mentioned rescaling. Furthermore, spline functions are
in general not invariant under such a transformation of
their argument. Thus, performing this rescaling serves
as a genetic mutation of the potential. The algorithm
is exited when between successive steps the change in
total error for every potential in the population is less
than 10−3. Parameters for the fitted potential and plots
of the seven functions are presented in the Supplemen-
tary Information, along with more detailed descriptions
of the algorithms used. Henceforth all references to
MEAM will pertain to the present empirically extended
potential.

III. ACCURACY OF THE FITTED
POTENTIAL

We demonstrate the accuracy of the fitted MEAM po-
tential through the energetics of non-equilibrium struc-
tures, crystallographic defects, thermodynamic proper-
ties and phonon dispersion. All MEAM calculations in
this work (other than those necessary for fitting) are
performed in the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (lammps)49. Compatibility of
the module has been verified for lammps versions as
recent as 17 November, 2016. If at any step during an
MD run the density seen by an atom exceeds the embed-
ding function domain, the embedding energy is linearly
extrapolated from the nearest endpoint.

FIG. 1. (a) Comparison of energy-volume curves between
MEAM and DFT for six crystal structures. Curves are or-
dered vertically according to the key. Our empirical poten-
tial reproduces the energies of each phase relative to that
of the bcc ground state. (b) Pressure-volume relation for
tungsten as computed by MEAM and DFT at 0 K com-
pared with data from shock experiments50 at room tem-
perature. MEAM shows agreement with both experimental
and ab-initio results, even at extreme pressures. (c) Ther-
mal expansion of tungsten predicted by MEAM agrees with
experimental data fit51 up to the melting point of 3695 K.
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TABLE I. Zero-pressure elastic constants of bcc tungsten in
GPa.

B C11 C12 C44

MEAMa 319 550 204 147
GGAa 304 513 199 142
F-Sb 309 520 204 161
LDAc 320 552 204 149
F-Sd 310 525 203 159
F-Se 310 522 204 161
EAMf 308 520 202 159
BOPg 310 522 204 161
Expt.h 308–314 501–521 199-207 151–160
aMEAM and GGA-DFT results of this work.
bFinnis-Sinclair results of Wang et al.17

cLDA-DFT results of Einarsdotter et al.57

dFinnis-Sinclair results of Derlet et al.15

eFinnis-Sinclair results of Ackland et al.11

fEAM results of Zhou et al.14

gBond-order potential results of Mrovec et al.16

hExpt. results of Bolef et al. from 77 to 500 K58

A. Energetics and elastic properties

Figure 1(a) shows the GGA-DFT and MEAM energy-
volume relations for six distinct phases including A15
β-W and high-energy close-packed structures. MEAM
accurately predicts energies of all six phases relative to
the ground state. An equilibrium bcc lattice constant
of 3.189 Å is predicted by both GGA-DFT and MEAM,
compared to the published experimental values between
3.15 and 3.165 Å52–54. It is well known now that GGA
tends to overestimate the lattice constant of metals; the
reason for this is discussed in Wang et al.55 as well as
Favot and Dal Corso56 and references therein.

Figure 1(b) compares bcc tungsten pressure-volume
relations as computed with MEAM, GGA-DFT, and
measured through shock experiments50. MEAM and
GGA-DFT curves, obtained by static calculations of
volumetric strain, are indistinguishable for pressures
through 800 GPa and in excellent agreement with exper-
imental results up to 300 GPa, indicating applicability
of the fitted MEAM potential to high-pressure physics
in tungsten.

Figure 1(c) compares linear thermal expansion pre-
dictions by MEAM to experimental results51 for tem-
peratures between 300 K and the experimental melting
point of 3695 K. Constant N-P-T MD simulations of
2000 atoms at P = 1 atm yield the thermal-expansion
curve. Each MD simulation runs for 50,000 steps with
a 1 fs timestep and the lattice constant for each tem-
perature is determined by averaging over the last 5,000
simulation steps. MEAM shows excellent agreement
with experiment up to 1,000 K and remains within 1
% of the experimental fit for all temperatures consid-
ered, indicating that the potential interpolates between
temperatures included in the fitting database.

Table I shows the zero-pressure bcc elastic constants

FIG. 2. Elastic constants versus pressure for bcc tungsten as
computed with GGA-DFT and the fitted potential. MEAM
produces elastic constants within 21% of the DFT values for
all pressures shown.

of the present MEAM and GGA-DFT results, compared
to previous ab initio calculations and other interatomic
potentials. The bulk modulus B and C11 predicted by
MEAM are higher than experimental and GGA results
but consistent with the LDA work of Einarsdotter et
al.57. The pressure-dependence of bcc elastic constants
is shown in Figure 2; MEAM does not predict a mono-
tonic increase of Cij but remains within 21 % of the
GGA-DFT values.

Figure 3 shows phonon dispersion of equilibrium bcc
tungsten as computed with MEAM and DFT, com-
pared to inelastic neutron scattering results of Chen
and Brockhouse59. Dispersions are calculated using
the finite-displacement method in a 7×7×7 primitive
bcc supercell. DFT dispersion agrees well with experi-
ment but exhibits oscillations in the longitudinal (low-
lying) branch near the H-point, a feature also found
in density-functional perturbation theory results within
LDA-DFT57. Overall MEAM tracks both DFT and ex-
periment but underestimates the frequency along the
L[ξξξ] branch, particularly near the ω mode at ξ = 2

3 .

B. Point and planar defects

Table II lists the energies of vacancies and self-
interstitial atoms (SIAs) in bcc tungsten, essential
quantities for the accurate modeling of plasticity.
Present MEAM and DFT calculations use a 5×5×5 cu-
bic supercell. Atomic positions are relaxed to 0.01 eV.
Geometric details of bcc SIA calculations can be found
in Xu and Moriarty62. GGA-DFT calculations of Bec-
quart et al.60 and the present work indicate the 〈111〉-
dumbell to be the most energetically-favorable self-
interstitial, as do the present MEAM potential and F-S
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TABLE II. Table of vacancy and self-interstitial formation energies (in eV) for bcc tungsten. Entries with angle-brackets
indicate that the defect in question relaxes to the dumbell configuration shown.

Defect MEAMa GGAa F-Sb GGAc F-Sd F-Se EAMf GGAg

Vac. Formation 2.99 3.17 3.58 3.11 3.56 3.63 3.57 3.56
Vac. Migration 1.73† 1.70† 1.43 1.66 2.07 1.44 2.98† 1.78
Vac. Activation 4.72† 4.87† 5.01 4.77 5.63 5.07 6.55† 5.34
〈001〉 Dumbell 11.15 〈111〉 11.53 11.74 11.51 9.82 12.20 11.49
〈011〉 Dumbell 9.98 10.64 9.86 10.10 9.84 9.64 9.704 9.84
〈111〉 Dumbell 9.73 10.31 9.58 9.82 9.55 9.82 10.56 9.55
Octahedral 11.76 12.42 11.72 11.99 11.71 10.02 12.03 11.68
Tetrahedral 10.54 〈111〉 10.93 11.64 11.00 10.00 〈011〉 11.05
†Unrelaxed calculation by present authors. dFinnis-Sinclair results of Derlet et al.15

aMEAM and GGA-DFT results of this work. eFinnis-Sinclair results of Ackland et al.11

bFinnis-Sinclair results of Wang et al.17 fEAM results of Zhou et al.14

cGGA-DFT results of Becquart et al.60 gGGA-DFT results of Nguyen-Manh et al.61

potentials of Derlet15 and Ackland11. Experiments63,64

and previous MD studies14 found the 〈011〉-dumbell to
be the favored self-interstitial structure in tungsten, but
recent work65 combining the object kinetic monte carlo
(OKMC) method with dislocation loop measurements
found OKMC simulations of 〈111〉 interstitials and 1D
migration best match experiment. Vacancy formation
and migration energies predicted by MEAM compare
favorably with present ab-initio results and those of
Becquart and Domain60 while existing F-S and EAM
tungsten potentials are in closer agreement with GGA
results of Nguyen-Manh et al.61.

Figure 4 presents unrelaxed vacancy migration path-
ways at five equally-spaced pressures between 0 and
100 GPa. Calculations are performed using a 127-atom
4×4×4 cubic bcc supercell with migration in the 〈111〉
direction. Overall MEAM tracks well with the DFT re-
sults; minor discrepancies are found when the vacancy
lies near the lattice site and halfway between two lattice
sites.

Figure 5 shows unrelaxed generalized stacking fault

FIG. 3. Phonon dispersion for bcc W at zero pressure as cal-
culated by DFT and MEAM, compared with inelastic neu-
tron scattering data of Chen and Brockhouse59.

energies (GSFEs) at five pressures on the {112} and
{110} planes as a function of relative displacement
along 〈111〉 for MEAM and DFT. While bcc metals are
less prone to stacking-fault formation than their close-
packed counterparts, they have been observed in Fe, Nb,
W and Mo-35%Re to exist on {112} and {110} planes,
formed by the dissociation of 1

2 〈111〉 dislocations66. Re-
laxed GSFE curves, computed with MEAM at zero
pressure, do not predict the presence of any metastable
stacking fault configurations. At all pressures, MEAM
agrees with DFT to within a few meV/Å2, and thus
should be suitable for studying the effect pressure on
{112}〈111〉 and {110}〈111〉 slip systems.

Table III shows energies and interplanar relaxations
of low-index free surfaces. Present calculations employ
48-atom supercells, replicated along the surface nor-
mal with an equally-sized vacuum region and periodic

FIG. 4. Vacancy migration pathway as calculated in GGA-
DFT and MEAM at multiple pressures. The shallow local
minimum at 〈 1

2
1
2

1
2
〉 is predicted by both DFT and MEAM

to increase between 0 and 100 GPa, though this effect is
non-monotonic in MEAM.
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FIG. 5. Unrelaxed low-index generalized stacking fault ener-
gies (GSFE) for bcc tungsten. MEAM accurately models the
evolution of both {110} and {112} faults with pressure. Re-
laxed GSFE curves computed with MEAM are shown as dot-
ted lines for 0 GPa. Relaxation lowers fault energy slightly
but does not result in any metastable configurations.

boundary conditions. All results presented here predict
the 〈011〉 surface to have the lowest energy, followed by
〈111〉. Finnis-Sinclair potentials11,17 tend to underes-
timate the surface energy with respect to GGA-DFT.
The present MEAM potential compares favorably with
present ab-initio results and those of Vitos et al.67 but
underestimates the inter-planar relaxation of the high-
energy 〈100〉 surface by 50%. The origin of the discrep-
ancy between GGA-DFT results of Moitra et al. and
the others is unclear.

Figure 6 presents the unrelaxed ideal shear stresses
and energy barriers for pressures up to 100 GPa. Ideal
shear defines the upper limit of stress required to deform
a perfect crystal and is fundamental to our current un-
derstanding of the strength of materials. Calculations
are performed following the methodology of Paxton et
al.71, which uses a bcc primitive cell. MEAM accurately
reproduces the GGA-DFT results for all pressures, with
small discrepancies in shear stress around the extrema.

FIG. 6. Ideal shear energy (top) and stress (bottom) for
a continuous deformation of a one-atom bcc unit cell cor-
responding to (112)[1̄1̄1] twinning system as described by
Paxton et al.71. MEAM Accurately reproduces the energy
barrier and shear stress of this deformation for pressures up
to 100 GPa. Small discrepancies in shear stress are found at
the inflection points of the energy barrier, which correspond
to the two extrema of shear stress at x = 0.25 and x = 0.75.

IV. TRANSFERABILITY OF THE FITTED
POTENTIAL

Transferability of the fitted potential is demonstrated
by application to screw dislocation core structure, defor-
mation twinning in a bicrystal nanorod, and the high-
pressure bcc-to-fcc phase transformation.

A. Dislocation core and deformation twinning

Core structure of the 1
2 〈111〉 screw dislocation is de-

termined using a cell with lattice directions [12̄1], [1̄01],
[111] and periodic boundary conditions along the dislo-
cation line. The first two lattice vectors are repeated to
form a large cell containing 92,277 atoms which are dis-
placed according to the appropriate elastic strain field.
The core structure is then determined by relaxing a cen-
tral region containing 54,396 atoms while the remain-
ing atoms are fixed, ensuring that the correct boundary
conditions are satisfied by the long-range anisotropic
solution. This methodology is further explained in this
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TABLE III. Energy and structural relaxation of low-index free surfaces in bcc tungsten. Surface energies E are given in
meV/Å2 and the changes ∆12 in inter-planar spacing between the first two planes of the surface, where available, are given in
units of percent.

MEAMa GGAa F-Sb GGAc F-Se GGAf AMEAMf BOPg MEAMh Expt.i,j

E001 233 245 186 289 183 487 373 237 243 —
∆001

12 -5.7 -11.5 -0.9 — -0.7 — — -2.5 -3.2 —
E011 198 200 159 249 161 398 353 163 214 —
∆011

12 -3.8 -3.8 -1.1 — -0.5 — — -1.0 -3.0 —
E111 204 216 — 278 — 449 314 — 271 —
∆111

12 -18.9 -21.6 — — — — — — -13.2 —
Epoly — — — — — — — — — 187i,216j

aMEAM and GGA-DFT results of this work. fGGA-DFT and AMEAM results of Moitra et al.68

bFinnis-Sinclair results of Wang et al.17 gBond-order potential results of Mrovec et al.16

cGGA-DFT results of Vitos et al.67 h2NN-MEAM results of Lee et al.13

dFinnis-Sinclair results of Derlet et al.15 iEstimation by liquid-surface tension at 0 K, Tyson et al.69

eFinnis-Sinclair results of Ackland et al.11 jEstimation by atomization enthalpy at RT, Mezey et al.70

group’s previous work on Nb29 and Mo30.
Figure 7 shows a non-degenerate symmetric core

structure predicted by MEAM, presented as a differ-
ential displacement map72, is in agreement with re-
sults from an existing bond-order potential16 and DFT-
GGA73 calculation for tungsten. Existing F-S po-
tentials predict an asymmetric core74,75. Our poten-
tial is also consistent with the criterion of Duesbery
and Vitek76, which is based on F-S calculations and
states that the 1

2 〈111〉 screw dislocation in bcc metals
will have a symmetric core structure if γ{110}(b/3) >
2γ{110}(b/6), where γ{110} is the relaxed {110} γ-

surface and b = a
√

3/2 is the burgers vector magni-
tude. Relaxed values taken from Figure 5 for MEAM
are γ{110}(b/3) = 100 meV/Å2 and γ{110}(b/6) = 39

meV/Å2.
While dislocation slip is fundamental to plastic de-

formation of bulk transition metals, twinning has been
found to dominate deformation in nanocrystalline Mo,
Ta and Fe77. A recent study3 observed deformation
twinning and detwinning during uniaxial loading and
unloading of a bicrystal nanorod. The Finnis-Sinclair
potential of Ackland and Thetford11 was used to model
this twinning and detwinning in good agreement with
experiment. We simulate this deformation as a chal-
lenge for our fitted MEAM potential and to demon-
strate transferability to non-equilibrium conditions and
consistency with existing models.

Figure 8 displays cross-sections of a bicrystal tung-
sten nanorod under uniaxial stress at 300 K. The
nanorod is 128 Å in diameter and 510 Å in length,
with periodic boundary conditions parallel to the rod
axis. A compressive strain of 10 % is applied from
the top of the rod over 20 ps while atomic positions
are updated using the Velocity Verlet78 integrator and
canonical ensemble with 1 fs timestep. The strain
is then unloaded over an additional 20 ps. Multi-
ple {112}〈111〉 deformation twins can be seen in Fig-
ure 8(a) through (c) to nucleate at the grain bound-
ary and grow with increasing stress. At full loading,

strain is accommodated primarily by a single large de-
formation twin extending from the grain boundary to
the rod surface. During unloading the accumulated
strain is released by detwinning as can be seen in pan-
els (d) through (f). This deformation behavior is nearly
identical to the results of Wang et al.3, indicating the
transferability of the fitted MEAM potential to mod-
elling tungsten nanostructures and consistency with the
successes of previously published potentials3,11. Given
that the F-S potential of Ackland and Thetford predicts
an asymmetric core structure but accurately describes
nanorod deformation3, our current MEAM potential is
well suited to study the interplay of deformation twin-
ning and dislocation-induced plasticity in tungsten.

FIG. 7. Differential displacement map of the 1
2
〈111〉 screw

dislocation. MEAM predicts a non-degenerate symmetric
core structure consistent with previous bond-order16 and
GGA-DFT73 calculations, whereas existing F-S potentials
for tungsten predict a degenerate core75.
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FIG. 8. Deformation twinning and detwinning in a tungsten bicrystal nanowire under axial compression at room temperature.
Compare to work of Wang et al.3. Structure identification was performed using adaptive common neighbor analysis as
implemented in ovito79,80. Atoms are color-coded by structure: light (bcc) and dark (none). (a,b,c) Multiple deformation
twins of the {112}〈111〉 type grow and merge as the rod is compressed by 10%. (d,e,f) Detwinning occurs as the load is
released, recovering the compressive strain. Different shades of gray appear in the bulk because of atomic-level shading in
ovito.

B. Stabilization of fcc tungsten

Finally, we investigate the stabilization of fcc tung-
sten at high pressure. Theoretical studies have pre-
dicted that bcc tungsten becomes thermodynamically
unstable with respect to close-packed fcc and hcp phases
at extreme pressures57 and under the conditions of
strong electronic excitation during laser irradiation81,
for which a Te-dependent interatomic potential was de-
veloped to study the transition18. To the authors’
knowledge, fcc tungsten has only been observed in thin
films formed by sputter deposition between 200 and 400
◦C on glass, mica and rock-salt substrates8. The pre-
dicted zero-pressure lattice constants of fcc tungsten for
MEAM and DFT are 4.049 Å and 4.044 Å, respectively,
while Chopra et al.8 found an fcc lattice constant of
4.13 Å in the aforementioned tungsten films. Here we
consider the stabilization of fcc at high pressures, some
accessible via diamond-anvil experiments.

Figure 9(a) compares MEAM phonon dispersions for
bcc W at pressures of 30 to 1200 GPa with LDA-DFT
results of Einarsdotter et al.57. MEAM force constants
are computed using the small-displacement method, im-
plemented in the Atomic Simulation Environment82,
on a 10×10×10 supercell with δ = a(P )/100 where
a(P ) is the cubic lattice constant at pressure P . LDA-
DFT results employed the density-functional linear re-
sponse method, norm-conserving pseudopotentials, and
5s5p5d6s6p valence. As seen in Figure 3, MEAM pre-
dicts the L-2

3 [111] (ω) phonon to have lower frequency

compared with DFT and experiment. This mode soft-
ens with increasing pressure, albeit at a lower rate than
predicted by LDA calculations. Otherwise MEAM ac-
curately captures the other important features of bcc
dispersion up to 1200 GPa. Low-pressure results (30-60
GPa) also compare favorably with the AMEAM results
of Zhang and Chen83.

Figure 9(b) compares the fcc phonon dispersion pre-
dicted by MEAM and LDA-DFT at pressures from 0
to 1200 GPa. At low pressure, where fcc is a highly
unfavorable structure, MEAM does not compare well
to ab initio results but correctly predicts unstable soft
modes in the T[ξξ0] and T[ξξξ] branches. However,
the stabilization of these modes with increasing pres-
sure is non-monatonic and particularly anomalous on
the T[ξξξ] branch at intermediate pressures. By 1200
GPa, MEAM predicts fcc tungsten to be dynamically
stable and shows excellent agreement with the LDA-
DFT dispersion.

Figure 10(a) shows the elasic moduli C44 and C′ be-
tween 400 and 500 GPa, where all Cij are positive def-
inite. It can be seen that C′ = 1

2 (C11 − C12) is nega-
tive for pressures below 455 GPa, reflecting the slope of
the T[11̄0] [ξξ0] branch arbitrarily close to the Γ-point.
Figure 10(b) shows this mode for pressures around 540
GPa, where long-wavelength modes are stable but the
ξ = 0.40 mode remains unstable. According to MEAM,
this mode is the last unstable phonon in any of the con-
sidered high-symmetry lines in the Brillouin zone and
stabilizes at 543 GPa. However Figure 10(c), which dis-
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FIG. 9. MEAM (solid) Phonon dispersions at various pressures compared with LDA-DFT (dashed) work of Einarsdotter et
al.57 (a) bcc: MEAM is consistent DFT even at the extreme pressure of 1200 GPa, but underestimates softening rate of the
L- 2

3
[111] (ω) phonon and predicts an anomalous softening of the T- 1

2
[110] phonon with increasing pressure. (b) fcc: with

the exception of the soft T-[ξξ0] and T-[ξξξ] modes, MEAM dispersion at zero pressure diverges considerably from that of
DFT. MEAM also underestimates the rate of stabilization of the soft modes with respect to DFT work. However at extreme
pressures where fcc is thermodynamically stable, MEAM dispersion agrees closely with that of DFT. Displayed pressures are
computed with MEAM. These dispersions were calculated using the small displacement method as implemented in the Atomic
Simulation Environment82. As usual for phonons, negative values represent imaginary frequencies.

plays the enthalpy difference ∆H = Hfcc −Hbcc versus
pressure, shows that the bcc phase remains energeti-
cally favorable until about 762 GPa. The inset in figure
10(c) shows the isobaric tetragonal Bain path at the de-
termined pressure, displaying a barrier for the bcc→fcc
transition of 140 meV/atom. This barrier persists even
above 2 TPa, but accuracy of the fitted potential in
this pressure range has not been verified and any fur-
ther investigation should be carefully checked with first-
principles methods.

To summarize, present MEAM results are consistent
with LDA-DFT predictions of Einarsdotter et al.57 in
that for fcc C44 is stable at relatively low pressures, C ′

stabilizes before fcc is thermodynamically favorable, the
last phonon mode to become real is the T[11̄0][ξξ0] mode
at ξ ≈ 0.4, and that bcc remains energetically favorable
until about 726 GPa. Even above this pressure there
exists an energy barrier on the tetragonal bain path
from bcc to fcc, again consistent with Einarsdotter et
al., which persists at all pressures considered here. The
fitted potential should be suitable for further study of
high-pressure fcc tungsten and its possible transition
from the bcc phase, but predictions in the multi-TPa
range should be checked with first-principles.

V. CONCLUSION

We have developed and applied a novel semi-
empirical interatomic potential for tungsten, based on
the MEAM and SW formalisms, parameterized using
bias-free quintic splines and force-matched to a large

database of highly-converged DFT data using an evo-
lutionary global optimization scheme. We have demon-
strated accuracy of the fit by reproducing phonon fre-
quencies, compression and thermal-expansion curves,
formation energies of unfavorable crystal structures,
self-interstitial defects, free surfaces, vacancies, stacking
faults and ideal shear at multiple pressures. Transfer-
ability of the fitted potential has been demonstrated by
description of the high-pressure bcc to fcc phase trans-
formation, dislocation core structure and deformation
twinning and detwinning of a tungsten nanorod. Given
the accurate description of both deformation twinning
and dislocation structure this potential is more suit-
able than previous models for studying their inter-
play. Accuracy of elastic and vibrational properties
at high pressures will enable quality shock simulations,
and the combination of accurate free-surfaces and non-
equilibrium crystal structures should produce reliable
descriptions of tungsten nanostructures.
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FIG. 10. Stability of fcc tungsten at 0 K. (a) shows the elas-
tic constants C44 and C′ as functions of pressure, demon-
strating the elastic stability of fcc tungsten for pressures
above 455 GPa. (b) depicts the stabilization of the fcc-
T[11̄0] [ξξ0] phonon branch with pressure. MEAM predicts
that fcc becomes dynamically stable around 543 GPa with
the ξ = 0.4 mode being the last to stabilize. (c) depicts
the enthalpy difference Hfcc(P )−Hbcc(P ) between fcc and
bcc as a function of pressure, revealing that despite being
dynamically stable, fcc tungsten is not energetically favor-
able until pressures above 762.5 GPa. (inset) The tetragonal
Bain path at the determined transition pressure exhibits an
energy barrier of 140 meV/atom, indicating that bcc will not
spontaneously transform to fcc with the fitted potential.
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