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In several unconventional superconductors, the highest superconducting transition temperature
Tc is found in a region of the phase diagram where the antiferromagnetic transition temperature
extrapolates to zero, signaling a putative quantum critical point. The elucidation of the interplay
between these two phenomena – high-Tc superconductivity and magnetic quantum criticality – re-
mains an important piece of the complex puzzle of unconventional superconductivity. In this paper,
we combine sign-problem-free Quantum Monte Carlo simulations and field-theoretical analytical cal-
culations to unveil the microscopic mechanism responsible for the superconducting instability of a
general low-energy model, called spin-fermion model. In this approach, low-energy electronic states
interact with each other via the exchange of quantum critical magnetic fluctuations. We find that
even in the regime of moderately strong interactions, both the superconducting transition temper-
ature and the pairing susceptibility are governed not by the properties of the entire Fermi surface,
but instead by the properties of small portions of the Fermi surface called hot spots. Moreover,
Tc increases with increasing interaction strength, until it starts to saturate at the crossover from
hot-spots dominated to Fermi-surface dominated pairing. Our work provides not only invaluable
insights into the system parameters that most strongly affect Tc, but also important benchmarks to
assess the origin of superconductivity in both microscopic models and actual materials.

I. INTRODUCTION

In the two known families of high-temperature super-
conductors – the copper-based and the iron-based ma-
terials – the superconducting (SC) state is observed in
close proximity to an antiferromagnetic (AFM) state1–4.
In the particular cases of iron pnictides and electron-
doped cuprates, the highest SC transition temperature Tc
takes place in the vicinity of a putative antiferromagnetic
quantum critical point (QCP)5–7, i.e. a continuous AFM
phase transition that occurs at zero temperature (see Fig.
1). Although direct detection of such a QCP is difficult,
some of its manifestations at non-zero temperatures, such
as a nearly-diverging magnetic correlation length, are ex-
perimentally observed8,9. These observations led to the
proposal that quantum critical AFM fluctuations may
provide the glue binding the Cooper pairs in an uncon-
ventional SC state10–15, be it a nodal d-wave state, as in
the case of the cuprates, or a nodeless s+−-wave state,
as in the case of the iron pnictides.

The reasoning behind this theoretical proposal can
be understood from a straightforward extension of the
conventional weak-coupling BCS theory for phonon-
mediated s-wave superconductors. In contrast to the
electron-phonon coupling, which causes an attractive
pairing interaction that does not depend on momentum,
AFM fluctuations generate a repulsive pairing interac-
tion strongly peaked at the momentum corresponding to
the AFM wave-vector Q1–4. In this case, the BCS gap
equations only admit a solution if the gap function ∆ (k)
changes its sign when the momentum is translated by Q,
i.e. ∆ (k + Q) ∝ −∆ (k). As a result, depending on the
Fermi surface geometry and on the wave-vector Q, differ-
ent types of SC states are favored. While a d-wave state
is obtained for a large Fermi surface and Q = (π, π),
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Figure 1. Schematic phase diagram of the spin-fermion model.
The antiferromagnetic (AFM) transition temperature is sup-
pressed to zero at r = rc, giving rise to a quantum critical
point. According to the results of Ref.25 for the spin-fermion
model, a superconducting (SC) dome then appears, hiding
the antiferromagnetic quantum critical point. The maximum
Tc is found very close to r = rc.

an s+−-wave state arises for small Fermi pockets sep-
arated by Q = (π, 0) /(0, π). Despite its appeal, such
a weak-coupling BCS-like approach is not appropriate to
describe these systems, since the proximity to a QCP ren-
ders the interactions strong and, on top of that, clouds
the very concept of quasi-particles, which is a key prop-
erty of a Fermi liquid16.

Thus, while there is little question that AFM fluctua-
tions can promote an unconventional SC state, the eluci-
dation of the microscopic mechanisms involved remain a
major challenge. Addressing this issue is important not
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only to assess the relevance of quantum critical pairing
to high-Tc materials, but also to establish which of the
many system parameters should be ideally optimized to
enhance Tc. To answer these important questions, micro-
scopic models that are expected to display AFM and SC
ground states have been widely studied, most notably
the Hubbard model17–20. Alternatively, in the hope to
elucidate universal features of quantum critical pairing,
many works have focused on a general low-energy model
in which the fermions associated with the low-energy elec-
tronic states interact with each other by exchanging mag-
netic fluctuations, which in turn arise from high-energy
states – this is the so-called spin-fermion model10,12. Be-
cause these fluctuations are peaked at the AFM ordering
vectorQ, not all low-energy states are equally affected by
this interaction. More specifically, only states near the
hot spots – special points on the Fermi surface that are
displaced from each other by the AFM ordering vector Q
– can exchange AFM fluctuations while remaining near
the Fermi level. This property lends support to the idea
that the hot spots may play a primary role in driving the
superconducting transition.

However, despite intense research activity in this front,
the extent to which hot-spots properties govern the SC
instability remains a hotly debated issue. One of the
reasons is the difficulty in developing a controlled strong-
coupling theory for the spin-fermion model, which is ul-
timately related to the absence of a natural small pa-
rameter in the problem12,21–23. This situation is to be
contrasted with the phonon-mediated pairing problem,
where the clear separation between electronic and lattice
energy scales ensures the existence of a controlled dia-
grammatic expansion – the celebrated Eliashberg theory.

In this paper, we combine extensive Quantum Monte
Carlo (QMC) simulations and analytical calculations to
shed light on this problem. Our starting point is the two-
band version of the two-dimensional spin-fermion model,
in which the AFM fluctuations mediate interactions be-
tween electrons from two different bands. The choice of
a two-band model is essential, because it does not suf-
fer from the infamous sign-problem generally present in
QMC simulations24. While a recent study has established
the existence of a SC dome peaked at the AFM quantum
critical point of this model25, similarly to Fig. 1, in this
paper our goal is to elucidate the microscopic mecha-
nism responsible for this SC state. Unveiling the pairing
mechanism encoded in the spin-fermion model is funda-
mental to advance our understanding of the general prob-
lem of superconductivity in quantum critical systems for
several reasons. First, the sign-problem-free QMC algo-
rithm only works for the rather artifical two-band model.
Establishing the solution of this two-band spin-fermion
model, where the unbiased sign-problem-free QMC ap-
proach offers a unique benchmark for analytical approx-
imations, is the most promising way to generalize the re-
sults to other types of band structures. Second, being a
low-energy model, the main relevance of the spin-fermion
model to the ongoing effort to search for higher Tc ma-

terials is to provide robust trends for how changes in the
various system parameters affect Tc – e.g. is the density
of states at the Fermi level more important than the prop-
erties of the hot spots? Third, the spin-fermion model is
one among several models that have been proposed to
understand high-Tc systems. Without knowing the pre-
cise predictions of this model, it is very hard to rule out
or confirm that the physics encoded in the spin-fermion
model is relevant to the real systems.

In this paper, our general goal is to establish the gen-
eral solution of the spin-fermion model by a detailed com-
parison between numerics and analytics. To achieve this
goal, we study a family of band dispersions that interpo-
late between closed nearly-nested Fermi pockets to open
Fermi surfaces, passing through a van Hove singularity,
where the density of states is strongly peaked. This non-
trivial dependence of the density of states on the band
dispersion allows us to separate phenomena associated
with the Fermi surface as a whole and with the hot spots
only. Tuning the system to its AFM quantum critical
point, we extract from our QMC results both the super-
conducting transition temperature Tc – which in our two-
dimensional system is a Berezinski-Kosterlitz-Thouless
transition – and the temperature dependence of the pair-
ing susceptibility, χpair. Similarly to previous works24–26,
we find that the favored SC state is the one in which the
gap function changes sign from one band to the other
– in qualitative agreement with the weak-coupling argu-
ments given above. Our main results, however, are on
the dependence of Tc and χpair on the band dispersion
parameters. Surprisingly, we find that Tc is not sensitive
to the density of states Nf , which displays a sharp en-
hancement near the van Hove singularity. Instead, even
when the interaction strength is comparable to the band-
width, Tc is found to depend only on the angle between
the Fermi velocities of a pair of hot spots, sin θhs, via:

Tc = Acλ
2 sin θhs (1)

where λ is the interaction parameter that couples mag-
netic and electronic degrees of freedom, and Ac is a uni-
versal constant independent of the band dispersion. As
for the pairing susceptibility, we show that the QMC data
for all band dispersions collapse onto a single curve given
by:

χpair (T ) = Apairfpair

(
T

Tc

)
(2)

where fpair

(
T
Tc

)
is a universal function that does not

depend on the band dispersion, whereas Apair is a con-
stant that depends weakly on the band dispersion. Eqs.
(1) and (2) are the main results of our paper, establish-
ing that the hot-spots properties govern not only the SC
transition temperature, but also the temperature depen-
dence of the SC fluctuations. To understand these re-
sults, we analytically study the spin-fermion model via
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a hot-spots Eliashberg approximation introduced in pre-
vious works for the one-band model10,14. Basically, this
approximation consists of assuming that the magnetic
degrees of freedom are much slower than the electronic
ones, and that the hot spots govern the critical proper-
ties of the system. Despite being formally uncontrolled,
this approximation not only gives the same functional de-
pendence of the SC transition temperature on the spin-
fermion parameters of Eq. (1), but it also captures very
well the universal function fpair (x) obtained from the
QMC results.

An immediate consequence of Eq. (1) is that Tc would
not have an upper limit upon increasing the interaction
λ. We find, however, that when λ2 becomes larger than
the electronic bandwidth, Tc stops increasing and nearly
saturates to a value of the order of a few percent of
the electronic bandwidth. Combined with our analyti-
cal investigation of the spin-fermion model, we attribute
this behavior to the whole Fermi surface behaving as a
“large hot-spot,” and to the failure of the hot-spots-only
approximation27. Therefore, our results indicate that,
within the spin-fermion model, the largest possible value
of Tc does not depend on the interaction strength, and
is first achieved at the crossover between hot-spots dom-
inated and Fermi-surface dominated pairing.

II. THE SPIN-FERMION MODEL

The spin-fermion model is a low-energy model widely
employed to study universal properties of pairing medi-
ated by AFM fluctuations10,12,24. It describes low-energy
electronic degrees of freedom interacting with magnetic
fluctuations that arise from high-energy degrees of free-
dom. In this work, we consider a two-dimensional model
with two independent bands, yielding the following non-
interacting Hamiltonian:

H0 =
∑
kα

εc,kc
†
kαckα +

∑
k,α

εd,kd
†
kαdkα . (3)

Here, the operator c†kα creates an electron with momen-
tum k and spin α at band c. The centers of the two
bands are displaced from each other by the AFM order-
ing vector Q = (π, π), and the dispersions are given by

εc,k = µ− 2(t+ δ) cos kx − 2(t− δ) cos ky

εd,k+Q = −µ+ 2(t− δ) cos kx + 2(t+ δ) cos ky , (4)

where t is the hopping parameter, µ is the chemical po-
tential, and momentum is measured in units of the inverse
lattice constant 1/a. Note that this model is symmet-
ric under the combination of a π/2 rotation, a particle-
hole transformation, and the exchange of the two bands.
Hereafter, we set µ = t. By changing the parameter δ, the
band dispersions interpolate between two closed nearly-
nested Fermi pockets (δ < t/4) and two open Fermi sur-
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Figure 2. The two-band spin-fermion model. Fermi sur-
faces corresponding to the two bands (red and blue curves)
in the first Brillouin zone, for different values of δ/t. One
of the bands (blue) is displaced by the AFM wave-vector
Q = (π, π), which makes both Fermi surfaces appear concen-
tric. In this representation, a pair of hot spots, defined by
εc,khs = εd,khs+Q = 0, correspond to the points at which
the two Fermi surfaces overlap. For the system parameters
used here, the hot spots are always along the diagonals of
the Brillouin zone. By changing the parameter δ/t, the sys-
tem interpolates between closed nearly-nested Fermi surfaces
(δ/t < 1/4) and open Fermi surfaces (δ/t > 1/4), crossing
a van Hove singularity at δ/t = 1/4. The angle θhs between
the Fermi velocities of a pair of hot spots (red and blue ar-
rows) increases as function of δ/t (note that one of the Fermi
velocities has been multiplied by −1 for clarity purposes).

faces (δ > t/4), see Fig. 2. For δ = t/4, the band disper-
sion has a saddle point at the Fermi level, implying the
existence of a van Hove singularity, which is characterized
by a diverging density of states, Nf .

In the spin-fermion model the electrons interact with
each other only via the exchange of magnetic fluctua-
tions. As a result, the interaction action is given by:

Sint = λ
∑
j

ˆ
τ

Mje
iQ·xj ·

(
c†j,ασαβdj,β + h.c.

)
. (5)

Here, j denotes lattice sites, τ is the imaginary time, λ
is the (Yukawa) coupling constant describing the inter-
action between electrons and magnetic fluctuations, σ
are Pauli matrices, and M is the bosonic field associated
with magnetic order with wave-vector Q. The spectrum
of magnetic fluctuations is determined by the magnetic
action, which in turn arises from high-energy electronic
degrees of freedom:
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Smag =
1

2

ˆ
x,τ

[
1

v2
s

(∂τM)
2

+ (∇M)
2

+ rM2 +
u

2
M4

]
(6)

In this expression, r is a tuning parameter that tunes
the system through the magnetic quantum critical point,
u = 1/(2t) > 0 is a parameter penalizing strong ampli-
tude fluctuations, and vs = 4t is the spin-wave velocity.
Note that, in our notation, λ2 has dimensions of energy.
If λ was zero, Eq. (6) would describe a magnetic ordered
phase that, at T = 0, undergoes a second-order quantum
phase transition to a paramagnetic state at r = rc (see
Fig. 1). The coupling to the electrons not only shifts the
value of rc, but it also promotes new electronic ordered
phases, most notably superconductivity. Additional de-
tails about the spin-fermion model are given in Appedix
A.

III. SIGN-PROBLEM-FREE QUANTUM
MONTE CARLO SIMULATIONS

Eqs. (3), (5), and (6) define the two-band spin-fermion
model. Because the total fermionic action S0 +Sint com-
mutes with an anti-unitary operator for every configu-
ration of M, all eigenvalues of the fermionic determi-
nant are complex-conjugate pairs, implying that deter-
minant QMC simulations do not suffer from the sign-
problem24. Here, S0 is the non-interacting action as-
sociated with H0 in Eq. (3). Previous QMC studies
have shown conclusively that, in this type of models,
the sign-changing SC pairing susceptibility is strongly
enhanced near the magnetic QCP24–26. Because the
system is two-dimensional, at finite temperatures only
quasi-long-range SC order is stabilized, which happens
below the Berezinskii-Kosterlitz-Thouless (BKT) transi-
tion temperature Tc. The latter was shown to be max-
imum very close to the putative quantum critical point
r = rc

25. More recently, similar sign-problem-free QMC
approaches have been used to study charge fluctuations
near an AFM-QCP and the onset of SC near a nematic
QCP26,28–30.

Here, our goal is to establish which band structure pa-
rameters determine Tc and χpair, in order to shed light
on the microscopic mechanism by which quantum critical
AFM fluctuations promote superconductivity. Our pro-
cedure is the following: for a given band dispersion, la-
beled by δ/t, we first determine the approximate location
of the AFM quantum critical point rc by analyzing both〈
M2
〉
and the Binder cumulant. To save computational

time, we consider an easy-plane AFM order parameter,
restricting M to lie in the XY plane. We verify that the
system is in the magnetically disordered state and very
close to the QCP by computing the renormalized mass
term of the magnetic propagator. Note that for the sys-
tem to be in a quantum critical regime, it is enough that
the magnetic mass term be much smaller than πTc/γ,

where γ is the Landau damping. As long as this condi-
tion is satisfied, even if at T = 0 the AFM transition be-
comes weakly first-order, the system’s behavior at finite
temperatures would still be nearly indistinguishable from
a quantum critical one. The static pairing susceptibility
in the sign-changing SC channel, χpair, is obtained by di-
rect computation of the pair correlation function, while
the superfluid density ρs is obtained from the current-
current correlation function. We study square lattices of
sizes L = 8, L = 10, L = 12, and L = 14. Spurious
finite size effects are diminished by threading a fictitious
magnetic flux quantum through the system. Technical
details of the QMC implementation are similar to those
in Ref.25, and are summarized in Appendix B.

For each system size L, we associate a transition tem-
perature Tc (L) to the temperature at which the BKT
condition is met, ρs = 2Tc/π. In Fig. 3, we show the
behavior of Tc (L) at the AFM-QCP as function of the
parameter δ/t introduced in Eq. (4) for a moderately
strong interaction parameter λ2 = 8t. For most band
dispersion parameters, Tc (L) of the two largest system
sizes are coincident within the QMC statistical error bars.
In these cases, our best estimate for the thermodynamic
value of Tc ≡ Tc (L→∞) is the value corresponding to
the largest system size, Tc (Lmax) (filled symbols in the
figure). For the band dispersion parameters in which
Tc does not seem to fully converge with system size,
namely δ/t = 0.6 and δ/t = 0.8, Tc (Lmax) should be
understood as an upper bound on Tc. In these cases, we
also provide a lower bound on Tc, represented by stars
in the figure (see Appendix B for more details of this
procedure). Clearly, the finite size effects seem to af-
fect mostly the band dispersion with δ/t = 0.8, which
has a more pronounced one-dimensional character, as
shown in Fig. 2d. Interestingly, analytical studies of
the spin-fermion model suggested a strong competition
between SC and charge order for quasi-one-dimensional
band dispersions12,13. Whether this is related to the
stronger finite size effects observed for δ/t = 0.8 is an
interesting topic for future investigation.

Surprisingly, Fig. 3 reveals that Tc is not sensitive to
the non-interacting density of states Nf , which diverges
at the van Hove singularity at δ/t = 0.25, as shown in
the same figure (as shown in the supplementary material,
even for our finite systems, Nf is also peaked at the van
Hove singularity). Instead, we find that Tc increases lin-
early with sin θhs, where θhs is the angle between the non-
interacting Fermi velocities of a hot-spot pair (see Fig.
2). In contrast to Nf , which varies non-monotonically as
function of δ/t, sin θhs changes monotonically according
to sin θhs = 2(δ/t)

1+(δ/t)2
.

The results shown in Fig. 3 imply that the SC transi-
tion is rather insensitive to what happens across the en-
tire Fermi surface, but very sensitive to the properties of
the hot spots. To further investigate the SC properties of
the system, in Fig. 4 we plot the temperature-dependent
inverse pairing susceptibility χ−1

pair (T ) for all band dis-
persions at their respective QCPs. We find that, for a
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Figure 3. The superconducting transition temperature Tc at
the QCP for different band dispersion parameters. (a) The
QMC results for Tc and the calculated density of states Nf
(calculated directly from the band dispersions) as function
of the band dispersion parameter δ/t (see Fig. 2). We as-
sociate a transition temperature Tc (L) to the temperature
at which the BKT condition is met for a system of size L,
and denote Tc (Lmax) by filled symbols. Analysis of finite-
size effects reveals that for most values of δ/t, Tc (Lmax) is a
very good estimate for the thermodynamic-limit value Tc. For
the systems in which Tc (L) does not fully converge, namely
δ/t = 0.6 and δ/t = 0.8, Tc(Lmax) are upper bound values
for Tc, whereas the stars are lower bound values on Tc. Note
the enhanced Nf at the van Hove singularity point δ/t = 1/4.
(b) The linear relationship between Tc and sin θhs, where θhs
is the angle between the two Fermi velocities of a pair of hot
spots, calculated directly from the band dispersions.

rather wide temperature range, the normalized suscepti-
bilities χ−1

pair (T ) /χ−1
pair (3Tc) plotted as function of T/Tc

collapse onto a single curve, for all values of δ/t and of
L. As a result, it follows that the pairing susceptibil-
ity must be of the form of Eq. (2). While the constant
Apair, which determines the overall amplitude of the SC
fluctuations, depends weakly on δ/t (see Fig. 4), the
function fpair (T/Tc), which determines the temperature
dependence of the SC fluctuations, is universal and inde-
pendent on the band dispersion. Therefore, these results
imply that for a wide range of temperatures, the SC fluc-
tuation spectrum is determined by the same energy scale
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Figure 4. Universal temperature dependence of the pairing
susceptibility χpair at the QCP. (a) Temperature dependence
of χ−1

pair extracted from QMC simulations for all band disper-
sion parameters δ/t. The system size is L = 12. (b) Collapse
of the scaled χ−1

pair(T )/χ−1
pair(3Tc) as function of T/Tc for all

values of δ/t and all system sizes L. For each value of L,
we used the corresponding Tc(L). The black dashed curve
is the analytical function f (hs)

pair (T/Tc)/f
(hs)
pair (3) obtained from

the hot-spots Eliashberg approximation of the spin-fermion
model. (c) The behavior of the QMC-extracted pre-factor
Apair ∝ χpair(3Tc) of Eq. (2) as function of δ/t.
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that determines Tc – which, according to the analysis in
Fig. 3, is related to the hot-spots properties.

IV. COMPARISON WITH THE HOT-SPOTS
ELIASHBERG ANALYTICAL APPROXIMATION

To gain a deeper understanding of the origin of our
QMC results, we analytically solve the spin-fermion
model within the hot-spots Eliashberg approximation in-
troduced in previous works10,14,31. Physically, the main
assumptions of this approximation are that the magnetic
degrees of freedom are much slower than the electronic
degrees of freedom, and that the pairing instability arises
only from the hot spots (see Appendix A for technical de-
tails). Formally, the first assumption can be justified if
the number of electronic “flavors” is extended from 1 to
N , and N is taken to be infinitely large – although re-
cent works have raised important issues on the general
validity of a 1/N expansion12,21,22.

One of the main outcomes of the hot-spots Eliash-
berg approximation is that the dynamics of the quantum
magnetic fluctuations ceases to be ballistic and, instead,
becomes overdamped due to the decay of spin fluctua-
tions into electron-hole excitations32. The strength of
this process is encoded in the Landau damping parame-
ter γ ∝ v2

F sin θhs/λ
2, which depends on the Fermi veloc-

ity at the hot spots vF , on the interaction parameter λ,
and on the hot-spot angle sin θhs. The latter is nothing
but a constraint on the phase space available for the de-
cay of the spin fluctuations into electron-hole pairs. This
property already suggests that the dependence of Tc on
sin θhs observed in the QMC results must be connected
to the Landau damping. Indeed, a full analysis reveals
that, at the QCP, the only energy scale in the hot-spots
Eliashberg approximation is given by:

ΛQCP ∝
(
λ2

vF

)2

γ ∝ λ2 sin θhs (7)

which does not depend on the density of states or the
Fermi velocity. Consequently, the superconducting tran-
sition temperature at the QCP can only depend on
this energy scale14,31, yielding T (hs)

c = A
(hs)
c λ2 sin θhs, in

agreement with the QMC results. We use the superscript
(hs) to distinguish the calculated T (hs)

c from the numeri-
cally obtained Tc. If we plug in the bare value of the in-
teraction parameter on the hot-spots Eliashberg approx-
imation, we obtain T

(hs)
c /t = 0.14 sin θhs, which is very

close to the linear fitting in Fig. 3, T (hs)
c /t = 0.13 sin θhs.

However, in comparing T (hs)
c with our QMC results, it is

important to recognize that the BKT physics is absent
in the hot-spots Eliashberg approximation. Of course,
if the phase fluctuations responsible for the suppression
of T (hs)

c are only weakly sensitive on the band structure
parameters33, then the Eliashberg transition tempera-
ture T (hs)

c and the BKT transition temperature Tc should
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Figure 5. Dependence of the superconducting transition tem-
perature on the interaction strength. For three values of the
band dispersion parameter δ/t, we show the QMC results for
Tc, in units of the hopping parameter t and normalized by the
corresponding value of sin θhs, as function of the squared cou-
pling constant λ2 (in units of 8t) describing how strong the
electrons interact with AFM fluctuations. The system size is
L = 12. The dashed line, which denotes a λ2 dependence, has
the same slope as in Fig. 3b, and is expected from the analyt-
ical hot-spots Eliashberg solution of the spin-fermion model.
The absence of the data point corresponding to δ/t = 0.8 and
λ2 = 4.5t is because Tc did not converge as function of the
system size for these parameters.

be simply related by a constant α, Tc = αT
(hs)
c . The fact

that Tc scales linearly with sin θhs in our QMC simula-
tions suggests that this is indeed the case.

We can also compute the pairing susceptibility
χ

(hs)
pair (T ) within the hot-spots Eliashberg approximation.

At the QCP, we obtain an expression of the form of
Eq. (2), with the universal function f

(hs)
pair (T/Tc) plot-

ted together with the collapsed QMC points in Fig. 4.
The overall agreement between the two curves is evi-
dent and, surprisingly, holds over a rather wide tem-
perature range. This confirms our previous conclusion
that fpair(x) arises from hot-spots properties. The fact
that the analytical function f (hs)

pair (T/Tc), which is insen-
sitive to BKT physics, captures well the behavior of the
QMC-derived function fpair(T/Tc), suggests that vortex-
antivortex fluctuations characteristic of the BKT transi-
tion do not play a major role in our QMC simulations.
Indeed, for all system sizes studied, χpair (T ) does not
show any indication of an exponential temperature de-
pendence near Tc.

An important prediction of the hot-spots Eliashberg
approximation is that Tc increases not only with sin θhs,
but also with λ2. As a result, if the hot-spots Eliash-
berg approximation is correct, Tc would not be bounded
and could increase indefinitely as function of the interac-
tion parameter λ. To verify this property, we chose three
band dispersion parameters and obtained Tc for several
values of λ. As shown in Fig. 5, we find a reasonable
scaling of Tc/ sin θhs with λ2 for moderately large values
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of the interaction parameter, i.e. λ2 of the order of the
bandwidth 8t. The slope of this line is the same as that
in Fig. 3b. Note that for λ = 0, we have a system of
non-interacting electrons with χpair = 2Nf ln

(
Λ
T

)
, im-

plying that Tc = 0. More interestingly, for λ2

8t & 2, we
start observing strong deviations from the λ2 behavior,
signaling the failure of the hot-spots Eliashberg approx-
imation. Furthermore, in this regime, Tc increases very
mildly and seems to saturate.

To shed light on this behavior, we note that a key
approximation of the hot-spots Eliashberg approach is
that the momentum associated with the hot-spots typi-
cal energy scale – also called the hot-spots width, δqhs ∼
a−1

√
Tc/γ – is small compared to the Fermi momen-

tum qF ∼ 1/a. However, because both Tc and γ−1 in-
crease with λ2, the hot-spots width δqhs also increases
with λ2, and eventually becomes comparable to qF for
large enough values of λ. In this situation, the whole
Fermi surface becomes hot and effectively behaves as a
“large hot-spot.” In this case, as shown in the supplemen-
tary material, the system still has a single energy scale
at the QCP, but instead of Eq. (7) it is given by:

Λ̃QCP ∝ p0

(
λ2

vF

)
γ ∝ p0vF sin θhs (8)

where p0 is a momentum scale associated with the size of
the Fermi surface, and therefore is not a hot-spot prop-
erty. Thus, in this limit, T (hs)

c becomes independent of
λ and saturates. A similar behavior was found in Ref.27
for the one-band spin-fermion model. Therefore, we can
attribute the near saturation of Tc observed in our QMC
results to a crossover from pairing dominated by the hot
spots to pairing dominated by the entire Fermi surface.
Naively, in the latter case, one would expect Tc to be
more sensitive to the van Hove singularity. Interestingly,
our QMC results for λ2

8t = 4 do not reveal a sharp en-
hancement near δ = t/4 (see Appendix B). One possible
reason for this behavior is that the Fermi surface proper-
ties become less important when interactions become too
strong. While a detailed analysis is beyond the scope of
this paper34, future analytical studies of the spin-fermion
model near a van Hove singularity could shed light on this
behavior.

V. CONCLUDING REMARKS

In summary, we showed that within the spin-fermion
model the SC properties near an AFM quantum critical
point, including both the transition temperature Tc and
the temperature-dependent pairing susceptibility χpair,
are dominated by the properties of the hot spots, while
being rather insensitive to the global properties of the
Fermi surface. More specifically, the functional depen-
dences of Tc and χpair inferred from our QMC results,
given by Eqs. (1) and (2), are very well captured by

an approximate analytical solution of the spin-fermion
model that focuses on the impact of the Landau damp-
ing on the pairing interaction. In other words, the hot-
spots Eliashberg approach provides an excellent approx-
imate solution to the spin-fermion model, which presum-
ably should hold also for systems with different types
of band dispersions beyond the rather artifical two-band
case. It is surprising that such an approximation works
well even for moderately large values of the interaction λ2

between the AFM fluctuations and the low-energy elec-
tronic states. However, our combined QMC-analytical
analysis also reveals that when λ2 becomes larger than
the electronic bandwidth, the hot-spots approximation
fails. Interestingly, at this crossover from hot-spots dom-
inated pairing to Fermi-surface dominated pairing, Tc
seems to start saturating, signaling that the maximum
possible Tc value for this model has been achieved.

Our results have important implications to the under-
standing of quantum critical pairing in general. On the
one hand, by establishing that the properties of the hot
spots govern the SC properties of the low-energy spin-
fermion model, it offers important insights into which
of the many system parameters should be changed to
optimize Tc in an ideal system. For instance, it be-
comes clear that systems with nearly-nested Fermi sur-
faces, where sin θhs is small, despite having an abun-
dance of low-energy magnetic fluctuations, have a much
smaller transition temperature than systems with non-
nested Fermi surfaces, where sin θhs is larger. Conversely,
our results establish robust and well-defined benchmarks
that allow one to assess whether the SC state obtained
in other microscopic models – or even the superconduct-
ing state observed in actual materials – falls within the
“universality class” of the low-energy spin-fermion model.
Two such benchmarks, for instance, are the linear de-
pendence of Tc on sin θhs and the saturation of Tc for
large interactions. Large-cluster DMFT simulations of
the Hubbard model18–20 may be able to test these bench-
marks and elucidate whether the superconducting prop-
erties of the Hubbard model are determined by hot-spots
properties or whether they depend on physics beyond
the spin-fermion model. On the experimental front, the
most promising material candidates that show signatures
of AFM quantum criticality near optimal doping are
electron-doped cuprates and isovalent-doped pnictides.
As for hole-doped cuprates, although they do have a
putative AFM quantum critical point, they also display
phenomena that have yet to be observed in QMC sim-
ulations of the spin-fermion model, such as additional
intertwined ordered phases35 and a transition from small
to large Fermi surface without an obvious accompany-
ing order36. One interesting possibility is to investigate
how pressure affects Tc in these compounds, and correlate
these changes with the pressure-induced modifications of
the hot-spots properties.



8

ACKNOWLEDGMENTS

We thank A. Chubukov, J. Kang, S. Kivelson, S. Led-
erer, and J. Schmalian for useful discussions. X.W. and
R.M.F. were supported by the U.S. Department of En-
ergy, Office of Science, Basic Energy Sciences, under
Award number DE-SC0012336. R.M.F. and X.W. thank
the Minnesota Supercomputing Institute (MSI) at the
University of Minnesota, where part of the numerical

computations was performed. E.B. was supported by
the Israel Science Foundation under Grant No. 1291/12,
by the US-Israel BSF under Grant No. 2014209, by a
Marie Curie career reintegration grant, and by an Alon
fellowship. R.M.F. and E.B. thank the hospitality of the
Aspen Center for Physics, where part of this work was
developed. The Aspen Center for Physics is supported
by National Science Foundation grant PHY-1066293.

1 K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev.
B 34, 6554 (1986).

2 D. J. Scalapino, E. Loh, Jr. and J. E. Hirsch, Phys. Rev.
B 34, 8190 (1986).

3 P. Monthoux, A. V. Balatsky, and D. Pines, Phys. Rev.
Lett. 67, 3448 (1991).

4 P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep.
Prog. Phys. 74, 124508 (2011).

5 Y. Dagan, M. M. Qazilbash, C. P. Hill, V. N. Kulkarni,
and R. L. Greene, Phys. Rev. Lett. 92, 167001 (2004).

6 L. Taillefer, Annu. Rev. Condens. Matter Phys. 1, 51
(2010).

7 J. G. Analytis, H-H. Kuo, R. D. McDonald, M. Wartenbe,
P. M. C. Rourke, N. E. Hussey, and I. R. Fisher, Nature
Phys. 10, 194 (2014).

8 E. M. Motoyama, G. Yu, I. M. Vishik, O. P. Vajk, P. K.
Mang, and M. Greven, Nature 445, 186 (2007).

9 T. Shibauchi, A. Carrington, and Y. Matsuda, Annu. Rev.
Condens. Matter Phys. 5, 113 (2014).

10 A. Abanov, A. V. Chubukov, and J. Schmalian. Adv. Phys.
52, 119 (2003).

11 B. Kyung, J.-S. Landry, and A.-M. S. Tremblay, Phys. Rev.
B 68, 174502 (2003).

12 M. A. Metlitski, and S. Sachdev, Phys. Rev. B 82, 075128
(2010).

13 K. B. Efetov, H. Meier, and C. Pépin, Nat. Phys. 9, 442
(2013).

14 Y. Wang, A. G. Abanov, B. L. Altshuler, E. A.
Yuzbashyan, A. V. Chubukov, arXiv:1606.01252 (2016).

15 A. J. Millis, Phys. Rev. B 45, 13047 (1992).
16 H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev.

Mod. Phys. 79, 1015 (2007).
17 N. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. B

47, 2742 (1993).
18 T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent,

and J. B. White, Phys. Rev. Lett. 95, 237001 (2005).
19 K. Haule and G. Kotliar, Phys. Rev. B 76, 104509 (2007).
20 E. Gull, O. Parcollet, and A. J. Millis, Phys. Rev. Lett.

110, 216405 (2013).
21 S.-S. Lee, Phys. Rev. B 80, 165102 (2009).
22 D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys.

Rev. B 82, 045121 (2010).
23 S. Raghu, G. Torroba, and H. Wang, Phys. Rev. B 92,

205104 (2015).
24 E. Berg, M. A. Metlitski, and S. Sachdev, Science 338,

1606 (2012).
25 Y. Schattner, M. H. Gerlach, S. Trebst, and E. Berg, Phys.

Rev. Lett. 117, 097002 (2016).
26 Z.-X. Li, F. Wang, H. Yao, and D.-H. Lee,

arXiv:1512.04541.
27 Ar. Abanov, A.V. Chubukov, and M.R. Norman, Phys.

Rev. B 78, 220507 (2008).
28 Z.-X. Li, F. Wang, H. Yao, and D.-H. Lee, Science Bulletin

61, 925 (2016).
29 Y. Schattner, S. Lederer, S. A. Kivelson, and E. Berg,

arXiv:1511.03282.
30 P. T. Dumitrescu, M. Serbyn, R. T. Scalettar, and A. Vish-

wanath, arXiv:1512.08523.
31 J. Kang and R. M. Fernandes, Phys. Rev. B 93, 224514

(2016).
32 M. H. Gerlach, Y. Schattner, E. Berg, and S. Trebst,

arXiv:1609.08620.
33 A. V. Chubukov and J. Schmalian, Phys. Rev. B 72,

174520 (2005).
34 R. J. Radtke, K. Levin, H.-B. Schüttler, and M. R. Nor-

man, Phys. Rev. B 48, 15957 (1993).
35 E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Rev.

Mod. Phys. 87, 457 (2015).
36 S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B.

Vignolle, D. Vignolles, J. Béard, D. A. Bonn, W. N. Hardy,
R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust,
Nature 531, 210 (2016).

Appendix A: Spin-fermion model: hot-spots
Eliashberg approximation

1. Calculation of Tc

The hot-spots Eliashberg approximation consists ba-
sically of three steps, see for instance Ref.10,14: (i)
the bosonic self-energy Π (q, ωn) is computed within
one loop; (ii) the normal and anomalous parts of the
fermionic self-energy Σ (q, ωn) are solved self-consistently
within one loop, without vertex corrections; (iii) the re-
sulting gap equations are solved only at the hot spots.
In this approximation, the electronic band dispersions
are linearized in the vicinities of the hot spots, εik ≈
vF,i · (k − khs). For the specific band dispersions of our
model, because the hot spots are always along the diag-
onal |kx| = |ky|, we have |vF,i| = vF for all hot spots,
with:

vF = 2t

√√√√2

[
1−

( µ
4t

)2
][(

δ

t

)2

+ 1

]
(A1)
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Another quantity that also depends on the band dis-
persion parameter δ is the angle between the Fermi ve-
locities of a hot-spot pair:

sin θhs =
2 (δ/t)

1 + (δ/t)
2 (A2)

Note that the angle is always defined such that
sin θhs > 0. After computing the one-loop bosonic self-
energy, we find the renormalized propagator:

χ−1(q, iΩn) = r̃ + q2a2 +
|Ωn|
γ

(A3)

where r̃ = r−Π (0, 0) is the renormalized mass term, and
the Landau damping coefficient is given by:

γ =
πv2

F sin θhs

λ2N
(A4)

Here, λ is the Yukawa coupling constant, and N is the
number of hot spots pairs, which in our model is N =
4. To compute the one-loop self-consistent self-energy, it
is convenient to work on Nambu space, defined by the
spinors ψ†c,k ≡ (c†k↑, c−k↓), and ψ

†
2,k ≡ (d†k+Q↑, d−k−Q↓).

The self-energy is then given by:

Σ̂c,k =
nbλ

2

βV

∑
p

χ(k − p)Ĝd,p (A5)

where nb = 1, 2, 3 for Ising, XY and Heisenberg spins, re-
spectively. Here, β is the inverse temperature, V = L2 is
the volume of the system, and k = (ωn,k). Hereafter, we
will measure all momenta in units of the inverse lattice
spacing 1/a. To proceed, we parametrize the fermionic
self-energy as Σ̂i,k = (1 − Zi,k)iωnτ0 + ζi,kτ3 + φi,kτ1,
where τ are Pauli matrices in Nambu space. The normal
components of the self-energy are thus expressed in terms
of Zi,k and ζi,k, whereas the anomalous part, propor-
tional to the superconducting gap, is expressed in terms
of φi,k. From Dyson’s equations, we obtain the dressed
Green’s function:

Ĝi,k = −Zi,kiωn + εi,kτ3 + φi,kτ1
Z2
i,kω

2
n + ε2

i,k + φ2
i,k

(A6)

with renormalized εi,k → εi,k + ζi,k. Substitution back
into Eq. (A5) and linearizing in φi, we find the self-
consistent equations:

(1− Z1,k)iωn = −nbλ
2

βV

∑
ωm,p

χ(k− p, iωn − iωm)

×
(

Z2,piωm
Z2

2,pω
2
m + ε2

2,p

)

φ1,k = −nbλ
2

βV

∑
ωm,p

χ(k− p, iωn − iωm)

×
(

φ2,p

Z2
2,pω

2
m + ε2

2,p

)
(A7)

Analogous equations hold for Z2,k and φ2,k. Note that
in the Eliashberg approximation, the bosonic propaga-
tor χ is not calculated self-consistently, i.e. the bosonic
self-energy is computed using the non-interacting Green’s
functions10.

To proceed, we solve these equations only at the hot
spots, and therefore ignore the momentum dependence of
the quasi-particle weight Z and of the gap φ. Within the
Eliashberg approximation, we only need to consider the
variation of the bosonic propagator with respect to the
momentum parallel to the Fermi surface, χ(q, iΩn) ≈
χ(q‖, iΩn). These key aspects of the hot-spots Eliash-
berg approximation highlight the fact that the bosonic
degrees of freedom are much slower than the fermionic
ones. Using these approximations, one can then perform
the integration over momentum in the previous expres-
sions by changing coordinates to

(
p‖, p⊥

)
, i.e. momenta

parallel and perpendicular to the Fermi surface near the
hot spots. As a result, εi,p = vF p⊥, and one obtains:

Z(ωn) = 1 +
nbλ

2T

4vF

∑
ωm

Vpair (ωn − ωm)
sign(ωm)

ωn
(A8)

φ(ωn) =
nbλ

2T

4vF

∑
ωm

Vpair (ωn − ωm)
φ(ωm)

Z(ωm)|ωm|
(A9)

To write these expressions, we note that Z1 = Z2, since
the Fermi velocities are the same at both points of the
hot-spot pair, and φ1 = −φ2 is the only possible solution
to the gap equations. The pairing interaction is given by:

Vpair (Ωn) =

ˆ p0
2

− p0
2

dp‖

π

1

p2
‖ + r̃ + |Ωn|/γ

(A10)

where p0 ∼ O(1) is an upper momentum cutoff related
to the size of the Fermi surface in the Brillouin zone.
This momentum scale is to be compared to the typical
“momentum width” of the hot spots, δphs =

√
2πTc/γ,

determined by comparing the frequency and momen-
tum dependent terms in Eq. (A3) for the energy scale
Ωn = 2πTc. In the hot-spots Eliashberg approximation,
p0 � δphs, and we can replace p0 → ∞ in the previous
expression, yielding:
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Vpair (Ωn) =

√
1

r̃ + |Ωn|/γ
(A11)

Therefore, the Eliashberg equations become:

Z(ωn) = 1 +
1

2π

√
ΛQCP

T

∑
ωm

1√
|n−m|+ r̃γ

2πT

sign(ωm)

n+ 1
2

(A12)

φ(ωn) =
1

2π

√
ΛQCP

T

∑
ωm

1√
|n−m|+ r̃γ

2πT

φ(ωm)

Z(ωm)|m+ 1
2 |

(A13)

where we introduced the energy scale:

ΛQCP ≡
(
nbλ

2

4vF

)2
γ

2π
=
n2
bλ

2 sin θhs

32N
(A14)

The key point is that at the QCP, r̃ = 0, and the
only energy scale in the problem is given by ΛQCP (a
similar behavior is found slightly away from the QCP, as
long as r̃ � 2πTc/γ). Therefore, the superconducting
transition temperature at the QCP is set by the only
energy scale in the problem, i.e. Tc = αΛQCP, where α
is a number (no cutoff is necessary, in contrast to the
BCS case). According to our numerical solution of the
Eliashberg equations, we find α ≈ 0.56, in agreement
with previous calculations14,31. Note that, as pointed
out in Ref.14, when r̃ = 0, the term m = n in the sum
that appears in the determination of Z (ωn) is exactly
canceled by the term m = n in the sum that appears
in the determination of φ (ωn). This is easily seen by
defining the pairing gap ∆ ≡ φ/Z, and separating out
the m = n term from Eqs. (A12):

[
Z(ωn)− 1

2π

√
ΛQCP

T

√
2πT

r̃γ

1

|n+ 1
2 |

]
= 1 +

1

2π

√
ΛQCP

T

∑
ωm 6=ωn

1√
|n−m|+ r̃γ

2πT

sign(ωm)

n+ 1
2

(A15)

∆(ωn)

[
Z(ωn)− 1

2π

√
ΛQCP

T

√
2πT

r̃γ

1

|n+ 1
2 |

]
=

1

2π

√
ΛQCP

T

∑
ωm 6=ωn

1√
|n−m|+ r̃γ

2πT

∆(ωm)

|m+ 1
2 |

(A16)

Therefore the m = n term does not enter into the lin-
earized gap equation, and that there is a finite supercon-
ducting transition temperature in the limit r → 0. It is
important to note that λ2/N does not necessarily have
the same bare value that enters the Hamiltonian in the
QMC simulations, since magnetic fluctuations are known
to effectively renormalize the interactions. If neverthe-
less we use the bare values of λ and N to estimate Tc,
i.e. λ2 = 8t and N = 4, we would get Tc/t ≈ 0.14 sin θhs,
which is about 10% larger than the BKT superconducting
transition temperature obtained from the QMC simula-
tions.

It is also instructive to consider the opposite limit in
which the entire Fermi surface becomes hot, i.e. p0 �
δphs. This is certainly the case when 2πTc � γ; since
Tc, γ

−1 ∝ λ2, this means that this limit is achieved for
large values of the Yukawa coupling. In this case, the
pairing interaction becomes:

Vpair (Ωn) =
p0/π

r̃ + |Ωn|/γ
(A17)

As a result, at the QCP, r̃ = 0, there is still only one

energy scale in the Eliashberg equations, now set by:

Λ̃QCP ≡
p0

π

(
nbλ

2

4vF

)
γ

2π
=
nbp0vF sin θhs

8πN
(A18)

The Eliashberg equations become:

Z(ωn) = 1 +
1

2π

(
Λ̃QCP

T

)∑
ωm

1

|n−m|+ r̃γ
2πT

sign(ωm)

n+ 1
2

(A19)

φ(ωn) =
1

2π

(
Λ̃QCP

T

)∑
ωm

1

|n−m|+ r̃γ
2πT

φ(ωm)

Z(ωm)|m+ 1
2 |

(A20)

Therefore, at r̃ = 0, Tc = α̃Λ̃QCP becomes independent
of the Yukawa coupling, and may depend on additional
properties of the Fermi surface, as indicated by the pres-
ence of the momentum scale p0 in Λ̃QCP. Note that due
to similar arguments described in Eq. A15, n = m term
does not appear in the linearized gap equation.
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2. Calculation of the pairing susceptibility

To compute the static pairing susceptibility in the sign-
changing gap channel, we first introduce in the Hamilto-
nian the pairing field ∆:

δH = −2∆
∑
k

(ck↑c−k↓ − dk↑d−k↓ + h.c.) (A21)

Here the factor of 2 is included so that the definition
of the pairing vertex is consistent with that used in the
QMC simulations. In Dyson’s equation, this term can be
incorporated in the self-energy, Σ̂i → Σ̂i−2∆τ1. Repeat-
ing the same steps as above, the only modification is in
the gap equation:

φ(ωn) =
nbλ

2T

4vF

∑
ωm

Vpair (ωn − ωm)
φ(ωm)

Z(ωm)|ωm|
+ 2∆

(A22)
We considered the linearized equation because we are

interested only in the susceptibility of the disordered
state, where φ = 0. Defining η(ωn) ≡ ∂φ(ωn)/∂∆, we
obtain a self-consistent equation for η (ωn):

η(ωn) =
nbλ

2T

4vF

∑
ωm

Vpair (ωn − ωm)
η(ωm)

Z(ωm)|ωm|
+ 2

(A23)

η(ωn) =
1

2π

√
ΛQCP

T

∑
ωm

1√
|n−m|

η(ωm)

Z(ωm)|m+ 1
2 |

+ 2

(A24)

Now, the static pairing susceptibility is given by:

χpair ≡ χ(q→ 0, iΩn → 0) = ∂∆

∑
k

2〈ck↑c−k↓−dk↑d−k↓〉

(A25)
where k = (ωn,k) and

∑
k = T

∑
n

´
d2k

(2π)2
. Because the

mean value is precisely minus the anomalous part of the
Green’s function, φi,k, given by Eq. (A8), we obtain:

χpair = 4T
∑
ωn

ˆ
d2k

(2π)
2

η(ωn)

Z(ωn)2ω2
n + ε2

k

(A26)

Note that, for λ = 0 (non-interacting electrons), we
have Z (ωn) = 1, η (ωn) = 2, and the equation above
reduces to the well-known BCS expression

χpair = 8T
∑
ωn,k

1

ω2
n + ε2

k

(A27)

= 4
∑
i,k

G
(0)
i (k)G

(0)
i (−k)

= 2Nf ln
Λ

T

where Nf = 4
´

d2k
(2π)2 δ(εk) is the total density of states

at the Fermi level. The factor of 4 arises due to band and
spin degeneracies.

For λ 6= 0, it is convenient once again to integrate
along directions parallel and perpendicular to the Fermi
surface, yielding:

χpair =
p0

2π2vF

∑
ωn

η(ωn)

Z(ωn)
∣∣n+ 1

2

∣∣ (A28)

where p0 is the same quantity as defined in the previous
section. Because the equations for η (ωn) and Z (ωn),
Eqs. (A23) and (A12), depend only on T/ΛQCP ∝ T/Tc,
it follows that the susceptibility is of the form χpair (T ) =

Apairfpair

(
T
Tc

)
, where Apair depends on the Fermi sur-

face properties (as signaled by p0 above), but fpair

(
T
Tc

)
is a universal function.

In computing χpair numerically, it is important to keep
in mind that as higher temperatures are considered, the
effect of the bandwidth becomes more important, as the
bandwidth 8t provides a natural energy cutoff for the
Matsubara sum. Note that this is not an issue for the
computation of Tc, since Tc � 8t always. Because 8t
is a hard cutoff in real frequency space, to capture its
effects in Matsubara frequency space, we follow Ref.31
and introduce a soft cutoff:

Υ(ωn) =
1

exp [(ωn − 8t)/ω0] + 1
(A29)

This function appears not only in the Matsubara sum
present in χpair, but also in the self-consistent equation
for ζ (ωn) via:

η(ωn) = 2Υ(ωn) +
1

2π

√
ΛQCP

T

×
[∑
ωm

Υ(ωn)Υ(ωm)√
|n−m|

η(ωm)

Z(ωm)|m+ 1
2 |

]
(A30)

For the plot in Fig. 4b of the main text, we used
ω0 = 1.6t. Changing this parameter slightly does not
affect the main properties of χpair.

Appendix B: Determinant Quantum Monte Carlo

The technical details of the implementation of the de-
terminant Quantum Monte Carlo (QMC) for the two-
band spin-fermion model with XY spins are the same
as those extensively presented in Ref.25, co-authored by
two of us. As explained in the main text, in this work
our goal is to establish the band structure parameters
that determine Tc and χpair. Our procedure is the fol-
lowing: for a given set of parameters, we first determine
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the approximate location of the AFM quantum critical
point rc and then determine Tc from the condition that
the superfluid density ρs reaches the BKT value 2Tc/π.
The static pairing susceptibility is computed directly. In
this supplementary section, we provide more details of
how these three quantities are determined for a given set
of parameters

(
δ, L, λ2

)
, characterized by the band pa-

rameter δ/t = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, the system
size L = 8, 10, 12, 14, and the squared coupling constant
λ2/t = 8.

1. Antiferromagnetic quantum critical point
(AFM-QCP)

The AFM-QCP is reached by tuning the bare mass
term of the magnetic propagator to r = rc, see Eq. (6)
of the main text. Determining the precise location of the
QCP is a very difficult task, not only due to the BKT
character of the AFM transition at finite temperatures
(since we are dealing with XY spins), but also because
once superconductivity sets in, it competes with AFM or-
der and shifts the location of the QCP from rc to r̄c < rc.
This last behavior was indeed observed in the previous
QMC studies of Ref.25. However, for our purposes, it
is not necessary to precisely determine the position rc
of the QCP. As explained in the previous section, the
onset of superconductivity within the hot-spots Eliash-
berg approximation of the spin-fermion model depends
on two parameters, ΛQCP ∝ λ2 sin θhs, and the renormal-
ized mass of the magnetic propagator, r̃, see for instance
Eqs. (A11) and (A12). Thus, as long as r̃ � 2πTc/γ,
the superconducting properties of the system are effec-
tively the same as those at the QCP. Therefore, to probe
quantum critical pairing, we search for a value of r suffi-
ciently close to rc such that r̃ is very small, but non-zero,
since we must ensure that the system is not in the AFM
ordered phase.

For this purpose, we first define the uniform magneti-
zation:

M̄ ≡ 1

βL2

∑
r

ˆ
dτM(r, τ) (B1)

To obtain a good estimate of rc, we extract from the
QMC simulations both the Binder cumulant,

B = 1− 〈
(
M̄2
)2〉

2〈M̄2〉2 (B2)

and the static spin susceptibility,

χM ≡
1

βL2
〈
∑
r,τ

∑
r′,τ ′

M(r, τ) ·M(r′, τ ′)〉 = βL2〈M̄2〉

(B3)
Here, 〈· · · 〉 denotes thermal averaging. For XY spins

deep in the ordered phase, B = 1
2 , whereas B = 0 deep in

the disordered phase. Similarly, in the ordered phase, χM
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Figure 6. Binder cumulant B (a) and static spin suscepti-
bility χM (b) as a function of r for various inverse temper-
atures. The set of parameters used here is

(
δ/t, L, λ2/t

)
=

(0.6, 12, 8). The inverse temperature β is in units of 1/t.

scales with βL2−η, where η changes continuously as func-
tion of r and T , approaching η = 0 deep in the ordered
phase. Therefore, at any finite temperature, a rough
estimate for the AFM transition is given by the value
of r in which χM/

(
βL2

)
shows a kink and B changes

sharply from 0 to 1/2. In Fig. 6, we show the behav-
ior of these two quantities, plotted as function of r for
different fixed temperatures, for the set of parameters(
δ/t, L, λ2/t

)
= (0.6, 12, 8). On the scale shown in this

figure, both B and χM/
(
βL2

)
are nearly temperature

independent at low temperatures (but still above Tc),
therefore providing an estimate for rc.

Next, to improve our estimate of rc, we compute the r
dependence of the mass of the bosonic propagator at low
temperatures, r̃ ≡ χ−1

M (q = 0, iΩn = 0), as shown in Fig.
7(a). The estimated rc corresponds to the r value that
has the smallest r̃, before however it reaches zero, since
we want to study the system in the non-magnetically
ordered state.

In the same figure we also present the frequency and
momentum dependencies of χ−1

M (q, iΩn). In agreement
to a recent study by some of us32, χ−1

M (q = 0, iΩn) shows
a rather linear dependence on the Matsubara frequency,
indicating the presence of Landau damping, which in turn
plays a key role in the hot-spots Eliashberg approxima-
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Figure 7. Panel (a) shows the renormalized mass term of
the magnetic propagator, r̃, as function of rc. The set of
parameters used here is

(
δ/t, L, λ2/t

)
= (0.6, 12, 8). The

inverse renormalized magnetic propagator χ̃−1(q, iΩn) at r =
rc is plotted as function of Ωn for q = 0 (b) and as function
of q for Ωn = 0 (c). In (b) and (c), the inverse temperature
is β = 7/t.

tion, see Eq. (A3). Similarly, χ−1
M (q, iΩn = 0) is consis-

tent with a q2 behavior for small momentum.

2. Pairing susceptibility and superfluid density

The static pairing susceptibility is defined as:

χ
(a)
pair ≡

1

βL2

∑
r,r′

ˆ
τ,τ ′
〈Γa(r, τ)Γ†a(r′, τ ′)〉 (B4)

where

Γa(r, τ) ≡ iσyαβ [cα(r, τ)cβ(r, τ) + (−1)adα(r, τ)dβ(r, τ)]

(B5)
is the pairing field associated with the sign-changing gap
function (a = 1) or to the sign-preserving gap func-
tion (a = 2). σy is the Pauli matrix in spin space. In
Fig. 8, we plot both pairing susceptibilities, in units of
the non-interacting susceptibility χpair,0, as function of
r and as function of temperature for the set of parame-
ters

(
δ/t, L, λ2/t

)
= (0.6, 12, 8). Compared with Fig.

6, it is clear that while χ(1)
pair/χpair,0 is strongly peaked

at r = rc, χ
(2)
pair/χpair,0 is always smaller than 1, imply-

ing that there is no enhancement in the sign-preserving
channel.

Because the system is two-dimensional, the supercon-
ducting phase transition is of the BKT type. Therefore,
to determine Tc, we search for the temperature where the
BKT condition is satisfied:

ρs(Tc) =
2

π
Tc

where ρs is the superfluid density. As explained in Ref.25,
the latter can be extracted from our QMC simulations via
the current-current correlation function Λij according to
ρs ≡ limL→∞ ρs (L), with:

ρs (L) =
1

8

∑
a=x,y

〈Λaa(qa =
2π

L
, qā = 0, iΩn = 0)〉 (B6)

− 1

8

∑
a=x,y

〈Λaa(qa = 0, qā =
2π

L
, iΩn = 0)〉 (B7)

where ā = y, x when a = x, y and:

Λij(r, τ) ≡ 1

βL2
〈
ˆ
dτ1
∑
r1

ji(r + r1, τ + τ1)jj(r1, τ1)〉

(B8)
with ji denoting the standard current operator. Note
that the model studied here is symmetric under the
combination of a π/2 rotation, a particle-hole transfor-
mation, and the exchange of the two bands, implying
Λxx(r, τ) = Λyy(r̃, τ), where r and r̃ are related by a π/2
rotation. Fig. 9 shows ρs for various system sizes for the
band dispersion δ/t = 0.6 and the interaction parameter
λ2 = 8t. The estimated transition temperature Tc(L) for
each system of size L is determined as the intersection
between the interpolated curve of ρs(L, T ) and 2

πT . The
error bars in ρs arising from the QMC sampling are used
to estimate the error bars of Tc in the following way: be-
sides the interpolation curve passing through the average
values of ρs, we also determine two additional interpola-
tion curves passing through the top and the bottom of
each error bar related to ρs. The error bars in Tc are esti-
mated by determining when these two additional curves
cross 2

πT .

3. Thermodynamic limit of the BKT transition
temperature

To estimate the thermodynamic value of the BKT
transition, we first plot the extracted Tc (L) as function
of 1/L in Fig. 10a. For most of the values of δ/t that
we studied – specifically, δ/t = 0.2, 0.3, 0.4, 0.5, 0.7 –
we found a near saturation of Tc(L) for the two largest
system sizes studied, i.e. L = 12 and L = 14 for 0.4 ≤
δ/t ≤ 0.8, and L = 10 and L = 12 for 0.2 ≤ δ/t ≤ 0.3.



14

�6 �4 �2 0 2 4 6
r � rc

0

5

10

15

20

25

30

�
(1

)
p
ai

r/
�

p
ai

r,
0

(a)
�t = 2

�t = 4

�t = 6

�t = 8

�t = 10

�6 �4 �2 0 2 4 6
r � rc

0.0

0.2

0.4

0.6

0.8

1.0

�
(2

)
p
ai

r/
�

p
ai

r,
0

(b)

�6 �4 �2 0 2 4 6
r � rc

0

5

10

15

20

25

30

�
(1

)
p
ai

r/
�

p
ai

r,
0

(a)
�t = 2

�t = 4

�t = 6

�t = 8

�t = 10

�6 �4 �2 0 2 4 6
r � rc

0.0

0.2

0.4

0.6

0.8

1.0

�
(2

)
p
ai

r/
�

p
ai

r,
0

(b)

Figure 8. Static pairing susceptibility χ
(a)
pair in the sign-

changing gap channel (a = 1, panel a) and in the in the
sign-preserving gap channel (a = 2, panel b) as function
of the distance to the QCP at r = rc. The inverse tem-
perature β is in units of 1/t and the susceptibilities are
normalized by the non-interacting susceptibility χpair,0 ob-
tained by setting λ = 0. The set of parameters used here is(
δ/t, L, λ2/t

)
= (0.6, 12, 8).
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Figure 9. Superfluid density ρs(L, T ) as function of tempera-
ture T for the band dispersion δ/t = 0.6 and coupling constant
λ2 = 8t for various system sizes L. The BKT transition tem-
perature for each system size is determined by the condition
ρs(L, Tc) = 2

π
Tc.

0.00 0.04 0.08 0.12

1/L

0.00

0.05

0.10

0.15

T
c/
t

(a)
δ/t = 0.2

δ/t = 0.3

δ/t = 0.4

δ/t = 0.5

δ/t = 0.6

δ/t = 0.7

δ/t = 0.8

0.08 0.10 0.12 0.14

T/t

0.00

0.02

0.04

0.06

ρ
s

(b)
L = 8

L = 10

L = 12

L = 14

0.06 0.10 0.14 0.20

T/t

0.00

0.04

0.08

0.12

ρ
s

(c)
L = 8

L = 10

L = 12

L = 14

Figure 10. (a) The QMC extracted Tc (L) as function of the
inverse system size 1/L for all band dispersion parameters δ/t.
Interpolated ρS(T ) curve for δ/t = 0.4 (b) and for δ/t = 0.8
(c).

We verified that the reason for this behavior is that the
superfluid density curves for the two largest system sizes
agree within statistical error bars near the BKT transi-
tion. We illustrate this behavior for the case δ/t = 0.4 in
Fig. 10b. Therefore, for these band dispersions, we es-
timate the thermodynamic value for the transition tem-
perature to be given by Tc (Lmax).

For the band dispersion with δ/t = 0.6, even though
Tc nearly saturates for the two largest system sizes, the
corresponding superfluid density curves are not on top of
each other within the QMC statistical error bars. This is
also the case for the band dispersion with δ/t = 0.8, as
shown in Fig. 10c. Moreover, for this band dispersion, Tc
does not really seem to saturate for the two largest sys-
tem sizes, as shown in Fig. 10a. For these two systems,
Tc (Lmax) should therefore be understood as an upper
bound value for the thermodynamic value of Tc. In these
cases, we can also estimate the lower bound value by the
condition that the ρs(T, Lmax) curve becomes larger than
ρs(T, L) for one of the smaller system sizes studied (in
our case, L = 12). Such a criterion is based on the fact
that, in the disordered phase, finite-size effects generally
make ρs(T, L) larger for smaller system sizes. The ex-
tracted lower boundary values for Tc are depicted as the
stars in Fig. 3 of the main text. Clearly, the only system
where finite size effects are more pronounced is the one
with δ/t = 0.8.
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Figure 11. (a) χ(L=12)
pair,0 of the finite-size system L = 12 plotted

as a function of the inverse temperature β (in units of 1/t)
at the van Hove point (δ/t = 0.25) and at δ/t = 0.6. (b)
Comparison between the density of states of the finite-size
system, N (L=12)

f , and the density of states computed analyt-
ically, Nf . The results match except very close to the van
Hove singularity, where the divergence is cut off by finite size
effects.

4. Density of states of the finite-size system

Here we demonstrate that the bare pairing susceptibil-
ity χpair,0 in our simulations is sensitive to the proximity
to the van Hove singularity, despite the modest sizes of
the systems. From Eq. A27, we have:

χpair,0(β) = 2Nf ln Λβ (B9)

where Λ is an upper cutoff related to the band structure.
In Fig. 11a, we show the exactly calculated pairing sus-

ceptibility for a system of size L = 12, χ(L=12)
pair,0 . We also

show linear fittings to the expression above, from which
we can extract the density of states of the finite-size sys-
tem, N (L=12)

f . In Fig. 11b, we compare N (L=12)
f to the

analytically calculated Nf = − 4
π

∑
k limδ→0+

G(k, iδ) as
function of δ/t. The factor of 4 arises from spin and band
degeneracies. The agreement between N (L=12)

f and Nf is
evident, and the only effect of the finite size of the system
is to cut-off the divergence of Nf at the van Hove point.
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Figure 12. Tc as a function of sin (θhs) for λ2/8t = 1, where
Tc scales with λ2, and λ2/8t = 4, where Tc is in the saturation
regime (see Fig. 5 of the main text). The linear dependence of
Tc on sin θhs remains robust for larger values of the interaction
parameter λ. The results in this figure are obtained for L =
12.

5. Behavior of Tc for larger interaction parameters

To complement the discussions in Fig. 5 of the main
text, in Fig. 12 we present Tc as a function of sin θhs

for both λ2/8t = 1 and λ2/8t = 4 – which is the largest
interaction parameter studied. For the latter, Tc is in the
saturation regime, as shown in Fig. 5 of the main text.
Note, however, that Tc is still linearly proportional to
sin θhs, without any enhancements due to the van Hove
singularity at δ/t = 0.25. Interestingly, the extension
of the hot-spot Eliashberg calculation discussed in Eq.
(A19) still predicts a linear dependence of Tc with sin θhs

even when Tc becomes independent on λ.


