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We theoretically study transport properties of voltage-biased one-dimensional superconductor–
normal metal–superconductor tunnel junctions with arbitrary junction transparency where the su-
perconductors can have trivial or nontrivial topology. Motivated by recent experimental efforts
on Majorana properties of superconductor-semiconductor hybrid systems, we consider two explicit
models for topological superconductors: (i) spinful p-wave, and (ii) spin-split spin-orbit-coupled
s-wave. We provide a comprehensive analysis of the zero-temperature dc current I and differen-
tial conductance dI/dV of voltage-biased junctions with or without Majorana zero modes (MZMs).
The presence of an MZM necessarily gives rise to two tunneling conductance peaks at voltages
eV = ±∆lead, i.e., the voltage at which the superconducting gap edge of the lead aligns with
the MZM. We find that the MZM conductance peak probed by a superconducting lead without a
BCS singularity has a non-universal value which decreases with decreasing junction transparency.
This is in contrast to the MZM tunneling conductance measured by a superconducting lead with
a BCS singularity, where the conductance peak in the tunneling limit takes the quantized value
GM = (4 − π)2e2/h independent of the junction transparency. We also discuss the “subharmonic
gap structure”, a consequence of multiple Andreev reflections, in the presence and absence of MZMs.
Finally, we show that for finite-energy Andreev bound states (ABSs), the conductance peaks shift
away from the gap bias voltage eV = ±∆lead to a larger value set by the ABSs energy. Our work
should have important implications for the extensive current experimental efforts toward creating
topological superconductivity and MZMs in semiconductor nanowires proximity coupled to ordinary
s-wave superconductors.

I. INTRODUCTION

In recent years there has been great interest in realiz-
ing topological superconductors which support Majorana
zero modes (MZMs) at boundaries or defects1–7. This
is driven mainly by the prospect of using MZMs as the
building blocks for a fault-tolerant topological quantum
computer8,9. The simplest model of a topological su-
perconductor hosting MZMs is the one-dimensional (1D)
spinless p-wave superconductor as originally envisioned
by Kitaev10. Since electrons carry a spin degree of free-
dom, intrinsic spinless p-wave pairing is apparently un-
common in nature. However, it can be effectively real-
ized in spinful systems by a combination of spin-orbit
coupling and explicitly lifting the Kramer’s degeneracy
of the electrons (e.g., by Zeeman spin splitting through
an applied magnetic field). This idea has lead to a num-
ber of proposals for realizing topological superconductor
in various hybrid structures with conventional s-wave su-
perconductors11–27. There are, however, significant dif-
ferences between a spinless p-wave superconductor and
a spin-split s-wave superconductor with spin-orbit cou-
pling although they both can have localized MZMs at
the ends. One way of realizing a spinful 1D topological
superconductor is by proximity-inducing superconductiv-
ity in a spin-orbit-coupled semiconducting nanowire in a
magnetic field11–14. In this setup, the system can be
tuned from a topologically trivial to a nontrivial regime
by raising the Zeeman field above a certain critical value

where the system undergoes a topological quantum phase
transition with the effective induced superconductivity in
the nanowire changing from an s-wave (trivial) charac-
ter to a p-wave (topological) character. As the MZM
exists as a zero-energy edge mode in the topological su-
perconductor, tunneling conductance spectroscopy pro-
vides a simple way of detecting the MZM. In a normal
metal–superconductor (NS) junction, the MZM medi-
ates a perfect Andreev reflection at zero energy which
in turn gives rise to a quantized 2e2/h zero-bias con-
ductance value28–32 as long as the two MZMs at the
wire ends are far from each other with exponentially
small overlap between the MZM wavefunctions (the so-
called “topologically protected regime”). This quantized
conductance is robust against changes to the junction
transparency. Several experimental groups have observed
the appearance of zero-bias tunneling conductance peaks
in the semiconductor–superconductor heterostructure as
the Zeeman field is raised beyond a certain value which
indeed indicates the existence of zero-energy states33–40.
Nevertheless, the observed zero-bias conductance is sub-
stantially less than the MZM canonical quantized con-
ductance value. A plausible source for this discrepancy
is thermal broadening in the normal-metal lead which
reduces the zero-bias conductance value and widens the
peak28,31,41,42 although other possibilities such as dissipa-
tion and MZM overlap may also be responsible42–44. The
ubiquitous absence of the predicted quantized zero-bias
conductance peak in topological NS junction (in spite of
there often being a weak zero-bias conductance peak) is
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the central quandary in this subject making it unclear
whether 1D topological superconductivity with localized
MZMs has indeed been realized experimentally or not.

To mitigate the effect of thermal broadening, one could
use a superconducting lead instead of a normal lead
in probing the MZM tunneling conductance45–48. In a
superconducting lead, thermal quasiparticle excitations
are exponentially suppressed by the superconducting gap
∼ exp(−∆lead/T ) which in turn suppresses the broad-
ening effect. Peng et al.45 found that for a conven-
tional s-wave superconducting lead, the MZM conduc-
tance measured in the tunneling limit (or small junction
transparency) appears as two symmetric peaks with a
quantized value GM = (4−π)2e2/h at the gap-bias volt-
age eV = ±∆lead, i.e., when the BCS singularity of the
probe lead aligns with the MZM. The quantized value
GM is the conductance due to a single Andreev reflec-
tion from the MZM. In Ref.46, it was shown that in the
presence of multiple Andreev reflections (MAR), which
are generically present when the junction transparency is
not small, the conductance at the voltage eV = ±∆lead

is no longer quantized at GM . This indicates that un-
like the universally quantized 2e2/h zero-bias conduc-
tance value for a normal metal–topological superconduc-
tor junction, the quantized value GM of the MZM tun-
neling conductance for a superconductor–normal metal–
superconductor (SNS) junction is not a topologically pro-
tected robust quantity with the conductance value being
dependent on the details and thus making it difficult to
identify MZMs using SNS tunneling spectroscopy. These
results prompt further exploration of transport proper-
ties of various SNS junctions involving different models
of topological superconductors where signatures of MZM
can be fully investigated and characterized. This is the
goal of the current work where we provide comprehen-
sive details on the tunneling transport properties of SNS
junctions involving topological superconductors in order
to guide future experimental work in the subject.

In this paper, we calculate the dc current-voltage
(I − V ) relation and corresponding differential conduc-
tance (G = dI/dV ) of 1D SNS junctions, invoking two
models for topological superconductors, i.e., the spinful
p-wave superconductor (pSC) and the spin-orbit-coupled
s-wave superconducting wire (SOCSW). Specifically, we
consider several possible combinations for the junction,
where each superconductor can be either topologically
trivial or nontrivial. We find that unlike the case of s-
wave superconducting probe lead with BCS singularity
(where

∑
σ=↑,↓ |uσ|2 =

∑
σ=↑,↓ |vσ|2 at the gap edge with

u and v being the electron and hole component of the su-
perconducting wavefunction), the MZM tunneling con-
ductance measured using a superconducting lead with-
out a BCS singularity has a non-universal value which
decreases with decreasing junction transparencies. Our
detailed theoretical and numerical results for the trans-
port properties of various types of SNS junctions should
be a useful guide for future experimental work on the
tunneling spectroscopy of topological SNS junctions.

The paper is organized as follows. In Sec. II, we
present a general scattering matrix formalism which can
be used to calculate the transport properties of a gen-
eral SNS junction. In Sec. III, we discuss the subhar-
monic gap structure (SGS). In the following sections, we
study in detail the transport in SNS junctions involving
pSC (Sec. IV) and SOCSW (Sec. V), and compare the
dc current and conductance of junctions with and with-
out MZMs. In Sec. VI we discuss the conductance due
to Andreev bound states (ABSs) in the SOCSW model
in order to distinguish between MZM and ABS signa-
tures in the tunneling experiment. Finally, we give the
conclusion in Sec. VII.

II. SCATTERING MATRIX FORMALISM

We begin by modeling the SNS junction by two semi-
infinite superconducting regions connected by a normal
region with a delta-function barrier of strength Z, as
shown in Fig. 1. The normal region is assumed to be
infinitesimally short with large chemical potential such
that the propagating modes in this region have constant
group velocity independent of energy. Quasiparticles can
be injected from the left or right superconducting lead
which become electrons or holes (depending on their en-
ergy) when they enter the normal region. Due to the
voltage bias, these electrons (holes) will then gain (lose)
an energy eV as they are accelerated from the left (right)
to the right (left). As a result, after each Andreev reflec-
tion at an NS interface, an incoming electron with an
energy E will be reflected as a hole back into the same
region with an energy E + 2eV . The quasiparticle re-
flects repeatedly inside the normal region until it gains
enough energy to be transmitted into the superconduc-
tors. This mechanism is termed “multiple Andreev re-
flections” (MAR)49–51.

Zδ(x)

J −NL

J +
NLJ in

L

J out
L J −NR

J +
NR

J in
R

J out
R

FIG. 1. (Color online) Schematic diagram of a
superconductor–normal metal–superconductor (SNS) junc-
tion with a delta-function potential barrier of strength Z.

The scattering processes in the SNS junction can be
split among three spatial regions: (i) the left NS inter-
face, (ii) tunnel barrier, and (iii) right NS interface. We
express these processes in terms of the scattering matri-
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ces as( J out
L,ν (En)

J +
NL,ν(En)

)
= SL(En)

(J in
L,ν(En)δn0δν,→
J−NL,ν(En)

)
, (1a)(J−NL,ν(En)

J +
NR,ν(En)

)
=
∑
n′

SN (En, En′)

(J +
NL,ν(En′)

J−NR,ν(En′)

)
,

(1b)( J out
R,ν (En)

J−NR,ν(En)

)
= SR(En)

(J in
R,ν(En)δn0δν,←
J +
NR,ν(En)

)
, (1c)

where En = E + neV are the energies of prop-
agating modes with n being an integer, J ρ`,ν =

(je,↑,ρ`,ν , je,↓,ρ`,ν , jh,↑,ρ`,ν , jh,↓,ρ`,ν )T is the current amplitude vec-

tor for region ` = L (left superconductor), NL (normal
region to the left of the tunnel barrier), NR (normal
region to the right of the tunnel barrier) and R (right
superconductor) with ρ = +/− and ρ = in/out being the
right/left-moving modes and incoming/outgoing modes
indices, respectively, and ν =� denoting whether the
incoming quasiparticle is from the left or right supercon-
ductor. We note that the scattering matrix formalism
presented above is completely general and can be uti-
lized to study the transport properties of any kind of SNS
junctions with arbitrary topological properties (including
trivial superconductors). Moreover, it can be easily in-
terfaced with the numerical transport package Kwant52

which can be used to calculate the scattering matrices
of the left (SL) and right (SR) NS interfaces46,53. For
details on our numerical simulations, see Appendix A.

The scattering matrix SN (En, E
′
n) in Eq. (1b) incor-

porates the scattering processes at the tunnel barrier and
the increase (decrease) of the electron (hole) energy by
eV each time the electron (hole) passes from the left to
the right. In terms of the electron (SeN ) and hole (ShN )
component, it can be written as

SN (En, En′) = SeN (En, En′)⊗ σ0 ⊗ τ+
+ ShN (En, En′)⊗ σ0 ⊗ τ−, (2)

where σ0 is the identity matrix in the spin subspace,
τ± = τx ± iτy are the Pauli matrices in the particle-hole
subspace. The scattering matrices SeN and ShN are given
by

SeN (En, En′) =

(
rδn,n′ tδn,n′+1

tδn,n′−1 rδn,n′

)
,

ShN (En, En′) =

(
r∗δn,n′ t∗δn,n′−1
t∗δn,n′+1 r∗δn,n′

)
, (3)

where r = −iZ/(1 + iZ) and t = 1/(1 + iZ) are the re-
flection and transmission coefficients, respectively, with
the amplitudes depending on the delta-function barrier
strength Z. Note that Z should be considered an ef-
fective barrier strength determining the interface trans-
parency represented by a delta-function potential which
is an unknown parameter in the theory [as in the well-
known Blonder-Tinkham-Klapwijk (BTK) formalism53].

In principle, Z can be calculated from first principles if
all information about the interface is available, but in
practice Z should be determined by comparing theory
and experiment. We change the junction transparency
in the simulation by tuning Z. Since sharp changes of
parameters across the junction, such as mismatch in the
Fermi level, spin-orbit coupling, p-wave pairing potential
etc., also effectively create barriers for the current, we
use a parameter-independent quantity GN to character-
ize the junction transparency, where GN is the normal-
ized conductance of the SNS junction at high voltages (in
the unit of G0 = e2/h) which is the conductance of the
corresponding normal-normal (NN) junction. We note
that GN , which subsumes Z and other possible unknown
microscopic parameters, can be directly measured exper-
imentally allowing experiment and theory to be quanti-
tatively compared at arbitrary voltages. We refer to GN
as the “junction transparency” in the rest of this paper
since it denotes the conductance for the corresponding
NN junction. Note that GN = 2 or GN = 1 denotes per-
fect transparency (corresponding to Z=0) depending on
the specific tunnel junction one is considering.

Solving the coupled linear equations [Eq. (1)], we ob-
tain the current amplitudes J ρ`,ν . The total current can
be calculated by adding up the contribution from the
left- and right-moving modes of the electrons and holes
for the incoming quasiparticles from the left and right
superconductors, i.e.,

Iν(V ) =
2e

h

∫ 0

−∞
dETr

(∑
n

ρzτzJNL,ν(En)J†NL,ν(En)

)
,

(4)

where

JNL,ν =
(
je,↑,+NL,ν , j

e,↓,+
NL,ν , j

h,↑,+
NL,ν , j

h,↓,+
NL,ν ,

je,↑,−NL,ν , j
e,↓,−
NL,ν , j

h,↑,−
NL,ν , j

h,↓,−
NL,ν

)T
(5)

is the current amplitude vector in the normal region to
the left of the barrier. It was proven in Ref.46 that the
current is non-negative for positive V . The differential
conductance (G = dI/dV ) can be computed by directly
differentiating the current I with respect to the voltage
V . In general, we observe that the differential conduc-
tance is particle-hole asymmetric except for sufficiently
small transparencies.

In this paper, we apply this scattering matrix formal-
ism to calculate the zero-temperature dc current and con-
ductance of junctions comprised of spinful pSC (Sec. IV)
and SOCSW (Sec. V), considering scenarios where none,
one, or both of the superconductors are topologically
nontrivial.

III. SUBHARMONIC GAP STRUCTURE

In general, for SNS junctions with asymmetric gap
(∆L 6= ∆R), where ∆L,R are the superconducting gap
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TABLE I. Voltages at which the subharmonic gap structure
appears for an asymmetric SNS junction.

SGS voltage e|V | Range of n
∆L/n n ≥ 1
(∆L + ∆R)/(2n− 1) n ≥ 1
∆R/n n ≥ 1

of the left and right superconductors, when the junction
transparency is not small, there will be nonanalyticities
in the I-V curve or conductance49–51 at specific voltages,
which is termed the “subharmonic gap structure” (SGS).
The sharp change in the conductance happens at voltages
at which there is a change in the number of Andreev re-
flections required to transfer charge from the occupied to
the empty band. For incoming quasiparticles from the
left superconductor, this number of Andreev reflections
changes when

e|V | = ∆L

n
, n ≥ 1, (6)

and

e|V | = ∆L + ∆R

2n− 1
, 1 ≤ n ≤ ∆R

∆R −∆L
, (7)

while for incoming quasiparticles from the right super-
conductor, the change happens at voltages given in
Eq. (7) and

e|V | = ∆R

n
, 1 ≤ n ≤ ∆R

∆R −∆L
. (8)

Without loss of generality, in the above we assume ∆R >
∆L. The range of n in Eqs. (6)-(8) gives the voltage range
for “strong” SGS where all Andreev reflections happen
inside the superconducting gap. The SGS that occurs
outside this range of n is termed “weak” SGS because the
Andreev reflections that happen outside the gap have, in
general, small amplitude.

The SGS (including both weak and strong) happens
at the voltages given in Table I (Refs.54,55) where ∆L,R

can be any of the gap values in the left and right su-
perconductors when there are multiple superconducting
gaps. In general, the SGS is not apparent for near-perfect
transparency junction and becomes sharper in the inter-
mediate range of transparencies. Decreasing the trans-
parency further into the tunneling limit will diminish the
SGS at small voltages.

IV. SPINFUL p-WAVE SUPERCONDUCTOR
JUNCTIONS

In this section, we consider junctions between an s-
wave superconductor (sSC) and a pSC as well as junc-
tions between two pSCs, where the pSC can be topolog-
ically trivial or nontrivial, depending on the strength of
the chemical potential and Zeeman field (i.e., the system
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FIG. 2. (Color online) Energy spectrum of a spinful pSC for
different parameter regimes: (a) |VZ | < |µp| and µp < 0 (p0-
SC with no topological channel), (b) |VZ | > µp and µp > 0
(p1-SC with one topological channel), (c) |VZ | < µp and µp >
0 (p2-SC with two topological channels).

is below or above the topological quantum phase transi-
tion). Within the Bogoliubov-de Gennes (BdG) formal-
ism, we can write the Hamiltonian of the system as

Hj(x) =
1

2

∫
dxΨ†j(x)HjΨj(x), (9)

where Ψj(x) =
(
ψj↑(x), ψj↓(x), ψ†j↓(x),−ψ†j↓(x)

)T
are

Nambu spinors, and ψ†jσ(x) and ψjσ(x) are the creation
and annihilation operators of an electron of spin σ for the
superconductor of type j = s, p (s-wave or p-wave). The
BdG Hamiltonians for the sSC and pSC are given by

Hs =

(
−~2∂2x

2m
− µs

)
τz + ∆sτx, (10a)

Hp =

(
−~2∂2x

2m
− µp

)
τz + VZσz − i∆p∂xτxσx, (10b)

respectively. Here, m is the electron effective mass (for
the numerical simulations done in this paper, we set
m = 0.015me, which corresponds approximately to InSb
nanowires33 where me is the bare electron mass), µs and
µp are the chemical potentials of the sSC and pSC, VZ
is the Zeeman field, ∆s and ∆p are the sSC and pSC
pairing potentials, and τx,y,z (σx,y,z) are Pauli matrices
acting in the particle-hole (spin) subspace. The effec-
tive chemical potential in each spin channel of the pSC
(µp ± VZ) determines whether that channel is topolog-
ical or not. The channel is topological if its chemical
potential is positive, otherwise it is non-topological10,56.
The spinful pSC can have zero, one or two topological
channels depending on the values of VZ and µp, i.e.,
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(a) |VZ | < |µp| and µp < 0, no topological channel,

(b) |VZ | > µp and µp > 0, one topological channel,

(c) |VZ | < µp and µp > 0, two topological channels.

Throughout this paper, we denote the pSC in these three
different regimes as pi, where i = 0, 1, 2, refers to the
number of topological channels in the pSC. Since the
spinful pSC is essentially made up of two uncoupled spin-
less pSCs, the spectrum of the spinful pSC then con-
sists of the spectrum of two spinless pSCs32 with effective
chemical potential µp±VZ as shown in Fig. 2. In the fol-
lowing we will denote the smallest gap in the spectrum
of the pi-SC by ∆pi .

A. sNp0 junction

We begin by considering the s-wave superconductor–
normal metal–p0 superconductor (sNp0) junction. The
p0-SC is a spinful p-wave superconductor with no topo-
logical channel: it has negative chemical potential (µp <
0) and small Zeeman field |VZ | < |µp|. Its spectrum has
a gap at k = 0 with value |µp| ± |VZ | where the small-
est gap is10,32,56 ∆p0 = |µp| − |VZ | as shown in Fig. 2.
In general, the current and conductance for SNS junc-
tions involving p0-SC, e.g., the sNp0 junction discussed
here, increase with the p0-SC pairing potential ∆p. Since
the p0-SC is essentially an insulator with small Andreev
reflection amplitudes, the current for this junction is gen-
erally small and the SGS is strongly suppressed as can
be seen in Fig. 3. At high voltages (|V | � ∆s,∆p0),
the conductance approaches the conductance GN of the
corresponding NN junction (which we define as the junc-
tion transparency throughout this paper). The current
and conductance decrease with decreasing junction trans-
parency GN as can be seen in Fig. 3. In the weak tun-
neling or small transparency limit where MAR is sup-
pressed, the current starts to flow only when the voltage
is e|V | = ∆s + ∆p0 , i.e., the voltage where the supercon-
ducting gap edges of both sSC and p0-SC line up.

B. sNp1 junction

The p1-SC has one topological channel with a pair of
MZM: one at each end of a finite wire. The energy spec-
trum of the p1-SC is given in Fig. 2(b). The plots of the
current and conductance for the sNp1 junction (i.e., with
one isolated MZM in the junction) in the limit of large
and small Zeeman field are plotted against bias voltage
in Figs. 4 and 5, respectively. The conductance plots
for the sNp1 junction have already been given in Ref.46;
we include them here for completeness and, more impor-
tantly, a comparison with other SNS junctions. In the
large Zeeman limit [(|VZ | −µp) & µp], the p1-SC is effec-
tively a spinless topological pSC10,56. In this limit, MAR
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FIG. 3. (Color online) Plots of (a) dc current I and (b)
normalized differential conductance G/G0 versus bias voltage
V for an sNp0 junction with various values of transparen-
cies GN . The parameters used for the sSC are µs = 20 K
and ∆s = 0.01 K. The parameters used for the p0-SC are
µp = −0.01 K, VZ = 0 K, ∆p = 0.2 eVÅ, where the smallest
gap is ∆p0 = 0.01 K. The smallest gap in the junction is ∆min

= 0.01 K.

are totally suppressed and only single Andreev reflections
are allowed for the sNp1 junction because the sSC allows
only spin-singlet Andreev reflections, while the spinless
pSC allows only spin-triplet Andreev reflections. This re-
sults in a step jump in the conductance from zero to the
quantized value GM = (4−π)2e2/h at the threshold volt-
age e|V | = ∆s

45–47 as shown in Fig. 3(b). The quantized
value GM corresponds to the conductance due to a single
Andreev reflection from the MZM which happens at the
voltage when the BCS singularity and MZM are aligned.
In this large Zeeman limit, since MAR are suppressed,
the quantized value GM is robust against the junction
transparency. The conductance, in general, decreases
with decreasing junction transparency and for sufficiently
small transparency, the conductance can become nega-
tive for voltages near the threshold voltage e|V | = ∆s.
Our results for the sNp1 junction in the large Zeeman
limit, calculated using the scattering matrix formalism,
are similar to those of the s-wave superconductor–normal
metal–spinless p-wave superconductor junctions calcu-
lated using the Green’s function formalism47. Recently,
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FIG. 4. (Color online) Plots of (a) dc current I and (b) nor-
malized differential conductance G/G0 versus bias voltage V
for an sNp1 junction with various values of transparencies
GN in the limit of large Zeeman field (VZ = 2µp). The red
dashed line at GM = (4 − π)2e2/h is the conductance value
due to a single Andreev reflection from the MZM. The pa-
rameters used for the sSC are µs = 200 K and ∆s = 2.5 K.
The parameters used for the p1-SC are µp = 20 K, VZ = 40
K, ∆p = 0.0785 eVÅ, where the smallest gap is ∆p1 = 4 K.
The smallest gap in the junction is ∆min = 2.5 K.

the conductance of the spinless p-wave superconductor
has been measured using an s-wave superconducting tip
in a scanning tunneling microscopy experiment57. The
reported results are qualitatively consistent with our the-
oretical findings. In the limit of small Zeeman field
[(|VZ |−µp)� µp], and when the junction transparency is
not small, MAR are allowed. As a result, there is a finite
current and conductance with SGS below the threshold
voltage e|V | = ∆s. However, the current and conduc-
tance near zero voltage are zero due to the difference
in the Andreev reflection spin-selectivity of the sSC and
MZM, i.e., the sSC allows spin-singlet Andreev reflection
and the MZM favors spin-triplet Andreev reflection58,59.
In this limit, due to MAR, the conductance at the voltage
e|V | = ∆s is no longer robust against increasing junc-
tion transparency. The current and conductance gener-
ally decrease with decreasing junction transparency. For
sufficiently small transparency that only single Andreev
reflection contributes, we recover G(e|V | = ∆s) = GM .
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FIG. 5. (Color online) Plots of (a) dc current I and (b) nor-
malized differential conductance G/G0 versus bias voltage V
for an sNp1 junction with various values of transparencies
GN in the limit of small Zeeman field (VZ = 1.1µp). The red
dashed line at GM = (4 − π)2e2/h is the conductance value
due to a single Andreev reflection from the MZM. The pa-
rameters used for the sSC are µs = 200 K and ∆s = 2.5 K.
The parameters used for the p1-SC are µp = 20 K, VZ = 22
K, ∆p = 0.0785 eVÅ, where the gaps are 2 K and 3.4 K with
the smallest gap for the p1-SC being ∆p1 = 2 K. The smallest
gap in the junction is ∆min = 2 K.

C. sNp2 junction

The p2-SC has two topological channels, and thus two
MZMs at each end of a finite wire. The energy spectrum
for the p2-SC is shown in Fig. 2(c). The current and
conductance plots for the sNp2 junction are depicted in
Fig. 6. In the tunneling limit, the conductance for the
sNp2 junction develops a step jump from 0 to 2GM at
the threshold voltage e|V | = ∆s due to single Andreev
reflections from a Majorana Kramers pair, with each spin
channel contributing a conductance of GM . For large or
intermediate transparencies, due to MAR, the conduc-
tance at e|V | = ∆s is no longer quantized at 2GM and
there is an SGS in the current and conductance profile.
In contrast to the sNp1 junction where the current and
conductance are zero near zero voltage, when the trans-
parency is not small the current and conductance for the
sNp2 junction is non-zero near zero voltage. This is be-
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FIG. 6. (Color online) Plots of (a) dc current I and (b) nor-
malized differential conductance G/G0 versus bias voltage V
for an sNp2 junction with various values of transparencies
GN . The red dashed line at 2GM = (4− π)4e2/h is the con-
ductance value due to a single Andreev reflection from two
MZMs. The parameters used for the sSC are µs = 20 K
and ∆s = 0.01 K. The parameters used for the p2-SC are
µp = 20 K, VZ = 0 K, ∆p = 2 × 10−4 eVÅ, where the gap
is ∆p2 = 6.3 × 10−3 K. The smallest gap in the junction is
∆min = ∆p2 = 6.3× 10−3 K.

cause unlike the case of the sNp1 junction where there is
only one MZM which facilitates the spin-triplet Andreev
reflection in one spin channel, there are two MZMs in
sNp2 junctions facilitating Andreev reflections in both
spin channels. As a result, the MAR are not suppressed
near zero voltage. The SGS associated with MAR devel-
ops at specific voltages as given in Table I. Similar to the
conventional s-wave superconductor–normal–s-wave su-
perconductor junction51,54,55, in the perfectly transpar-
ent limit (GN = 2), the current at small voltages for the
sNp2 junction asymptotically approaches

I(V → 0) =
4e∆min

h
, (11)

which corresponds to the transfer of a charge of 2e across
the junction where ∆min = min(∆s,∆p2) is the smallest
gap in the junction.

D. p2Np2 junction
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FIG. 7. (Color online) Plots of (a) dc current I and (b)
normalized differential conductance G/G0 versus bias volt-
age V for a p2Np2 junction with various values of trans-
parencies GN . The parameters used for both p2-SCs are
µp = 20 K, VZ = 0 K, ∆p = 2 × 10−4 eVÅ, where the gap
is ∆p2 = 6.3 × 10−3 K. The smallest gap in the junction is
∆min = 6.3× 10−3 K.

For a p2Np2 junction, both superconductors have two
topological channels with two MZMs at each end (4
MZMs in the junction). The plots of the current and
conductance for this junction are depicted in Fig. 7. In
the perfectly transparent limit (GN = 2), the current
at small voltages asymptotically approaches I(V → 0) =
4e∆min/h,where ∆min is the smallest gap in the junction.
This asymptotic value of the dc current is the same as
the value obtained for the conventional s-wave-normal-
s-wave superconductor junction51,54,55. As V → 0, the
current in the p2Np2 junction is transferred via a Ma-
jorana Kramers pair where each of the MZMs transfers
a charge of unit e giving a total charge of 2e, the same
total amount of charge as that carried by a Cooper pair.
As a result, the current I(V → 0) is the same as that for
the conventional SNS junction51,55,60. Away from perfect
transparency (GN 6= 2), the dc current approaches zero
as the voltage approaches zero.

The SGS associated with the MAR develops at specific
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voltages given in Table. I where for the p2Np2 junction
with symmetric gaps, the voltages are |V | = ∆p2/en as
shown in Fig. 7. The SGS is suppressed in the tunnel-
ing limit and the current becomes non-zero only when
the voltage is above the threshold voltage |V | = ∆p2/e,
i.e., when the quasiparticles have sufficient energy to un-
dergo single Andreev reflections from the MZMs. This
is contrary to the case of the junction between two non-
topological superconductors where the tunneling current
can flow only when the voltage is above |V | = 2∆/e,
i.e., when the gap edge of the unoccupied band lines up
with that of the occupied band. Since the p2-SC does not
have a BCS singularity, the conductance at |V | = ∆p2/e
in the tunneling limit is not quantized at GM . Instead, it
has a nonuniversal value which decreases with decreasing
junction transparency.

E. p2Np1 junction
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FIG. 8. (Color online) Plots of (a) dc current I and (b)
normalized differential conductance G/G0 versus bias voltage
V for a p2Np1 junction with various values of transparen-
cies GN . The parameters used for the p1-SC are µp = 20
K, ∆p = 2 × 10−4 eVÅ, and VZ = 40 K where the gap is
∆p1 = 0.011 K. The parameters for the p2-SC are µp = 20
K, ∆p = 2 × 10−4 eVÅ, VZ = 0 K, where the gap is
∆p2 = 6.3 × 10−3 K. The smallest gap in the junction is
∆min = ∆p2 = 6.3× 10−3 K.

The current and conductance for a p2Np1 junction
are depicted in Fig. 8. For the p2Np1 junction in
the perfectly transparent limit (GN = 1), the current
near zero voltage approaches I(V → 0) = 2e∆min/h,
which is half of the current for the p2Np2 or s-wave
superconductor−normal metal−s-wave superconductor
junction. The reason is that the p1-SC has only one MZM
which can transfer a charge in the unit of e in one spin
channel. The SGS appears at voltages given in Table I.
Since the p2Np1 junction considered here has asymmetric
gap, the current and conductance in the weak tunneling
limit develop jumps at the voltages |V | = ∆p1/e and
|V | = ∆p2/e (which correspond to the voltages where
the MZMs are aligned with the p1-SC and p2-SC super-
conducting gap edge). The conductance values at these
jumps have non-universal values which decrease with the
junction transparency.

F. p1Np1 junction
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FIG. 9. (Color online) Plots of (a) dc current I and (b)
normalized differential conductance G/G0 versus bias volt-
age V for a p1Np1 junction with various values of trans-
parencies GN . The parameters used for both p1-SCs are
µp = 20 K, ∆p = 2 × 10−4 eVÅ, and VZ = 40 K where
the gap is ∆p1 = 0.011 K. The smallest gap in the junction
is ∆min = ∆p1 = 0.011 K.
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Fig. 9 displays the current and conductance plots for
a p1Np1 junction. Similar to the p2Np1 junction, for a
perfectly transparent p1Np1 junction (GN = 1) the cur-
rent at small voltages asymptotically approaches I(V →
0) = 2e∆min/h. This is due to the fact that a charge of
e is transferred between the MZMs on both sides of the
junction. For a symmetric p1Np1 as considered here, the
SGS develops at voltages |V | = ∆p1/ne. In the weak-
tunneling limit, there is a step jump in the conductance
at |V | = ∆p1/e to a non-universal value which decreases
as the junction transparency decreases.

G. p0Np2 junction
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FIG. 10. (Color online) Plots of (a) dc current I and (b)
normalized differential conductance G/G0 versus bias voltage
V for a p0Np2 junction with various values of transparencies
GN . The parameters used for the p0-SC are µp = −0.01 K,
VZ = 0 K, ∆p = 0.2 eVÅ, where the gap is ∆p0 = 0.01 K.
The parameters used for the p2-SC are µp = 20 K, VZ = 0 K,
∆p = 2 × 10−4 eVÅ, where the gap is ∆p2 = 6.3 × 10−3 K.
The smallest gap in the junction is ∆min = 6.3× 10−3 K.

The current and conductance plots for the p0Np2 junc-
tion are given in Fig. 10. The MAR for this junction are
suppressed since p0 is essentially an insulator. There is
a conductance peak at |V | = ∆p0/e which corresponds
to a single Andreev reflection from the MZMs. However,

unlike the case of the sNp2 junction, the tunneling con-
ductance at the threshold voltage |V | = ∆p0/e assumes
a non-quantized value which decreases with decreasing
junction transparency. We note again that the MZM
tunneling conductance quantization GM = (4− π)2e2/h
holds only if the superconducting probe has a BCS sin-
gularity (as derived in Ref.45).

H. p0Np1 junction
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FIG. 11. (Color online) Plots of (a) dc current I and (b)
normalized differential conductance G/G0 versus bias voltage
V for a p0Np1 junction with various values of transparencies
GN . The parameters used for the p0-SC are µp = −0.01 K,
VZ = 0 K, ∆p = 0.2 eVÅ, where the gap is ∆p0 = 0.01 K.
The parameters used for the p1-SC are µp = 20 K, VZ = 40
K, ∆p = 2× 10−4 eVÅ, where the gap is ∆p1 = 0.011 K. The
smallest gap in the junction is ∆min = 0.01 K.

The current and conductance plots for the p0Np1 junc-
tion are given in Fig. 11. The conductance for this junc-
tion looks similar to those of the p0Np2 junction. The
MAR for this junction are suppressed and in the tunnel-
ing limit, the conductance has a step jump at the thresh-
old voltage e|V | = ∆p0 to a non-quantized value which
decreases with decreasing junction transparency.
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I. p0Np0 junction
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FIG. 12. (Color online) Plots of (a) dc current I and (b)
normalized differential conductance G/G0 versus bias voltage
V for a p0Np0 junction with various values of transparencies
GN . The parameters used for both p0-SCs are µp = −0.01
K, VZ = 0 K, ∆p = 0.2 eVÅ, where the gap is ∆p0 = 0.01 K.
The smallest gap in the junction is ∆min = 0.01 K.

For the p0Np0 junction, the plots of the current and
conductance versus the bias voltage are displayed in
Fig. 12. Since the p0Np0 junction is essentially a junction
between two insulators, the current and conductance for
this junction are generally small and MAR are strongly
suppressed. In the limit of small transparencies, the cur-
rent and conductance for a symmetric p0Np0 junction
rise to a non-zero value at e|V | = 2∆p0 , i.e., when the
density-of-state singularity of the occupied band of one
p0-SC is aligned with the singularity of the empty band
of the other p0-SC.

V. SPIN-ORBIT-COUPLED
SUPERCONDUCTING WIRE JUNCTIONS

Pure spinless or spinful p-wave topological supercon-
ductors as considered above do not exist in nature al-
though they could be approximate models for some real
systems. It is, however, known that effective 1D or 2D
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FIG. 13. (Color online) Energy spectrum of SOCSW for dif-
ferent parameter regimes: (a) VZ = 0 (nontopological), (b)

VZ <
√
µ2
0 + ∆2

0 (nontopological), (c) VZ =
√
µ2
0 + ∆2

0 (tran-

sition), (d) VZ >
√
µ2
0 + ∆2

0 (topological).

topological superconductors closely mimicking spinless
topological superconductors can be artificially engineered
by combining s-wave superconductivity with spin-orbit
coupling and Zeeman splitting11–13,15. We therefore now
consider a more physically realistic model for topological
superconductors, namely, a spin-orbit-coupled 1D semi-
conducting nanowire placed in proximity to an s-wave su-
perconductor in the presence of magnetic field11–14. The
s-wave superconductor induces superconductivity in the
nanowire through proximity effect, and this proximity-
induced nanowire superconductivity is converted to topo-
logical superconductivity by the Zeeman splitting in the
nanowire (provided it is large enough to overcome the in-
duced s-wave superconductivity) in the presence of spin-
orbit coupling. The BdG Hamiltonian for the SOCSW
is

HSOCSW =

(
−~2∂2x

2m
− µ0

)
τz

− iα∂xτzσy + VZσx + ∆0τx, (12)

where µ0 is the chemical potential of the nanowire, α is
the strength of the spin-orbit coupling, VZ is the Zeeman
field, and ∆0 is the proximity-induced s-wave pairing po-
tential. The Hamiltonian above is written in the same
basis as that in Eq. (9). The SOCSW can be tuned from
the nontopological to the topological regime by simply
changing the Zeeman field VZ or chemical potential µ0.
The critical value VZ =

√
µ2
0 + ∆2

0 marks the topological
quantum phase transition between the topologically triv-
ial (VZ <

√
µ2
0 + ∆2

0) and topologically nontrivial phase

(VZ >
√
µ2
0 + ∆2

0). In the topological regime, there is
one MZM at each end of the nanowire (if the wire is
long enough with well-separated MZMs, the system is in
the topologically protected regime). The BdG spectrum
of the SOCSW is given in Fig. 13. In what follows, we
are going to denote the minimum gap in the SOCSW
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spectrum by ∆SOCSW. Below we calculate the current
and conductance of several SNS junctions between two
SOCSWs where the SOCSW can be either in the non-
topological or topological regime. The results given in
the subsections below are our most relevant theoretical
results for the currently ongoing MZM experiments in the
literature which mostly involve semiconductor nanowires.

A. Nontopological–nontopological SOCSW
junction
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FIG. 14. (Color online) Plots of (a) dc current I and (b)
normalized differential conductance G/G0 versus bias voltage
V for a nontopological–nontopological SOCSW junction with
various values of transparencies GN and no Zeeman field. The
parameters used for both SOCSWs are µ0 = 0 K, VZ = 0 K,
∆0 = 0.01 K, α = 0.5 eVÅ, where the gap is ∆nontopo

SOCSW = 0.01
K. The smallest gap in the junction is ∆min = 0.01 K.

In this subsection, we consider the junction between
two SOCSWs where both of them are in the nontopo-
logical regime (i.e., VZ <

√
µ2
0 + ∆2

0). As shown in
Fig. 14, the current and conductance of this junction
with no Zeeman field (VZ = 0) is the same as that of
an s-wave superconductor–normal metal–s-wave super-
conductor junction51,54,55. The SGS for the symmetric
nontopological–nontopological SOCSW junction occurs
at voltages |V | = 2∆nontopo

SOCSW/ne. For a perfectly trans-

parent junction (GN = 2), the current at small voltages
approaches the value

I(V → 0) =
4e∆min

h
. (13)

In the limit of small transparency the current and con-
ductance develop a step jump at |V | = 2∆nontopo

SOCSW/e for
junctions with symmetric gaps.

Fig. 15 shows the current and conductance for the
nontopological–nontopological SOCSW junction in the
presence of Zeeman field. Increasing the Zeeman field
smooths out the SGS. In the limit of small transparen-
cies, the conductance has a smooth rise from zero instead
of a step jump at the threshold voltage.
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FIG. 15. (Color online) Plots of (a) dc current I and (b)
normalized differential conductance G/G0 versus bias voltage
V for a nontopological–nontopological SOCSW junction with
various values of transparencies GN and finite Zeeman field.
The parameters used for both SOCSWs are µ0 = 0 K, VZ =
0.002 K, ∆0 = 0.01 K, α = 0.5 eVÅ, where the gap is ∆nontopo

SOCSW

= 0.008 K. The smallest gap in the junction is ∆min = 0.008
K.

B. Nontopological–topological SOCSW junction

Here, we consider junctions between a nontopological
and a topological SOCSW. The current and conductance
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FIG. 16. (Color online) Plots of (a) dc current I and (b) nor-
malized differential conductance G/G0 versus bias voltage V
for a nontopological–topological SOCSW junction with var-
ious values of transparencies GN . The red dashed line at
GM = (4 − π)2e2/h is the conductance value due to a sin-
gle Andreev reflection from the MZM. The nontopological
SOCSW is not subjected to any Zeeman field and the topolog-
ical superconductor has a small Zeeman field. The parameters
used for the nontopological SOCSW are µ0 = 0 K, VZ = 0
K, ∆0 = 0.5 K, α = 0.5 eVÅ where ∆nontopo

SOCSW = 0.5 K. The
parameters used for the topological SOCSW are µ0 = 0 K,
VZ = 15.0 K, ∆0 = 10.0 K, α = 0.05 eVÅ, where the gap
is ∆topo

SOCSW = 0.75 K. The smallest gap in the junction is
∆min = 0.5 K.

for such junctions are given in Figs. 16-18. We first con-
sider the case of the junction with the nontopological
SOCSW having no Zeeman field where the energy spec-
trum for this nontopological SOCSW has the minimum
gap at the Fermi momentum with a BCS singularity [as
shown in Fig. 13(a)]. As shown in Figs. 16 and 17, the
conductance in the tunneling limit for this junction de-
velops a step jump from 0 to GM = (4 − π)2e2/h at

the gap-bias voltage e|V | = ∆nontopo
SOCSW similar to the case

of sNp1 junction. This quantized value GM is due to
a single Andreev reflection from the MZM of an elec-
tron coming from the gap edge with a BCS singularity.
In the limit where the Zeeman field in the topological
SOCSW is small, for intermediate and large transparen-
cies, there are MAR and the conductance below the volt-
age e|V | = ∆nontopo

SOCSW is nonzero except for small voltages
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FIG. 17. (Color online) Plots of (a) dc current I and (b) nor-
malized differential conductance G/G0 versus bias voltage V
for a nontopological–topological SOCSW junction with var-
ious values of transparencies GN . The red dashed line at
GM = (4 − π)2e2/h is the conductance value due to a sin-
gle Andreev reflection from the MZM. The nontopological
SOCSW is not subjected to any Zeeman field and the topolog-
ical superconductor has a large Zeeman field. The parameters
used for the nontopological SOCSW are µ0 = 0 K, VZ = 0
K, ∆0 = 0.5 K, α = 0.5 eVÅ where ∆nontopo

SOCSW = 0.5 K. The
parameters used for the topological SOCSW are µ0 = 0 K,
VZ = 60.0 K, ∆0 = 10.0 K, α = 0.05 eVÅ, where the gap
is ∆topo

SOCSW = 0.42 K. The smallest gap in the junction is
∆min = 0.42 K.

(see Fig. 16). Near zero voltage, the current and conduc-
tance vanish due to a mismatch in the Andreev reflec-
tion spin-selectivity between the nontopological SOCSW
and the MZM. In the limit of large Zeeman field in the
topological SOCSW, where the MAR are suppressed and
only single Andreev reflections are allowed, the conduc-
tance for this junction develops a step jump from 0 to
GM = (4 − π)2e2/h independent of the junction trans-
parency. We note that this result is similar to the case
where the nontopological SOCSW is replaced by an s-
wave superconductor46.

For the case where there is Zeeman field in the non-
topological superconductor, the gap edge of the super-
conductor no longer has the BCS singularity. As a re-
sult, the MZM tunneling conductance measured using
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FIG. 18. (Color online) Plots of (a) dc current I and (b) nor-
malized differential conductance G/G0 versus bias voltage V
for a nontopological–topological SOCSW junction with vari-
ous values of transparencies GN . The nontopological SOCSW
has a finite Zeeman field and the topological superconductor
has a small Zeeman field. Note that the MZM tunneling con-
ductance is not quantized at GM = (4 − π)2e2/h. The pa-
rameters used for the nontopological SOCSW are µ0 = 0 K,
VZ = 0.2 K, ∆0 = 0.5 K, α = 0.5 eVÅ where ∆nontopo

SOCSW = 0.3
K. The parameters used for the topological SOCSW are
µ0 = 0 K, VZ = 15.0 K, ∆0 = 10.0 K, α = 0.05 eVÅ, where
the gap is ∆topo

SOCSW = 0.75 K. The smallest gap in the junction
is ∆min = 0.3 K.

this nontopological superconductor will not be quantized
at GM for the gap-bias voltage e|V | = ∆nontopo

SOCSW. Instead,
the tunneling conductance assumes a non-universal value
which decreases with decreasing junction transparency as
shown in Fig. 18.

C. Topological–topological SOCSW junction

The current and conductance plots for a topological–
topological SOCSW junction are shown in Fig. 19. Our
results for this junction, calculated using the scattering
matrix formalism, are identical to previous results for the
same SNS junction calculated using a Green’s function
method61 and similar to the results obtained in Ref.62

for a topological Josephson junction between supercon-
ductors connected through the helical edge states of a

2D topological insulator in the presence of a magnetic
barrier.

Similar to the p1Np1 junction, in the limit of perfect
transparency (GN = 1), the current for a topological–
topological SOCSW junction asymptotically approaches

I(V → 0) =
2e∆min

h
, (14)

which is half the value of the current in the conventional
SNS junction. The reason is because there is only one
MZM at both sides of the junction which transfer charges
in unit of e. The SGS for this junction happens at volt-
ages |V | = ∆min/ne. In the weak tunneling limit, there
is a step jump in the conductance at |V | = ∆min/e. We
note, however, that since there is no BCS singularity in
the superconducting lead, the conductance at the voltage
|V | = ∆min/e is not quantized at GM = (4− π)2e2/h.
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FIG. 19. (Color online) Plots of (a) dc current I and (b)
normalized differential conductance G/G0 versus bias voltage
V for a topological–topological SOCSW junction with various
values of transparencies GN . The parameters used for both
SOCSWs are µ0 = 0 K, VZ = 15 K, ∆0 = 1.17 K, α = 0.05
eVÅ, where the gap is ∆topo

SOCSW = 0.01 K. The smallest gap
in the junction is ∆min = 0.01 K.
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FIG. 20. (Color online) (a) Schematic diagram of an sSC–SOCSW junction with a pair of ABS (one at each end of the topological

region). The chemical potential of the topological and nontopological regions are |µtopo| <
√
V 2
Z −∆2

0 and |µnontopo| >√
V 2
Z −∆2

0, respectively. The parameters used for the sSC are µs = 50 K, and ∆s = 0.67 K. The SOCSW parameters are

µnontopo = 211.18 K, VZ = 15 K, ∆0 = 10 K, α = 0.05 eVÅ, and length of the topological region, Ltopo = 0.6 µm. We use
a dissipation term iΓτ0 ⊗ σ0 in the BdG Hamiltonian of both the left and right superconductors with a dissipation strength
Γ = 0.05K to broaden the van-Hove singularity. (b) The energy of the Andreev bound state closest to zero energy versus
the chemical potential µtopo in the topological region. The red, green and purple dots indicate the value of the topological
chemical potential used in (c),(d), and (e), respectively. Normalized differential conductance G/G0 for the SOCSW for several
chemical potential values in the topological region: (c) µtopo = 0 K, (d) µtopo = 1.697 K, and (e) µtopo = 4.5 K. Inset: the
ABS conductance in the weak tunneling limit which is the conductance for the smallest transparency in the main plot.

VI. ANDREEV BOUND STATES

In this section we compare the conductance of an MZM
with that of an ABS. We mention that the possible ex-
istence of ABS in the system can never be ruled out a
priori, and it is therefore important to take into account
their possible effects on transport properties. In particu-
lar, we consider the ABS that may arise in the SOCSW
model with a finite topological region and a semi-infinite
nontopological region as shown in the right side of the
SNS junction in Fig. 20(a). This model can happen
naturally in an SOCSW with varying chemical potential
where the chemical potential varies from the topological
regime to the non-topological regime resulting in the do-
main walls between the topological and non-topological
regions63. The ABSs can be found at the end of the
topological region. For simplicity, here we consider a step
jump in the chemical potential in going from the topolog-
ically nontrivial (|µ0| <

√
V 2
Z −∆2

0) to the topologically

trivial value (|µ0| >
√
V 2
Z −∆2

0) keeping all the other pa-
rameters in these two regions to be the same. The ABS

closest to zero energy in this model has energy oscillating
with the chemical potential in the topological region as
shown in Fig. 20(b) where the zero-energy ABS can be
found at specific values of system parameters64. In this
section, we compare the conductance of an MZM with
that of an ABS. We mention that the possible existence
of ABS in the system can never be ruled out a priori,
and it is therefore important to take into account their
possible effects on transport properties. In particular, we
consider the ABS that may arise in the SOCSW model
with a finite topological region and a semi-infinite non-
topological region as shown in the right side of the SNS
junction in Fig. 20(a). This model can happen naturally
in an SOCSW with varying chemical potential where the
chemical potential varies from the topological regime to
the non-topological regime resulting in the domain walls
between the topological and non-topological regions63.
The ABSs can be found at the end of the topological
region. For simplicity, here we consider a step jump in
the chemical potential in going from the topologically
nontrivial (|µ0| <

√
V 2
Z −∆2

0) to the topologically trivial
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value (|µ0| >
√
V 2
Z −∆2

0) keeping all the other parame-
ters in these two regions to be the same. The ABS closest
to zero energy in this model has energy oscillating with
the chemical potential in the topological region as shown
in Fig. 20(b) where the zero-energy ABS can be found at
specific values of system parameters64.

We consider this SOCSW in a junction with an s-wave
superconducting lead. To calculate the conductance here,
we first introduce a dissipation term −iΓτ0 ⊗ σ0 into
the BdG Hamiltonian. The dissipation term is used to
broaden the van Hove singularity of the BdG spectrum so
that we do not need to use a very fine energy grid in the
numerical calculation. This dissipation term has been
used previously to calculate conductance in topological
NS junctions43,44, though for different reasons. Our using
a dissipation here could either be physically motivated as
in Ref.44 or simply a technical artifice in handling the van
Hove singularity. Figs. 20(c)-(e) show the conductance
of the SOCSW calculated for several chemical potential
values in the topological region with all other parameters
the same. The conductance for the zero-energy ABS may
resemble the MZM tunneling conductance, i.e., it has a
sharp rise at the voltage e|V | = ∆s to a peak with a value
near GM = (4 − π)2e2/h [see the inset in Fig. 20(d) or
Ref.46]. One needs to be careful therefore in interpreting
experimental data since accidental near-zero-energy ABS
would produce tunneling conductance signatures quite
similar to MZM themselves. For non-zero energy ABS,
the ABS tunneling conductance peak shifts away from
the threshold voltage e|V | = ∆s (where ∆s is the s-wave
superconducting gap) towards a larger voltage value by
the ABS energy normalized by the tunnel coupling be-
tween the lead and the system, see Fig. 20(c) and (e).

VII. CONCLUSION

In this paper, we have calculated the zero-temperature
dc current and conductance in various 1D voltage-biased
SNS junctions involving topological and nontopological
superconductors, considering both ideal spinful p-wave
and realistic spin-orbit-coupled s-wave superconducting
wires. For junctions with small transparencies, the pres-
ence of an MZM gives rise to a jump in the current and
conductance at the gap-bias voltage e|V | = ∆lead where
the superconducting gap edge is aligned with the MZM.
If the superconducting lead has a BCS singularity at the
gap edge then the tunneling conductance at the gap-bias
voltage takes the value GM = (4−π)2e2/h due to a single
Andreev reflection from the MZM. However, this quan-
tization no longer holds if the superconducting lead gap
edge does not have the BCS singularity, e.g., p-wave su-
perconductor or SOCSW with finite magnetic field. For
SNS junctions where both of the superconductors are
topological (i.e., with one or two MZMs at each end),
there is SGS in the I-V curve or conductance profile due
to MAR. However, for nontopological–topological super-
conductor junctions where the topological superconduc-

tor has only one MZM at each end, the SGS at small
voltages is suppressed due to the mismatch in Andreev
reflection spin-selectivity of the superconducting lead and
the MZM.

In contrast to the conventional SNS junction where
Cooper pairs are transferred across the junction with a
charge of 2e, for the topological SNS junction, the charge
is transferred via the MZM in the units of e. As a re-
sult, for a perfectly transparent junction with an MZM
at each end, the MZM contributes to a near zero-voltage
current I(V → 0) = 2e∆min/h where ∆min is the small-
est gap in the junction. We note that this MZM near-
zero voltage current is by no means universal or quan-
tized because of the generic presence of the gap ∆min

which surely varies from junction to junction. The same
is also true for the case where there are two MZMs on
one side and one MZM on the other side. This near zero-
voltage dc current is half of the value for the conven-
tional s-wave superconductor–normal–s-wave supercon-
ductor junction. However, for the case where there are
two MZMs on both sides of the junction, the near zero-
voltage current is I(V → 0) = 4e∆min/h because each
MZM can exchange a charge of e between each other.
For the case where there is a conventional s-wave super-
conductor on one side and one MZM on the other side
of the junction, the current is zero because of the dif-
ference in the Andreev-reflection spin selectivity of the
s-wave superconductor and MZM, i.e., the s-wave super-
conductor allows only opposite-spin Andreev reflections
and MZM favors equal-spin Andreev reflections. How-
ever, for the junction between a conventional s-wave su-
perconductor and a Majorana Kramers pair the near-zero
current for a perfect transparent junction is not zero but
it is I(V → 0) = 4e∆min/h. This is due to the fact that
the MZM pair can facilitate Andreev reflections in both
spin channels.

We also calculated the conductance with an ABS in
the SOCSW model arising from a finite topological and
a semi-infinite non-topological region. For this junction,
the energy of the ABS closest to zero energy oscillates
with the chemical potential in the topological region. For
the parameters where the ABS is at zero energy, the tun-
neling conductance may resemble that of Majorana, i.e.,
it has a step jump to a value GM at the gap-bias volt-
age e|V | = ∆lead. However, when the energy of the ABS
is non-zero, the conductance peak shifts away from the
gap-bias voltage towards a larger voltage value by the
ABS energy.

In conclusion, the tunneling conductance peaks for
a conventional SNS junction49–51,54,55 occur at voltages
eV = ±(∆nontopo

L + ∆nontopo
R ) where ∆nontopo

L,R are the su-
perconducting gaps of the left and right nontopological
superconductors. For an SNS junction with an MZM
at one side of the junction45–48, the tunneling conduc-
tance peaks occur at voltages eV = ±∆nontopo and for
an SNS junction with one MZM on both sides of the junc-
tion61,62,65, the tunneling conductance develops peaks at
eV = ±∆topo

L and eV = ±∆topo
R where ∆topo

L and ∆topo
R
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are the superconducting gaps of the left and right topo-
logical superconductors. For an SNS junction where both
of the superconductors are identical SOCSWs, in the
nontopological regime close to the topological phase tran-
sition, as the Zeeman field increases the zero-momentum
gap (∆ =

√
µ2
0 + ∆2

0−VZ) shrinks and the tunneling con-
ductance peaks move towards zero voltage with a rate
d(e|Vtcp|)/dVZ = 2 where Vtcp is the voltage at which
the tunneling conductance peak occurs. In the topolog-
ical regime near the transition, as the zero-momentum
gap (∆ = VZ −

√
µ2
0 + ∆2

0) reopen, the tunneling con-
ductance peaks move away from zero voltage with a rate
d(e|Vtcp|)/dVZ = 1. This change in the dependence of the
position of the tunneling conductance peaks with Zeeman
field near the topological phase transition can serve as an
evidence for the appearance of MZMs in the system.

To this end, we would like to highlight the new find-
ing of our paper. First, we find that the tunneling con-
ductance of the MZM probed using a superconducting
lead without a BCS singularity (where

∑
σ=↑,↓ |uσ|2 6=∑

σ=↑,↓ |vσ|2 at the gap edge with u and v being the
electron and hole component of the BdG superconduct-
ing wavefunction) assumes a non-universal value which
decreases with decreasing junction transparency. We ex-
plicitly show this non-quantized conductance value for
the case where the superconducting probe lead is either
a topological or nontopological p-wave superconductor or
SOCSW with finite magnetic field. Second, we also show
that for the case where the superconducting probe lead
is a p-wave superconductor with no topological channel,
MAR are strongly suppressed due to fact that a nontopo-
logical p-wave superconductors is essentially an insula-
tor with small Andreev reflection amplitudes. Third, we
show that for the case where the superconducting probe
lead is an s-wave superconductor and there is a Majo-
rana Kramers pair in the topological superconductor, in
the high transparency regime, the current and conduc-
tance near zero-voltage is not zero because there are two
MZMs which facilitate equal-spin Andreev reflections in
two different spin channels. This is in contrast to the
SNS junction between an s-wave superconductor and a
topological superconductor with one MZM at the end
where in this junction MAR are strongly suppressed near
zero voltage because the s-wave superconductor allows
opposite-spin Andreev reflections while the MZM allows
equal-spin Andreev reflections in only one spin channel.

Our theoretical results should serve as a definitive
guide to future experiments on MZM using tunneling
spectroscopy of topological SNS junctions. We believe
that such SNS experiments are now necessary since tun-
neling spectroscopy of NS junctions in nanowires has
failed so far (in spite of > 5 years of intense experimen-
tal activity) to manifest the predicted MZM quantization

of zero-bias conductance although the zero-bias conduc-
tance peak itself seems to be observed generically.
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Appendix A: Remarks on Numerical Simulation

The scattering matrices at the left (SL) and right NS
interfaces (SR) [Eq. (1)] can calculated numerically from
Kwant52 by constructing the tight-binding models for the
corresponding NS junctions. Since the scattering matri-
ces given by Kwant are calculated using the current am-
plitudes with arbitrary phases at each energy, one can fix
the phases by setting the largest element of the current
amplitudes for every energy to be real.

We note that Eqs. (1a) and (1c) are invariant under
the transformation:

tinL,R(E)→ tinL,R(E)U†L,R(E),

J in
L,R(E)→ UL,R(E)J in

L,R(E), (A1)

where tinL,R(E) are the transmission matrices at the left

and right NS interfaces, UL,R(E) are unitary matri-
ces, and J in

L,R(E) are the input current amplitudes from
the left and right NS interfaces. By polar decomposi-
tion, there exists a unitary matrix UL,R(E) such that

tinL,R(E) = t̃inL,R(E)U†L,R(E), where

t̃inL,R(E) =
√
tinL,R(E)[tinL,R(E)]† =

√
1− rL,R(E)r†L,R(E),

(A2)
with rL,R being the reflection matrices at the left and
right NS interfaces. For computational efficiency, we ob-
tained only the reflection matrices rL,R from Kwant and
used Eq. (A2) to calculate the transmission matrix.

For the numerical evaluation of Eq. (4), we used an
energy cutoff Ec in the summation over energy where
Ec is chosen such that the calculation converges for each
voltage V . The introduction of the energy cutoff sets the
following constraint on the scattering matrix:

SeN (E,E + eV ) = ShN (−E,−(E + eV )) = −1, (A3)

for all E > Ec. The above constraint is required for the
unitarity of the scattering matrices to hold.
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