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We investigate the formation and dynamics of spin textures in antiferromagnetic insulators adja-
cent to a heavy-metal substrate with strong spin-orbit interactions. Exchange coupling to conduction
electrons engenders an effective anisotropy, Dzyaloshinskii-Moriya interactions, and a magnetoelec-
tric effect for the Néel order, which can conspire to produce nontrivial antiferromagnetic textures.
Current-driven spin transfer enabled by the heavy metal, furthermore, triggers ultrafast (THz) os-
cillations of the Néel order for dc currents exceeding a critical threshold, opening up the possibility
of Terahertz spin-torque self-oscillators. For a commonly invoked antidamping-torque geometry,
however, the instability current scales with the energy gap of the antiferromagnetic insulator and,
therefore, may be challenging to reach experimentally. We propose an alternative generic geometry
for inducing ultrafast autonomous antiferromagnetic dynamics.

Introduction.—Antiferromagnetic spin textures pro-
duce minimal stray fields, are robust against electromag-
netic perturbations, and display ultrafast spin dynam-
ics, three features that make them attractive as poten-
tial active elements in next-generation spin-transport and
memory-storage devices.1 Recent years have witnessed
a growing interest in the inherently antiferromagnetic
(spin) transport properties.2–5 However, the Néel order is
relatively hidden from electromagnetic fields and, there-
fore, generally not easy to drive or read out. In this
regard, spin-transfer torques are well suited to trigger an-
tiferromagnetic excitations6,7 and may be as effective for
this purpose as in ferromagnets.5,8 It appears particularly
attractive to manipulate the staggered order parameter
through the spin Hall effect. In the usual antidamping-
torque geometry,9 however, the effective spin accumula-
tion induced by the spin Hall effect must overcome the
large gap in the antiferromagnetic spectrum (typically
in the range of THz for common materials), translat-
ing into prohibitively large charge currents. Therefore,
further insights concerning the antiferromagnetic equi-
librium states and their spin Hall induced dynamics, in
the presence of strong spin-orbit interactions, are desired
for further progress.

In this Rapid Communication, we construct a phe-
nomenological theory for antiferromagnetic insulators
subjected to spin exchange and spin-orbit coupling with
an adjacent heavy metal. We focus on energy terms that
favor spin textures, with an eye on nontrivial topologies.
Furthermore, we study the Néel order driven out of equi-
librium by spin-transfer torques and find the thresholds
for current-driven magnetic instabilities for several sce-
narios, classifying the ensuing nonlinear dynamics. Our
primary interest here is in ultrafast self-oscillations of a
uniform staggered order, which can be sustained by fea-
sible charge currents (as in, e.g., the ferromagnetic coun-
terparts).

Effective theory.—We regard the heterostructure as a
quasi-two-dimensional (2D) system along the xy plane,
which we take to be isotropic at the coarse-grained level,
see Fig. 1. The reflection symmetry along the z axis
is structurally broken and the time-reversal symmetry is
also broken due to the existence of the Néel phase. We fo-
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FIG. 1: A schematic of our heterostructure: An insulating
antiferromagnetic film in the Néel phase is deposited on the
surface of a heavy-metal substrate. The (dynamic) magnetic
texture is described by the normalized spin densitym and the
Néel order l. The coarse-grained field j represents the charge-
current density flowing within the substrate. The dashed spi-
ral line illustrates dynamics of the Néel order.

cus on bipartite antiferromagnetic insulators, where the
two spin sublattices can be transformed into each other
by a space-group symmetry of the crystal, and we re-
strict ourselves to smooth and slowly-varying spin tex-
tures. An effective long-wavelength theory for this class
of antiferromagnets can be developed in terms of two con-
tinuum coarse-grained fields: the (staggered) Néel field
l and the normalized spin density m.10 These fields sat-
isfy the nonlinear local constraints l2 ≡ 1, l ·m ≡ 0,
and the presence of a well-developed Néel order implies
(at reasonable fields) |m| � 1. The corresponding (2D)
Lagrangian density in the continuum limit becomes

LAFM[t; l,m] = Lkin[t; l,m]−FAFM[l,m],

FAFM[l,m] =
m2

2χ
−m · B + Fstag[l], (1)

to quadratic order in both l andm, where FAFM[l,m] de-
notes the free-energy density of the antiferromagnet, χ is
the (transverse) spin susceptibility, B = γsB represents
the normalized magnetic field, and s is the saturated (2D)
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spin density.11 The kinetic (Berry-phase) Lagrangian

Lkin[t; l,m] = sm · (l× ∂tl) (2)

establishes the canonical conjugacy between l and sm×l.
The functional Fstag[l] stands for the exchange and
anisotropy contributions to the energy of the antiferro-
magnet. In the case of isotropic exchange and uniaxial
anisotropy, we have Fstag[l] = A

2

∑
µ=1,2(∂xµl)

2 − 1
2Kl

2
z ,

where A, K are the stiffness and anisotropy constants,
respectively. K < 0 (K > 0) describes easy (hard) xy
plane. Both A and χ−1 are proportional to JS2, with J
being the microscopic exchange energy.

Phenomenologically, the exchange coupling of the Néel
order to conduction electrons of the heavy-metal sub-
strate yields the following contributions to the effective
energy of the combined system:

Fint[l] = −K
′

2
l2z − L1 l ·E +

L2

2
[l · ∇lz − lz∇ · l ] , (3)

where K ′, L1, and L2 are material-dependent phe-
nomenological coefficients and E is the static (in-plane)
electric field acting on electrons (here, in equilibrium).
Notice that, according to the time-reversal symmetry, L1

(L2) must be an odd (even) function of the out-of-plane
component lz of the Néel order. The first two terms in
Eq. (3) account for an effective axial anisotropy and a
magnetoelectric effect for the Néel order, respectively.
The last term can arise due to structural reflection-
symmetry breaking at the interface,12 and describes an
inhomogeneous Dzyaloshinskii-Moriya interaction.13,14

In the absence of the electromagnetic fields, E,B → 0,
the above free energy for the Néel order reproduces that
of a ferromagnetic film with the broken reflection symme-
try with respect to the basal plane.15 In particular, a spi-
ral ground state would arise for values of the parameter
L2/
√
AKeff exceeding the critical value 4/π, whereKeff ≡

K+K ′ is the effective anisotropy constant.16 As a specific
illustrative example, in the Supplemental Material17 we
complement our effective theory with microscopic results
for the case of a strong three-dimensional topological in-
sulator (TI) as a heavy (semi)metal.

Nonequilibrium dynamics.—Undamped Landau-
Lifshitz dynamics of the insulating antiferromagnet
are described by the Euler-Lagrange equations for the
total Lagrangian LAFM − Fint, subject to the local
constraints l 2 ≡ 1 and l ·m ≡ 0.18 A phenomenological
approach well suited to incorporate dissipation into these
equations considers a Gilbert-Rayleigh function,19 whose
dominant term is given by 1

2sαij l̇i l̇j in the low-frequency

(compared to the microscopic exchange J) regime,20

where α̂ denotes the Gilbert-damping tensor.21 The
resulting Landau-Lifshitz-Gilbert-type equations read

sl̇ = χ−1m× l+ l× B + τl, (4)

s(ṁ+ l× α̂l̇) = δlFeff × l+m× B + τm, (5)

where Feff ≡ Fstag + Fint is the effective energy and the
spin-transfer torques τl, τm account for the additional,

nonequilibrium electric current-induced spin transport
across the interface.

As usual, we can obtain a dynamical equation for the
Néel order alone by solving for m according to Eq. (4)
and substituting it in Eq. (5). Notice that the effect
of the torque τl is in general reduced relative to τm by
the small parameters ~ω/J (with ω denoting the charac-
teristic frequency of the antiferromagnetic excitations),
which, again,16 is rooted in the smallness of the suscep-
tibility χ ∝ J−1. In the spirit of our low-frequency long-
wavelength treatment, we, therefore, disregard this spin-
transfer torque (i.e., τl) in what follows.

The spin torque τm has two (dissipative) compo-
nents: the first, so-called spin-orbit torque, is rooted phe-
nomenologically in the spin-Hall effect.22 The second is
the texture-induced spin-transfer torque,23 which origi-
nates in the spin mistracking of conduction electrons (of
the heavy metal) propagating in proximity to the Néel
texture.24 According to the structural symmetries of the
heterostructure, they have the form:23,25,26

τm = ϑ2l× (êz × j)× l+ ϑ3l× (j · ∇)l, (6)

where the coupling constants ϑ2 and ϑ3 depend on the
interplay of spin-orbit and spin-transfer physics at the
interface.

Another contribution to the net transfer of spin an-
gular momentum onto the antiferromagnetic texture is
provided by the spin-pumping mechanism,27 which can
be absorbed into the (effective) damping tensor as an
interface term, α̂eff ≡ α̂+ϑ1/s.

5 Here, ϑ1 is the (dissipa-
tive) spin-pumping parameter (taken, for simplicity, to
be isotropic) related to the spin-mixing conductance of
the interface. The combination of Eqs. (4)-(6) yields the
following second-order differential equation for the Néel
order:29

l×
[
s2χl̈+ sα̂effl̇+ δlFeff + χ(l · B)B − sχl× Ḃ

− ϑ2(êz × j)× l− ϑ3(j · ∇)l
]
− 2sχ(l · B)l̇ = 0, (7)

which is the central equation and one of the main results
of this Rapid Communication. It is worth mentioning
that in order to integrate this equation, it needs to be
complemented with the trivial vector identity: l · l̈ =
(d/dt)2l2/2− l̇2 = −l̇2, since l2 ≡ 1.

Current-driven monodomain dynamics.—Magnetic
fields may not optimally be suited to manipulate antifer-
romagnetic textures, as the staggered order suppresses
the coarse-grained magnetization in the Néel phase.
In this regard, spin-transfer torques offer an attractive
alternative to trigger and control fast antiferromagnetic
dynamics, of particular interest being current-induced
magnetic instabilities and switching. Starting with
the simplest out-of-equilibrium scenario, we consider a
uniform state and, therefore, disregard the magnetic
torques resulting from the magnetoelectric and inho-
mogeneous Dzyaloshinskii-Moriya terms in Eq. (3), and
the texture-induced spin-transfer torque in Eq. (6).
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FIG. 2: Classification of the current-driven fixed points and limit cycles, according to Eq. (8), for (a) λ = 0, (b) 0 < λ ≤ 1
2

and

(c) λ > 1
2
. Arrows represent fixed points and the blue circle in (c) illustrates the limit cycle in the xz plane. (d-f) Evolution of

the components of the Néel order as a function of time τ = t/s
√
χ, setting Keff = 0.01, χ = 0.001 and αeff = ϑ2 = 0.01. The

corresponding critical current is jc = 0.5. Dynamics are: (d) triggered from the initial point (0.81, 0.59, 0.01) at zero current
(the limiting fixed point is controlled by the sign of the z component), (e) driven by the current j = 0.4 from l = (0, 0.99, 0.01),
and (f) driven by the current j = 1.2 from the same fixed point. The periodic time evolution of the components of the Néel
order in the last case leads to the limit cycle plotted in (c).

Furthermore, we suppose an easy-z-axis anisotropy (i.e.,
Keff > 0), absence of an applied magnetic field, and
a uniform dc charge-current density injected (without
loss of generality) along the x direction, j = jêx.
Consequently, Eq. (7) becomes

s2χl̈+ sαeffl̇+ (ϑ2jlx −Kefflz)êz − ϑ2jlz êx

+
[
s2χl̇2 +Keffl

2
z

]
l = 0, (8)

where, for simplicity, we have taken the full damping
tensor to be isotropic.

Stability of the above dynamical system can be ana-
lyzed in terms of the parameter λ = ϑ2j/Keff: in equi-
librium (λ = 0), the fixed points (FPs) are lFP,1 = ±êz
along with any xy-plane orientation of the Néel order.
See Fig. 2(a). From a simple stability analysis,30 we con-
clude that lFP,1 are the only stable FPs, and, therefore,
any slight out-of-plane perturbation would turn the stag-
gered order from any initial xy-plane configuration to a
normal direction. See Fig. 2(d). When the current is
ramped up within the range 0 < λ ≤ 1

2 , the set of FPs
becomes discrete and reads

lFP,i = ±

( √
2λ√

1− pi
√

1− 4λ2
, 0,

√
1− pi

√
1− 4λ2

√
2

)
,

lFP,3 = ±êy, (9)

where pi = (−1)i and i = 1, 2. Stability theory ap-
plied to this case indicates that the lFP,1 are stable FPs

whereas the lFP,2(3) are unstable. See Fig. 2(b). There-
fore, any slight perturbation acting on lFP,3 will drive
the staggered field into one of the fixed points lFP,1. See
Fig. 2(e). The limiting orientation of the Néel order de-
pends on the signs of the x and z components of the
perturbation. The FPs of Eq. (8) for λ > 1

2 are lFP,3 and
unstable. This leads to the formation of an attractive
limit cycle in the xz plane. See Figs. 2(c),(f). We thus
conclude that the instability threshold of our dynamical
system towards self-oscillations is determined by the crit-
ical current jc = 1

2ϑ2
Keff. The frequency corresponding

to this limit cycle is in the range of ω = 1
2s

√
Keff/χ,

which agrees with the values obtained from the numer-
ical solution of the full Eq. (8).17 It is also instructive
to consider a different geometry, in which an in-plane
easy-axis anisotropy K is oriented along the y axis (i.e.,
perpendicular to the direction of the injected current).
This is a typical antidamping-torque geometry.9,25 Ne-
glecting K ′, a precessional instability arises at the critical
current j?c = αeff

ϑ2

√
K/χ, and the corresponding antifer-

romagnetic dynamics have a characteristic frequency of
ω? ' 1

s

√
K/2χ.

The instability thresholds jc and j?c scale qualitatively
differently with the system parameters, but both appear
substantially higher than the typical ferromagnetic insta-
bility threshold of25 ∼ αeff

ϑ2
K if αeff � 1. Regarding j?c ,

we need to recognize that the quantity
√
K/χ ∼

√
KJ

setting the antiferromagnetic resonance frequency is typ-
ically much larger than the ferromagnetic resonance fre-
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quency, which is governed by K and unaffected by J ,
as the exchange (which is nonrelativistic) is generally
stronger than the anisotropy (which is relativistic). Com-
paring jc and j?c , we thus see that the former scales with
the anisotropy, but is not reduced by the damping, as in
the ferromagnetic case, while the latter scales with the
exchange-enhanced resonance frequency. Note that the
scaling of j?c with the energy gap of the antiferromagnet is
in agreement with the entropic argument given in Ref. 31
(according to which, the effective spin accumulation in-
duced by the spin Hall effect must overcome the magnon
gap). The ratio jc/j

?
c =
√
Kχ/2αeff is governed by two

small parameters:
√
K/J and αeff. In the desirable limit

of strong spin-orbit effects, and thus large αeff and ϑ2, as
is the case, for example, in a magnetically-doped TI,32

we may have jc < j?c .
The phenomenological parameters of our effec-

tive theory can be evaluated in a simple diffu-
sive model with weak spin-orbit interactions25,28,33

as ϑ1 = ~2

2aM

σg↑↓

hσ+2λe2g↑↓ coth(aN/λ)
and ϑ2 =

θs
~e
aM

λg↑↓ tanh(aN/2λ)
hσ+2λe2g↑↓ coth(aN/λ)

, where aM is the thickness

of the antiferromagnetic layer, g↑↓ is the spin-mixing
conductance (per unit area) of the interface, and aN , σ,
λ, θs denote the thickness, conductivity, spin-diffusion
length, and the bulk spin Hall angle of the heavy metal,
respectively. These expressions coincide with the ferro-
magnetic case, subject to a generalized understanding
of the spin-mixing conductance.5,8 An appropriate
engineering of the heterostructure (with strong spin-
orbit coupling and thin magnetic layer), together with
optimizing the switching geometry, are necessary to
produce feasible values of the critical currents.

Discussion and outlook.—Dzyaloshinskii-Moriya inter-
actions in this paper are endowed in the antiferromag-
netic insulator by the interface.34 We have already dis-
cussed how our effective theory incorporates an inho-
mogeneous Dzyaloshinskii-Moriya coupling in response
to the proximity of a heavy-metal substrate, giving rise

to magnetic superstructures.14,15 Another possible man-
ifestation of spin-orbit coupling in antiferromagnets is a
weak ferromagnetism.13 Whether it is compatible with
the sublattice symmetry, {l → −l,m → m}, depends
on the crystallographic structure of the antiferromag-
net and its surface. In the Supplemental material17

we illustrate two examples of quasi-2D crystal lattices
for which a homogeneous Dzyaloshinskii-Moriya term
FDM[l,m] = d · (l ×m) is allowed, where d = dêz is
the Dzyaloshinskii vector along the normal to the inter-
face. Addition of this term to the effective energy Feff

results in a redefinition of the normalized magnetic field
B → B + l × d in the equation (1) for the free-energy
density. It can be shown, however, that its effect on the
antiferromagnetic dynamics at the level of Eq. (8) can
be absorbed by a small shift in the anisotropy constant:
K ′ → K ′ − χd2.

Self-oscillations, in the form of limit cycles, are sus-
tained above the critical current jc in the case of the
easy-z-axis anisotropy. For the easy-y-axis geometry, the
nature of the autonomous dynamics beyond the thresh-
old j?c was shown9 to be sensitive to the details of the
Gilbert-damping tensor, which can acquire, in particu-
lar, an anisotropic form ∝ l× (l2z l̇+ l̇z êz). The resultant
self-oscillation frequencies belong to the THz range for
typical insulating antiferromagnets. In order to realize
spin-transfer THz auto-oscillators, however, appropriate
materials and geometries need to be identified to yield
feasible bias currents.
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only affect the Néel-order energetics at the subleading or-
der in J−1(∝ χ), once m is integrated out.

17 See Supplemental Material at http://link.aps.org/ supple-
mental/... for a microscopic calculation of the phenomeno-
logical coefficients in the case of a TI substrate, for a brief
account of the numerical methods, and for an illustration
of two quasi-2D crystal lattices compatible with a homo-
geneous Dzyaloshinskii-Moriya interaction.

18 E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part
2, 3rd ed., Course of Theoretical Physics, Vol. 9 (Perga-
mon, Oxford, 1980); E. M. Chudnovsky and J. Tejada.
Lectures on Magnetism, (Rinton Press, New Jersey, 2006).

19 T. L. Gilbert, IEEE Trans. Magn. 40(6), 3443-3449 (2004).
20 S. K. Kim, O. Tchernyshyov, and Y. Tserkovnyak, Phys.

Rev. B 92, 020402(R) (2015).
21 The Gilbert tensor may generally be l-dependent and

anisotropic in spin space. Its dependence on the (normal-
ized) spin density m may, however, be disregarded, in the
presence of a well-formed Néel order.
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