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Abstract 

Theoretical predictions of pressure-induced phase transformations often become long-

standing enigmas because of limitations of contemporary available experimental possibilities. 

Hitherto the existence of a non-icosahedral boron allotrope has been one of them. Here we report 

on the first non-icosahedral boron allotrope, which we denoted as ζ-B, with the orthorhombic α-

Ga-type structure (space group Cmce) synthesized in a diamond anvil cell at extreme high-

pressure high-temperature conditions (115 GPa and 2100 K). The structure of ζ-B was solved 

using single-crystal synchrotron X-ray diffraction and its compressional behavior was studied in 

the range of very high pressures (115 GPa to 135 GPa). Experimental validation of theoretical 

predictions reveals the degree of our up-to-date comprehension of condensed matter and 

promotes further development of solid state physics and chemistry.   
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structural type; high-pressure high-temperature phase transition. 

 

I. INTRODUCTION 

Boron has been widely studied due to its complex polymorphism (see the review article [1] 

and references therein). All five of the hitherto experimentally established boron allotropes (α-B, 

β-B, γ-B, δ-B, and ε-B) [1-6] belong to the family of icosahedral solids: their structures are based 

on various arrangements of B12 icosahedra, since three valence electrons of boron atoms are 

insufficient to form a simple covalent bond. However, von Schnering and Nesper [7] suggested 
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the α-Ga structure to be an alternative to the boron structure. According to these authors, the α-

Ga structure built up from open polyhedral fragments is strongly related to the closed polyhedral 

boron clusters Bn. Their extended Hückel calculations supported the α-Ga model and showed 

that the α-Ga structure is an appropriate covalent three-electron arrangement and is not electron-

deficient [7]. 

The pressure-temperature (PT) experimental phase diagram of boron is currently limited to 

20 GPa and 3500 K [6,8-13], but there are a number of theoretical predictions concerning the 

behavior of boron at higher pressures and temperatures [14-21]. Häusserman et al. (2003) [15] 

predicted the phase transition from α-B to α-Ga-structured phase, accompanied by a nonmetal-

metal transition at 74 GPa. The authors [15] used ab initio calculations employing 

pseudopotentials and a plane wave basis set in the framework of the density functional theory 

(DFT). The α-Ga-structured boron phase was suggested to be stable up to 790 GPa; beyond this 

pressure a transition to the fcc structure had to take place according to [15]. In parallel, Segal and 

Arias (2003) [22] performed calculations using a method based on perturbation theory and all-

electron calculations with plane-wave-basis in DFT. The α-Ga-structured boron was shown to be 

favorable in energy among other boron phases in the interval between 71 and 500 GPa. Note that 

at that time γ-B was not discovered yet. Later, a comparison of the stability of γ-B with respect 

to the α-Ga-type boron phase led to consequent shift of their phase boundary from 78 GPa, as 

calculated in [14], to 89 GPa [20], and 93 GPa [19]. Calculations predict α-Ga-structured boron 

to be an incompressible (K300 = 263 GPa) [18], superconducting material with strong anisotropy 

[23] due to its layered crystal structure [22,23]. Electric resistivity measurements [12] showed 

that compression of β-B leads to metallization of the material under investigation at pressures 

above 160 GPa and ambient temperature, and to formation of a superconducting phase above 

175 GPa and 6 K [12]. The structure of metallic superconducting boron is unknown.  

Although the idea of possible existence of boron with the α-Ga structure is already more 

than 25 years old [7], it has remained difficult to prove. First, very high pressures are required 

for its synthesis, as predicted by [15]; second, boron is a weak X-ray scatterer that means that 

HPHT experiments are not straight forward and have to be done on a synchrotron; and third, a 

precursor material has to be of a very high purity, what is not always easy to reach with the 

highly reactive boron.  

The logic of our experimental approach, aimed at overcoming the challenges listed above, 

is as follows. As a precursor material, we used single crystals of β-B from the same synthesis 

batch as those which were fully characterized in our previous work [6]. The crystals were proven 

to be of high quality and high purity. To assure that we can follow the known β-B to γ-B 

transition at moderate pressures [4], at first we conducted a few synchrotron XRD experiments 
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below one Mbar to see if our results are in accordance with our own previous observations and 

available literature data. Further experiments at higher pressures, up to above one Mbar, aimed at 

investigating the HP behavior of β-B to track possible phase transitions at room temperature 

(Eremets et al. [12] reported a visible step in the resistance of β-B at 110 GPa) and upon heating. 

Here, we report a new boron allotrope (ζ-B) with the α-Ga-type structure synthesized from 

β-B at pressures over 115 GPa and temperatures over 2100 K using a laser-heated diamond anvil 

cell (DAC). Its crystal structure was determined based on single-crystal synchrotron X-ray 

diffraction (XRD) data. The behavior of ζ-B under compression from 115 GPa to 135 GPa was 

characterized using powder synchrotron XRD. 
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II. EXPERIMENTAL 

Synthesis of a precursor material. Single crystals of β-B studied in the present work 

at high pressures and high temperatures were synthesized using the high-pressure high-

temperature technique described in detail in [6]. Their structure and purity were carefully 

characterized to assure the reliability of the obtained experimental results. The presence of 

impurities could be excluded. 

Diamond-anvil cell experiments. The BX90-type diamond anvil cells (DAC) [24] 

made at Bayerisches Geoinstitut (Bayreuth, Germany) and Boehler-Almax type [25] beveled 

diamonds with the culet diameters of 120 µm were used in high pressure experiments. Rhenium 

gaskets were squeezed between the anvils to make an indentation with the thickness of about 

20 µm. Then in the center of the indentations, round holes of about 60 µm in diameter were 

drilled. Two β-B crystals were placed into these chambers. Sizes of the crystals were about 10 × 

10 × 15 µm3 and orientation of the crystals was not specified. Neon was used as a pressure 

transmitting medium (PTM) and as pressure standard [26].  

Single crystal synchrotron X-ray diffraction. Single crystals of β-B in a DAC were 

studied on ID27 at the European Synchrotron Radiation Facility (ESRF) and on P02.2 at PETRA 

III, DESY [27].  

At ID27 diffraction data were collected at 293 K using the Perkin Elmer XRD1621 flat 

panel detector. The monochromatic radiation had the wavelength of 0.37380 Å and the crystal-

to-detector distance was 383 mm. Pressure in the cells was increased stepwise up to about 

115 GPa, and single-crystal diffraction data for β-B were collected at each pressure point. 160 

frames in the omega scanning range of −40° to +40° (in 0.5° steps) were recorded with an 

exposure time of 2 s. A portable double-sided laser heating system [28] was used to heat β-B 

crystals under pressure in experiments at ID27 (ESRF). Upon heating entire crystals were 

located in the laser beam and there were no measurable temperature gradients within the 

samples. The temperature variation during heating did not exceed ±100 K.  

At P02.2 diffraction data were collected at 293 K using the Perkin Elmer XRD1621 

detector. The monochromatic radiation had the wavelength of 0.29464 Å and the crystal-to-

detector distance was 439 mm. Data were collected at one pressure point at about 115 GPa on 

the sample laser-heated at ID27. 152 frames in the omega scanning range of −38° to +38° were 

collected (in 0.5° steps) with an exposure time of 10 s per frame.  

Integration of the reflection intensities and absorption corrections were performed using 

CrysAlisPro software [29,30]. The structure of γ-B was refined in the anisotropic approximation 

for all atoms by full matrix least-squares. Due to small amount of the observed data the structure 
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of ζ-B was refined in isotropic approximation. Refinements of the crystal structures were 

performed using SHELXL software [31] implemented in the WinGX software package [30]. The 

crystallographic data of ζ-B studied at 115 GPa have been deposited in the Inorganic Crystal 

Structure Database [39]. The data may be obtained free of charge from Fachinformationszentrum 

Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49 7247 808 666; e-mail: 

crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de/request_for_deposited_data.html) on 

quoting following CSD deposition number: 432572. 

Powder XRD measurements. Samples of ζ-B were studied at room temperature in 

angle-dispersive mode with a wavelength of 0.2952 Å at the 13-IDD beamline at APS, Argonne. 

Pressure in the cells was increased from 115 to 135 GPa with a step of about 2 GPa. Diffraction 

images were collected at each pressure using a MAR CCD detector in the omega scanning range 

of −20° to +20° with an exposure time of 40 s. The images were integrated using the DIOPTAS 

software [32] and the resulting diffraction patterns were processed using biased model in the 

EXPGUI software [33] in the GSAS Software package [34].  
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III. RESULTS AND DISCUSSION 

In two independent DAC experiments at ID27 at ESRF single crystals of β-B were 

compressed up to 38(1) and 50(1) GPa, respectively. At these pressures the observed diffraction 

patterns perfectly match that of β-B (details of the HP structural studies of β-B will be published 

elsewhere). The lattice parameters and the molar volume of β-B corresponding to these two 

pressures are in agreement with the literature data of Sanz et al. [13], who measured the lattice 

parameters of β-B up to 100 GPa. Figure 1 shows the pressure dependence of the relative unit 

cell volume of β-B, as experimentally determined in [13] (black curve), and our two 

experimental points (black squares), which appear very close to the curve. After compression 

and the XRD measurements, the both crystals of β-B were double-sided laser heated to about 

2000 K. After the heating the pressure in the both DACs (determined using the equation of state 

of neon) increased and became 42(1) GPa in the first DAC and 58(1) GPa in the second one. In 

accordance with the experimental PT phase diagram of boron [6], a transition of β-B to γ-B took 

place, and diffraction spots of γ-B were clearly observed in the diffraction pattern taken at room 

temperature (RT) after heating at 42 and 58 GPa. The quality of the HP single-crystal X-ray 

diffraction data was sufficient to refine both the lattice parameters and atomic coordinates of γ-B 

(details of the refinement of the structure of γ-B at 58(1) GPa are presented in Supplemental 

Material [35]). The structure of γ-B is orthorhombic (space group Pnnm) and built of covalently 

bonded B12 icosahedra and B2 dumbbells [36].  

To compare the compressional behavior of various boron allotropes and to plot the P-V 

data on the same graph (Figure 1), the relative unit cell volumes for all considered allotropes 

were normalized to the unit cell volume of β-B per atom (320 atoms in β-B were accepted 

following [13]). The blue curve in Figure 1 corresponds to the experimental data for γ-B from 

[4]. Two experimental points obtained in the present study are shown by blue diamonds and lie 

on this curve.  

In order to study the behavior of boron in a megabar pressure range, on ID27 at ESRF 

single crystals of β-B were first compressed up to 100(2) GPa. At this pressure at room 

temperature, all observed reflections were attributed to β-B. This point (the black square in 

Figure 1 corresponding to 100 GPa) fits well to the curve of Sanz et al. [13] extrapolated to 

115 GPa (dashed black curve). After double-sided laser-heating up to 2100(100) K using 

portable laser heating set up, pressure increased to 115(2) GPa. The material in the heated spot 

changed its color from dark-reddish to black (not reflecting). The X-ray diffraction pattern 

changed dramatically and had to be treated as of a powder sample. Apart from reflections of Re 

(gasket material) and Ne (used as PTM), several new relatively weak but clearly detectable 
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reflections were observed. Their d-spacings perfectly matched those expected for α-Ga-type 

structured boron, as predicted by Häusserman et al. [15]. The following orthorhombic lattice 

parameters were obtained at 115 GPa: a = 2.7159(11) Å, b = 4.8399(2) Å, c = 2.9565(6) Å. 

The DAC with the sample described above was transported to the P02.2 beamline at 

PETRA III, where combination of a small size of the X-ray beam and its short wavelength 

increases chances for accumulating diffraction data suitable for single-crystal structural analysis. 

Detailed inspection of the diffraction pattern obtained on this beamline from the heated spot at 

115 GPa (see Supplemental Material [35]) revealed individual single-crystal reflections related 

to the high-pressure high-temperature boron phase. Its structure was solved; some experimental 

details and crystallographic data are given in Supplemental Material [35]. The structure belongs 

to the α-Ga structure type; it has the Cmce space group and 8 atoms per unit cell. The unit cell 

parameters determined from the single-crystal data (a = 2.7039(10) Å, b = 4.8703(32) Å, c = 

2.9697(6) Å) are slightly different from those obtained from powder XRD at ID27, as they were 

determined using different sets of reflections, as well as different procedures of finding peaks 

positions, weight schemes in least square optimizations, etc. The new high-pressure boron 

allotrope with the α-Ga-type structure was denoted as ζ-B, sequentially after the fifth hitherto 

established boron allotrope, ε-B [5].  

The structure of ζ-B at 115(2) GPa is presented in Figure 2. It may be described as a 

stacking along the (010) direction of distorted and corrugated hexagonal nets (Figure 2A) with 

the 36 topology, in accordance with the descriptions of von Schnering et al. [7,37] and 

Häusserman et al. [7,37]. Within every net each B atom connects to six neighbors, and the B-B 

bond lengths are 1.66(1) Å, 1.72(1) Å, and 1.75(1) Å (notated in Figure 2). The bonds between 

the nets bring the seventh neighbor to the coordination sphere of each boron atom (Figure 2B). 

These B-B bonds appear to be the shortest (1.59(1) Å) in the structure of ζ-B. Thus, despite 

seemingly ‘layered’ appearance, the ζ-B structure is in fact a 3D network. Puckered fragments of 

the nets can be considered as open polyhedral fragments related to the closed icosahedral boron 

clusters. 

As mentioned above, in ζ-B each boron atom has a coordination number (CN) equal to 7. 

In α-B a half of boron atoms have CN=6, and a half CN=7 [38], and in γ-B out of 28 atoms in the 

unit cell eight atoms have CN=6, and other twenty atoms have CN=7 [39]. For a complex and 

still controversial structure of β-B a simple count is not possible, but anyhow most of the boron 

atoms in this phase have CN=6. Thus, comparing the structures of the boron allotropes, we 

observe a tendency to a rise of the CN of boron for high-pressure polymorphs. This agrees with 

the empiric rule that upon pressure-induced phase transition coordination number increases [40]. 

As expected [41], an average interatomic distance in the first coordination sphere is the longest 
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for ζ-B (1.68 Å) in comparison with corresponding values for α-B (1.59 Å) [38], and γ-B 

(1.66 Å) [39] at 115 GPa. 

A phase transition of β-B to ζ-B manifested in a drastic reduction of the molar volume: at 

115 GPa the molar volume of ζ-B is by ~7.5 % less than that of β-B. According to theoretical 

calculations [14,18,20] and our previous [6] and current experimental observations (up to about 

60 GPa), γ-B is more stable at high pressures than β-B. If we compare the difference in the molar 

volume between γ-B and ζ-B at 115 GPa, it is only about 3.1% (see Figure 1, where the pressure 

dependence of the normalized volume of γ-B taken from [4] was plotted for the comparison).  

It is worth mentioning here that we pressurized single crystals of β-B beyond the pressure 

(110 GPa), at which Eremets et al. [12] observed a kink in the room-temperature R(P) (resistance 

vs pressure) curve. The authors [12] suggested the possibility that the transition of β-B to the 

metallic state occurs at 130 GPa. Häusserman et al. [15] proposed the α-Ga structure as a 

structural model for a metallic high-pressure modification of B after a phase transition of either 

semiconducting icosahedral α-B or β-B. We did not observe any transformations in β-B up to 

115 GPa, and the transition to the α-Ga-structured phase required heating to very high 

temperatures. Thus, it is very improbable that ζ-B with the α-Ga structure may be associated with 

the metallic high-pressure modification of boron discussed in [12,15]. 

Further compression of the material synthesized at 115(2) GPa leads to decrease of the 

quality of single-crystal reflections. For this reason, the diffraction data of ζ-B obtained up to 

135 GPa on 13-IDD at the APS were integrated to 1D ´2-theta´ scans. An example of a 

diffraction pattern at 121(2) GPa is presented in Figure 3. The unit cell parameters decreased 

with pressure. The linear compressibility along the a and c axes was found to be ∼7(3)*10-4GPa-

1, and along the b axis – a bit lower, ∼4(3)*10-4 GPa-1 that can be explained by the shortest B-B 

bonds in the (010) direction. The PV data set of ζ-B in the pressure range of 115 to 135 GPa was 

fitted using the second-order Birch-Murnaghan (2BM) equation of state (EoS) and gave the 

following EoS parameters: V115 = 39.20(8) Å3 and K115 = 575(65) GPa; K´= 4 (fixed) (V115 is the 

unit cell volume and K115 is the bulk modulus at 115 GPa and room temperature; K´ is the 

pressure derivative of the bulk modulus) (Table I). Use of the Vinet EoS led to the following 

parameters: V115 = 39.19(8) Å3 and K115 = 577(65) GPa; K´= 4 (fixed).  

The bulk moduli of α-Ga-structured boron at ambient conditions were calculated in 

[18,19,23]. To compare these predictions with our experimental results, we computed the 

theoretical values of the bulk moduli to be at 115 GPa according to these three papers (Table I). 

The EoSFit-7c software [42] was used. As seen, experimental values of the bulk modulus are 

lower than the theoretically predicted ones. The pressure dependence of the unit cell volume of 

ζ-B, as experimentally determined in the present work and theoretically predicted [18,19,23] is 
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presented in Supplemental Material [35]. There is a significant difference (about 4%) between 

the earlier [23] and recent [18,19] theoretical predictions. Our experimental results are in 

reasonable agreement with data of [18,19] (see Supplemental Material [35]).  
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IV. CONCLUSIONS 

To verify theoretical predictions regarding the existence of α-Ga-structured boron and its 

behavior at high pressures [7,14,15,19,20], we have conducted a series of high-pressure high-

temperature experiments. We demonstrated that the predicted boron allotrope [7,15] can be 

obtained by laser-heating of single crystals of β-B to over 2100 K at pressures above 115 GPa. 

This phase, which we call ζ-B, has the α-Ga-type orthorhombic structure as revealed by single-

crystal X-ray diffraction. Measured precisely interatomic distances and linear compressibilities 

along the major crystallographic directions do not allow interpreting the structure as layered, as 

earlier proposed [23]. In the studied pressure range (from 115 to 132 GPa) ζ-B is less 

compressible than any other boron allotropes known so far. Based on our experimental data we 

do not see a relation between ζ-B and the metallic high-pressure modification of B discussed by 

[12,15]. 
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FIG. 1. (Color online) The pressure dependence of the normalized relative unit cell volumes of three boron allotropes, β-B, γ-B and ζ-B. The volumes were 
normalized on the volume of β-B per atom calculated from the experimental data of Sanz et al. [13]. The solid black curve corresponds to the Vinet equation of state 
of β-B up to 100 GPa from [13] (V0 = 2460 Å3, K300 = 210(6) GPa, K´ = 2.23). Dashed black curve is its extrapolation to 120 GPa. Black squares represent our 
experimental data points for β-B (see text). The green circle represents the volume data for ζ-B obtained from our single-crystal XRD at 115 GPa (after laser-heating 
of β-B at this pressure a phase transition occurred, accompanied with the volume reduction by ca.7.5 %). The red triangles correspond to the PV data of ζ-B obtained 
from powder XRD. Their fit with the 2BM EoS is shown by the red solid curve. The blue curve corresponds to the 3BM EoS of γ-B according to [39] (below 40 
GPa: V0=198.1(3) Å3, K300=227(3) GPa, K'=2.5(2); above 45 GPa: V0=192.6(3) Å3, K300=281(6) GPa, K'=2.8(9)). Its extrapolation to 120 GPa is shown by a dashed 
blue curve. Blue diamonds show our two experimental points (see text). The volume difference between γ-B and ζ-B at 115 GPa is ca. 3.1 %.  
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FIG. 2. (Color online) The structure of ζ –B. A. The projection of a fragment of distorted and corrugated hexagonal nets on the ac plane. Such nets are stacked 
along the (010) direction. Blue and yellow atoms do not lie in the same plain (blue atoms are lower and yellow ones are upper if seen along the (010) direction). 
Bonds with different lengths are shown in different colors: 1.66(1) Å (orange), 1.72(1) Å (red), and 1.75(1) Å (green). B. The projection of three nets on the bc plain. 
The length of bonds connecting the layers is 1.59(1) Å (blue).  
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FIG. 3. (Color online) X-ray diffraction pattern of ζ-B obtained at 121(2) GPa. Black dots represent experimental data. Red solid line derives the refinement 
using biased model, blue solid line states for calculations of background. Green curve is the intensity difference (Iobs − Icalc) between experimental data and 
calculations. Reduced χ2 = 1.953. The reflections are assigned to Re, Ne, and ζ-B; their hkl are designated in different colors for clarity. 
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TABLE I. Parameters of the equations of state of ζ-B compared to theoretical predictions. The EoSes are 
designated as follows: BM stays for the Birch-Murnaghan (3BM for the 3rd order, 2BM for the 2nd order), 
M for Murnaghan and V for Vinet.  
 

ζ-B EoS V115, Å3 K115, GPa K´ Ref. 

Experiment V 39.19(8) 577(65) 4 present study 
present study 2BM 39.20(8) 575(66) 4 

ab initio 
calculations 

3BM 38.99(4) 626 3.6 [19] 
2BM 39.11(4) 674 4 [18] 

M 38.09(3) 640 3.26 [23] 
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