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We study the annihilation of topological solitons in the simplest setting: a one-dimensional fer-
romagnet with an easy axis. We develop an effective theory of the annihilation process in terms of
four collective coordinates: two zero modes of the translational and rotational symmetries Z and
®, representing the average position and azimuthal angle of the two solitons, and two conserved
momenta ¢ and ¢, representing the relative distance and twist. Comparison with micromagnetic
simulations shows that our approach captures well the essential physics of the process.

The dynamics of topological solitons in ferromagnets
[1] poses a class of problems of fundamental interest.
Time evolution of magnetization is governed by the
Landau-Lifshitz-Gilbert (LLG) equation [2, 3]

Jim =m x heg + a|J|h x m (1)

Here m(r,t) = M/|M] is the unit-vector field of magne-
tization, J = |M]|/~ is the angular momentum density,
heg(r) = —0U/0m(r) is the effective magnetic field ob-
tained from the potential energy functional U[m(r)] and
a < 1is the Gilbert damping constant. Since the magne-
tization field has infinitely many modes that are coupled
non-linearly, full analytic solution to a dynamical prob-
lem is unavailable in most cases.

A powerful alternative approach is to identify a small
number of relevant soft modes, parametrized in terms of
collective coordinates, and formulate an effective theory
only in terms of these. This method was first applied to
magnetic solitons by Schryer and Walker [1] to describe
the dynamics of a domain wall in an easy-axis ferromag-
net in one spatial dimension, m = m(z,t), with the La-
grangian [1]

L:/ dz J(cos —1) ¢ — U, (2)
and the potential energy

oo
U= / dz (Am']? + Klm x 3?) 2. (3)
—00

Here 6 and ¢ are the polar and azimuthal angles of
magnetization m, A is the exchange constant, K is
the anisotropy, and z is the direction of the easy axis.
The unit of length is the width of the domain wall
ly = /A/K and the unit of time is the inverse of the
ferromagnetic resonance frequency, to = 1/wg = J/K.
In what follows, we work in these natural units and set
J =A=K =1/ =ty =1. A topological soliton in-
terpolating between the two ground states m = +z and
minimizing the potential energy (3) is a domain wall

¢(z) = @. (4)

The position of a domain wall Z and its azimuthal angle
® are collective coordinates describing the zero modes

cosf(z) = £tanh (z — Z),

FIG. 1. (Color online) Several configurations of a pair of do-
main walls with shown values of separation ¢ and twist ¢. The
red and blue colors denote positive and negative magnetiza-
tion component m. along the axis of the cylinder. The wire
frames depict the local plane tangential to the magnetization
field. Spheres on the right show the path of the magnetiza-
tion field m(z) as z goes from —oo to +oo, beginning from
and ending at the north pole (red). The south pole (blue) can
only be reached if the separation of the domain walls { = oco.

associated with the translational and rotational symme-
tries. Schryer and Walker showed that, in the presence
of weak perturbations, the dynamics of a domain wall
reduces to a time evolution of Z and ®. By substituting
the domain-wall Ansatz (4) into the LLG equation (1) or
into the Lagrangian (2), one obtains an effective theory
for this system in terms of the two collective coordinates



® and Z [4]. Their equations of motion read
Fy 27 —2ad =0, (5a)
Fy F2& —2aZ =0, (5b)

where the force Fz = —9U/0Z and the torque Fg =
—0U/0® are derived from potential energy U that may
include perturbations beyond Eq. 3.

More generally, a magnetic soliton can be described
by a set of time-dependent collective coordinates q(t) =
{q1(t), g2(t), . ..}, whose equations of motion express the
balance of conservative, gyrotropic, and viscous forces for
each coordinate g; [5]:

Fy + Gijd; — Tija; = 0, (6a)
F=-5, (6b)
Gij:—/de-<gg:><gZ), (6¢)
rijza/dvg’;?-gz. (6d)

Here F; is the conservative force conjugate to collective
coordinate g;, Gy; is the antisymmetric gyrotropic tensor,
and I';; is the symmetric viscosity tensor.

The method of collective coordinates has been quite
successful in describing the dynamics of solitons in fer-
romagnets [6—10] and antiferromagnets [11—-14]. In most
cases, the set of coordinates q is limited to just the zero
modes associated with the global symmetries of the un-
perturbed system. In such a case, weak perturbations
create a gentle potential landscape U(q) that induces
slow dynamics of the formerly zero and now soft modes
q, while the hard modes quickly adjust to the instanta-
neous configuration of the soft modes. Including hard
modes as dynamical degrees of freedom poses significant
challenges [15].

Here we apply the method of collective coordinates to
a problem that requires going beyond the zero-mode ap-
proximation: the annihilation of two domain walls in a
one-dimensional ferromagnet with an easy axis. When
two domain walls are far apart, they behave like rigid
objects and can be described by two independent pairs
of collective coordinates: two positions Z; and Z and
two azimuthal angles ®; and ®5. Alternatively, we may
use the average position Z = (Z; + Z3)/2 and the aver-
age angle ® = (®; + $5)/2 and two relative coordinates,
the separation ( = Z; — Z; and the twist p = &5 — P;.
Whereas Z and @ represent the zero modes associated
with the symmetries of translation and rotation, the rel-
ative coordinates ¢ and ¢ affect the energy (3) and thus
represent modes that harden as the domain walls get
closer and their interaction increases.

Let us work with the boundary condition m(+o00) = Z.
We may anticipate how the annihilation proceeds in the
limit of large separation, ¢ > 1, when the domain walls
retain their individual character and are described by

Eq. 5b with the top signs. The effects on the average
and relative coordinates occur at different orders in .
To zeroth order, the two domain walls exhibit rigid rota-
tional and translational motion:

v, 10U
20¢’ C20¢°

(7)

They acquire relative velocities at the next order:

.U .
p=-ag . (=-afe 8)

As the domain walls approach each other and begin
to overlap, they lose their ideal shape (4) and Eq. 5b
no longer applies. Even worse, the precise positions
and azimuthal angles of overlapping domain walls be-
come ill-defined. Fortunately, we may use two conserved
momenta—angular J and linear P—as proxies for the
separation and twist. The angular momentum along the
z axis is [1]

J = /_00 dz (cosf —1). 9)

Here the subtraction of 1 in the brackets means that we
measure the angular momentum relative to the uniform
ground state m = z. If the domain walls are far apart,
¢ > 1, cosf ~ —1 in the space between them, so J ~
—2(. Turning this around, we define the separation in
terms of the angular momentum (9), ( = —J/2.

The problem with the relative twist is fixed in a simi-
lar way. The linear momentum of a non-topological soli-
ton (i.e., one approaching the same ground state at both
ends, m(£o0) = z) is [1]

P:/OO dz(1—cose)¢/:}{(1—cose>d¢. (10)

— 00

The linear momentum is the area subtended by the vector
m(z) on the unit sphere as z goes from —co to +oo [10].
For two well-separated domain walls with a twist ¢, this
area is 2. Again, we turn things around and define the
twist in terms of the linear momentum (10), ¢ = P/2.
Pairs of domain walls with several values of separation (
and twist ¢ are shown in Fig. 1.

Unlike single domain walls, which are stable for topo-
logical reasons, pairs of domain walls are unstable: min-
imization of the energy (3) in the topologically trivial
sector with m(4o00) = z yields a uniform ground state
m(z) = z. To obtain a solution for a pair of domain
walls, we may rely on conservation of linear and angular
momenta and minimize the energy U at fixed P and J.
This can be done through minimization of the modified
energy

U=U-PV-JQ, (11)



where V' and () are Lagrange multipliers. The corre-

sponding Lagrangian,

o0
E:/ dz(cosf —1)(¢— V¢' +Q) — U, (12)
— o0

describes the dynamics of magnetization in a new frame
moving at the linear velocity V and rotating at the an-
gular velocity 2. Minimization of the new potential en-
ergy (11) yields a static soliton in the new frame. In the
static frame, the soliton is moving at the velocity V' and
is rigidly rotating at the frequency €2. This class of dy-
namic solitons was first obtained by Kosevich et al. [17]
and by Long and Bishop [18]. The relation between the
velocities and momenta of these solutions is

V- _2.sin 2P’ 0_ S'inzzP _ C0822P . (13)

sinh 2J sinh®J  cosh”J

The explicit form of the solitons is given in the Supple-
mental Material [19].

We are now ready to derive the equations of motion
for a pair of domain walls with four collective coordi-
nates ®, Z, ¢, and ¢ by using the general formalism (6).
The gyrotropic coefficients are most easily derived from
the Berry phase term in the effective Lagrangian for the
collective coordinates. They form two pairs of conjugate
variables, ® and J = —2( for rotational motion and Z
and P = 2¢ for translational. We thus infer that the
effective Lagrangian includes the Berry-phase terms [15]

Lp=—20® + 207 = Ayg;. (14)

From that we read off the Berry connections Ag = —2,
Az =2¢, and A¢ = A, = 0. The gyrotropic coefficients
are the Berry curvatures G;; = 0;4; —0;A;. The nonzero
coeflicients of the gyrotropic tensor are

Gq>< = *G(@ = GgoZ = *GZLp = 2. (15)

To deduce conservative forces F;, we turn off dissipa-
tion. Eq. 6 now read F; 4+ G;;G; = 0. Conservation of
linear and angular momenta implies the absence of the
external force and torque, Fz; = Fg = 0. The relation
(13) between the velocities Z = V and ® = Q and the
momenta P = 2¢ and J = —2( together with the results
for the gyrotropic tensor (15) yield the internal force and

torque:
F= sin® £ 3 cos® £ 7 :_4sin<p' (16)
sinh? % cosh? % ’ v sinh ¢

The viscosity coefficients I';; are evaluated via Eq. 6d
by using the explicit solutions for the solitons [19]. We
first focus on the simpler case of zero twist, o = 0. In
this case, only two collective coordinates, ® and (, evolve
in time, whereas Z and ¢ remain constant. To the lowest
non-vanishing order in a,

G<I>C<. — F@@Cb =0, Fe+ G<q>(i) =0, (17)
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FIG. 2. (Color online) Collective coordinates ((t), ¢ (t), Z(t),
and ®(t) for initial separation (o = 4 and initial twists po = 0
(red), 7/2 (green), and 37 /4 (blue). All quantities are in nat-
ural units. Dots are results of micromagnetic simulations,
lines are predictions of the effective theory. The Gilbert
damping coefficient is o« = 0.01.

where Fy = -2 sech2% for ¢ = 0. We thus need just

one viscosity coefficient, 'pp = 4a tanh %(1 + sinCh <) for

© =0 [19]. The resulting equations of motion are

O =F./2, (=TgaFc/4 (18)

From Egs. 18 we see that the global rotation angle ®
is a fast variable whose leading-order behavior is deter-
mined by the dissipation-free limit (zeroth order in «).
Separation (¢ is a slow variable, whose dynamics arises
at the first order in « and is dissipational in nature. For
large initial separation (y > 1, the attraction is exponen-
tially suppressed, Fy ~ —8¢~¢, and the viscosity is ap-
proximately constant, 'e¢e =~ 4. The separation slowly
decreases as ((t) ~ In(e — 8at) until the walls overlap.
This initial approach takes an exponentially long time
t; ~ €% /8a. The final stage, in which the “separation”
(or angular momentum) decays as ((t) ~ Ce 2% has a
characteristic time scale ty = 1/2a. The global rotation
frequency initially grows as ®(t) ~ —4/(e<° — 8at) until
the walls overlap, then approaches the asymptotic value
Py = —1.

To check the accuracy of our approach, we compared
the solution of Egs. 18 against numerical simulations of
magnetization dynamics in a one-dimensional easy-axis
ferromagnet performed with the aid of the micromag-
netic solver OOMMF [20]. In the simulations, separa-
tion ¢ was obtained from the angular momentum along
the easy axis, whereas the angle ® was measured in the
middle of the combined soliton. See Supplemental Ma-
terial [19] for details. The results for the initial twist
wo = 0, initial separation (; = 4, and Gilbert damping
a = 0.01 are shown as red dots (micromagnetic simula-



tions) and red lines (effective theory, Egs. 18) in Fig. 2.
We find excellent agreement between the two.

In the general case, with both an initial twist ¢g # 0
and separation (3 # 0, the equations of motion to the
leading order in « have the following form:

d=F:/2, (= TaaF:—TozF,)/4, (19a)
7 =-F,/2, ¢=(-TzeF:+Tz,F,)/4 (19b)

Forces F; are given in Eq. 16; components of the viscosity
tensor I';; can be found in Supplemental Material [19].

During the initial approach (¢ > 1), the domain walls
interact weakly, Fy =~ —8e ¢ cos g, F, = —8e ¢ sin g,
and retain their individual character, so that the dissi-
pation tensor is diagonal, with I'e¢e ~ I'zz ~ 4a. The
twist angle decreases slowly and linearly in time:

©(t) = @o — 8at e~ sin y. (20)
The separation evolves as

sin (t)

¢(t) = o +1n — .
sin g

(21)
Notably, for a large initial twist ¢o > /2, the force F¢
is repulsive and the domain walls initially move apart
until ¢ decreases to m/2. At that point, the force F
vanishes and the walls reach their maximum separation
Cmax ~ (o — Insin ¢g. This happens at

(¢0 — 77/2)640.

tmax & : 22
B 8asin ¢ (22)
The total duration of the initial approach is
Co
$oe (23)

P~ -
8asin g

Both the linear trend in ¢(t) and the backward initial
relative motion for ¢g > /2 are clearly visible in the
micromagnetic simulation data in Fig. 2.

During the final stage, the separation and twist de-
crease to zero. Expanding physical quantities in pow-
ers of ¢ and ¢ yields U ~ 2(¢% + ¢?)/¢, Toa ~ 4a(,
I'ze =Taz ~ —day, and 'zz =~ dagp? /(. Egs. 19 read

b —1+02/C2, (m~—2aC(1+¢%/C?), (24)
Zw20/C, ¢ —20p(1+¢*/C%). (25)

During this stage, the ratio ¢/( remains constant. Both
average velocities attain their terminal values ZOO =V
and o = —1 + V2 /4, where Vo, = 2p/C. Tt is inter-
esting to note that, as the domain walls annihilate and
the energy decreases toward zero, the pair does not slow
down and keeps moving and rotating at constant rates!
The relative coordinates ((t) and ¢(¢) decay exponen-
tially with the characteristic time
1

tf%m. (26)

Again, all these trends are clear in Fig. 2. The micro-
magnetic data and the effective theory (Eqs. 19) show
excellent agreement.

We have considered the annihilation of two domain
walls in a ferromagnetic wire. A minimal description of
the process requires the use of 4 physical variables. The
average coordinates of the combined soliton, position Z
and azimuthal orientation ®, are zero modes on account
of global translational and rotational symmetries; the rel-
ative coordinates, separation ( and twist ¢, harden as
the domain walls merge. We obtained the equations of
motion for the these variables in the framework of Treti-
akov et al. [5] and showed that separation ¢ and twist ¢
exhibit purely viscous dynamics, whereas the average po-
sition Z and azimuthal angle ® are driven by the torque
F,(¢,¢) and force F¢(C, ), respectively. These equa-
tions of motion (19) predict the dynamics of the 4 vari-
ables in excellent agreement with the results of numerical
micromagnetic simulations (Fig. 2).

Our approach can be applied beyond the specific ide-
alized model considered in this paper. For instance, we
relied explicitly on symmetries of translation and rotation
and used the corresponding conserved momenta. How-
ever, these conservation laws already break in the pres-
ence of dissipation in the form of local Gilbert’s damping
and the momenta change in time. In a similar way, weak
violations of translational and rotational symmetries will
produce additional terms in the equations of motion in
the form of global forces Fz and Fg directly impacting
the dynamics of the slow variables ¢ and { conjugate to
Z and ®. As long as these forces are small, the separa-
tion of time scales between the slow and fast variables
remains and the general approach remains applicable.

We hope that the method can be successfully extended
to the dynamics of other magnetic solitons.
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