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We present a slave-particle mean-field study of the mixed boson+fermion quantum dimer model
introduced by Punk, Allais, and Sachdev [PNAS 112, 9552 (2015)] to describe the physics of the
pseudogap phase in cuprate superconductors. Our analysis naturally leads to four charge e fermion
pockets whose total area is equal to the hole doping p, for a range of parameters consistent with
the t− J model for high temperature superconductivity. Here we find that the dimers are unstable
to d-wave superconductivity at low temperatures. The region of the phase diagram with d-wave
rather than s-wave superconductivity matches well with the appearance of the four fermion pockets.
In the superconducting regime, the dispersion contains eight Dirac cones along the diagonals of the
Brillouin zone.

PACS numbers:

I. INTRODUCTION

The Rokhsar-Kivelson quantum dimer model (QDM)
was originally introduced to describe a possible
magnetically-disordered phase – the resonating valence
bond (RVB) phase – in high-temperature superconduct-
ing materials [1]. The arena where the QDM has been
deployed has greatly expanded since its inception, and
the model has taken on a key role in the study of a variety
of magnetic quantum systems. Quantum dimers show up
prominently in the study of hard-core bosons hopping on
frustrated lattices [2], of arrays of Josephson junctions
with capacitative and Josephson couplings [3], of frus-
trated Ising models with an external field or with pertur-
bative XY couplings [4], of various types of gauge theo-
ries [5], and of models with large spin-orbit couplings [6]
and various cold atom setups [7]. The study of QDMs led
to an abundance of new phenomena including deconfined
quantum criticality and new routes to deconfinement [8].
It also provided one of the earliest known examples of
topologically ordered states in a lattice model [9].

Recently QDMs have been revisited as models of high-
temperature superconductivity [10–12]. This was moti-
vated by the need to reconcile transport experiments [13–
16] and photoemission data [17–19] in the underdoped
region of cuprate superconductors: while photoemission
data show Fermi arcs enclosing an area 1 + p (with p be-
ing the doping), transport measurements indicate plain
Fermi-liquid properties consistent with an area p. In or-
der to resolve this issue and produce a Fermi liquid which
encloses an area p, the authors of Refs. [10–12] introduced
a model for the pseudogap region of the cuprate super-
conductors which consists of two types of dimers: one
spinless bosonic dimer – representing a valence bond be-
tween two neighboring spins – and one spin 1/2 fermionic
dimer representing a hole delocalized between two sites.
Fig. 1 shows an example of a boson+fermion dimer cov-
ering of the square lattice and depicts the dimer moves
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Figure 1: The boson+fermion quantum dimer model of
Ref. 10. (A) A particular dimer configuration. The lattice is
shown in black. The bosonic dimers representing the valence
bonds are shown in blue while the spinful fermionic dimers
representing a single electron delocalized over two sites are
shown in green. (B) Diagrams representative of the various
terms in the dimer Hamiltonian Eq. (2).

dictated by the quantum Hamiltonian in Eq. (2). The bo-
son+fermion QDM (bfQDM) was introduced and stud-
ied numerically in Ref. 10 using exact diagonalization,
supporting the existence of a fractionalized Fermi liquid
enclosing an area p.

In this work we present a slave boson and fermion for-
mulation of the bfQDM. We find that four symmetric
fermion pockets, located in the vicinity of

(
±π2 ,±

π
2

)
in

the Brillouin zone, naturally appear at mean-field level.
The total area of the four pockets is given by the hole
(fermionic) doping. We find that the system is unstable
to d-wave superconductivity at low temperatures. The
region of the phase diagram with d-wave superconduc-
tivity matches well the region with four fermion pock-
ets. In the superconducting phase, the fermionic dimers
(holes) acquire a Dirac dispersion at eight points along
the diagonals of the Brillouin zone.
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II. MAPPING ONTO SLAVE
BOSON/FERMION MODEL

The quantum dimer model can be mapped exactly onto
a slave boson+fermion model by considering a secondary
Hilbert space where we assign to each link (i, i + η) of
the lattice (η = x̂, ŷ) a bosonic mode bi,η and a spinful
fermionic mode ci,η,σ (σ =↑, ↓). We associate the number
of dimers on a link with the occupation numbers of the
bosons or fermions on that link. As such we have embed-
ded the dimer Hilbert space in a larger boson/fermion
Hilbert space. The constraint that each site of the lat-
tice has one and exactly one dimer attached to it may be
rephrased in the boson/fermion language as:

Πi ≡
∑
l∈vi

b†l bl + c†l,↑cl,↑ + c†l,↓cl,↓ − 1 = 0 . (1)

Here, for convenience of notation, ` ∈ vi labels the four
links j, η that are attached to vertex i. Any Hamiltonian
for the dimers has a boson/fermion representation; in
particular the terms illustrated in Fig. 1B can be written
as:

HD =
∑
i

{
−J b†i,x̂b

†
i+ŷ,x̂bi,ŷbi+x̂,ŷ + 1 term

+V b†i,x̂bi,x̂b
†
i+ŷ,x̂bi+ŷ,x̂ + 1 term

}
∑
i

∑
σ

{
−t1 b†i,x̂c

†
i+ŷ,x̂,σci,x̂,σbi+ŷ,x̂ + 3 terms

− t2 b†i+x̂,ŷc
†
i,ŷ,σci,x̂,σbi+ŷ,x̂ + 7 terms

− t3 b†i+x̂+ŷ,x̂c
†
i,ŷ,σci+x̂+ŷ,x̂,σbi,ŷ + 7 terms

−t3 b†i+2ŷ,x̂c
†
i,ŷ,σci+2ŷ,x̂,σbi,ŷ + 7 terms

}
− µ

∑
i

∑
σ

∑
η

c†i,η,σci,η,σ , (2)

where we included a chemical potential for the holes
(fermionic dimers), which is important for the connection
with doped high-temperature superconductors [20, 21].
The terms not written explicitly in Eq. (2) are simply
obtained from those shown by translational symmetry,
four fold rotational symmetry, and reflection symmetry
about the two diagonals. This Hamiltonian also has a
local U (1) gauge symmetry

bi,η → eiθi bi,η e
iθi+η , ci,η,σ → eiθi ci,η,σ e

iθi+η , (3)

with a phase θi associate to each vertex i. Any Hamil-
tonian that preserves the constraint given in Eq. (1) is
invariant under this gauge transformation [22, 23].

A slave boson/fermion formulation of the bfQDM is
obtained by introducing a Lagrange multiplier: a real
field λi(τ) that enforces the dimer constraint Eq. (1)
at all times τ , and shifting the action by ∆S =
−
´
dτ
∑
i λi(τ) Πi(τ).

III. SLAVE BOSON/FERMION MEAN-FIELD
DECOUPLING

A systematic mean-field approach can be obtained by
taking the saddle point with respect to the Lagrange
multiplier field λi(τ) → λi, with a time-independent
value λi that enforces the average constraint 〈Πi〉 = 0.
This procedure is accompanied by Hubbard Stratonovich
(HS) transformations of every term in the Hamiltonian
in Eq. (2) separately. We begin with the purely bosonic
potential term:

b†i,x̂bi,x̂b
†
i+ŷ,x̂bi+ŷ,x̂ →

κ1

{
b†i,x̂bi,x̂ xi1 + b†i+ŷ,x̂bi+ŷ,x̂ xi2 − xi1xi2

}
+ (1− κ1)

{
b†i,x̂b

†
i+ŷ,x̂ zi + bi,x̂bi+ŷ,x̂ z

∗
i −

∣∣z2
i

∣∣} , (4)

where xi and zi are auxiliary fields to be integrated
over and κ1 is arbitrary. At mean-field level we can
drop the integrals over the auxiliary fields and replace
them with their saddle point values xi1 → 〈b†i+ŷ,x̂bi+ŷ,x̂〉,
xi2 → 〈b†i,x̂bi,x̂〉 and zi → 〈bi,x̂bi+ŷ,x̂〉. The hopping term
may be decoupled in a similar manner:

b†i,x̂b
†
i+ŷ,x̂bi,ŷbi+x̂,ŷ + h.c.→

κ2

{
b†i,x̂b

†
i+ŷ,x̂ wi1 + bi,ŷbi+x̂,ŷ w

∗
i2 − wi1w∗i2 + h.c.

}
+ (1− κ2)

{
b†i,x̂bi,ŷ qi1 + b†i+ŷ,x̂bi+x̂,ŷ q

∗
i2 − qi1q∗i2 + h.c.

}
,

(5)

where, again, at mean-field level we use the saddle point
values wi1 → 〈bi,ŷbi+x̂,ŷ〉, w∗i2 → 〈b†i,x̂b

†
i+ŷ,x̂〉, qi1 →

〈b†i+ŷ,x̂bi+x̂ ,ŷ〉, q∗i2 → 〈b
†
i,x̂bi,ŷ〉 and κ2 is arbitrary. Other

HS decouplings, and linear combinations thereof, are also
possible.

We can make substantial progress in understanding
the fermionic component of the theory without detailed
analysis of the bosonic component. Indeed, any transla-
tionally invariant (liquid-like) bosonic ansatz yields simi-
lar fermionic effective theories. The fermionic mean-field
Hamiltonian reads

HFB̄ =
∑
σ

∑
i

{
−t1 c†i+ŷ,x̂,σci,x̂,σ〈b

†
i,x̂bi+ŷ,x̂〉+ 3 terms

− t2 c†i,ŷ,σci,x̂,σ〈b
†
i+x̂,ŷbi+ŷ,x̂〉+ 7 terms

− t3 c†i,ŷ,σci+x̂+ŷ,x̂,σ〈b
†
i+x̂+ŷ,x̂bi,ŷ〉+ 7 terms

−t3 c†i,ŷ,σci+2ŷ,x̂,σ〈b
†
i+2ŷ,x̂bi,ŷ〉+ 7 terms

}
+

(−2λ− µ)
∑
i

∑
σ

∑
η

c†i,η,σci,η,σ , (6)

which is effectively a tight-biding model with renormal-
ized hoppings T1 = t1 〈b†i,x̂bi+ŷ,x̂〉, T2 = t2 〈b†i+x̂,ŷbi+ŷ,x̂〉
and T3 = t3 〈b†i+x̂+ŷ,x̂bi,ŷ〉.
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The resulting model is defined on the bipartite checker-
board lattice that is medial to the original square lattice.
The horizontal (x) and vertical (y) links make up the two
sublattices where the fermions reside. We define (in mo-
mentum space) the spinor that encodes these two flavors

as ψ†~k,σ
= (c†~k,ŷ,σ

, c†~k,x̂,σ
) and

HFB̄ =
∑
~k,σ

ψ†~k,σ

(
ξx~k γ~k
γ∗~k ξy~k

)
ψ~k,σ , (7)

where:

ξx~k = −2λ− µ− 2T1 cos kx

ξy~k
= −2λ− µ− 2T1 cos ky

γ~k = 4ei(ky−kx)/2

(
T2 cos

kx
2

cos
ky
2

+T3 cos
3kx
2

cos
ky
2

+ T3 cos
kx
2

cos
3ky
2

)
.

The eigenvalues are given by E±,~k = ξ~k ±
√
η2
~k

+ |γ~k|2,

where ξ~k = (ξx~k + ξy~k
)/2 and η~k = (ξx~k − ξ

y
~k

)/2. For hole

doping p (the number of fermions in our model) the lower
band E−,~k will be partially occupied. The total area
enclosed by the Fermi surface in the lower band is equal
to the hole doping p (multiplied by 4π2).

The Hamiltonian Eq. (7) has four-fold rotational sym-
metry, kx → ky and ky → −kx, and reflection symmetry
about the diagonals kx → ky and ky → kx as well as
kx → −ky and ky → −kx. Depending on the relative
values of T1, T2 and T3, the band minima will be lo-
cated at different points in the Brillouin zone, and the
Fermi surface topology will vary accordingly. In Fig. 2A
we show the position of the minima along the kx = ±ky
directions (or Γ − M line), as a function of the ratios
T3/T1 and T2/T1. We identify two regions in parameter
space, where the dispersion minima are (i) at the Γ point
(blue-colored region), and (ii) in between the Γ and M
points, varying continuously with T1/T3 − T2/T3 (faded
region). An example of dispersion where the minima are
at (kx, ky) ' (±π/2,±π/2) is shown in the bottom inset
of Fig. 2A. Case (ii) is clearly conducive to the appear-
ance of four Fermi pockets in an appropriate range of the
chemical potential.

IV. D-WAVE SUPERCONDUCTIVITY

To study superconducting instabilities we need to in-
clude four-fermion terms in the Hamiltonian, i.e., go be-
yond the model introduced in Refs. 10–12 and summa-
rized in Fig. 1B and Eq. (2). Consider the t− J Hamil-
tonian on the square lattice [24],

HtJ = −
∑
α

tijd
†
i,αdj,α + J

∑
〈i,j〉

(
~Si · ~Sj −

1

4
ninj

)
(8)

Figure 2: (A) Location of the band minima as a function of
T3/T1 and T2/T1 (for T1 = 1). The color scale corresponds to
the distance along the Γ−M line in the Brillouin zone: blue
corresponds to the Γ point, kx = ky = 0, and red corresponds
to the M point, kx = ky = π. The insets show contours of the
dispersion of the lower band of the Hamiltonian Eq. (6) for
specific choices of parameters in the corresponding regions.
(B) Dominant superconductivity instability as a function of
T3/T1 and T2/T1 for doping p = 0.25 and J = 50: d-wave
(white) vs. s-wave (black). Note the good correlation between
d-wave superconductivity and the appearance of four band
minima.

subject to the constraint that ni ≤ 1. Here d†i,α and
di,α are the electron creation and annihilation operators

(α =↑, ↓) of the t − J model, ~Si = d†i,α ~σα,β di,β (with

α, β summed over), and ni = d†i,↑di,↑ + d†i,↓di,↓.

We can identify the dimer Hilbert space with a sub-
space of the Hilbert space for the t−J model, where the
zero dimers state corresponds to the state with zero elec-
trons, and the rest of the Hilbert space can be introduced
via the operators b†i,η ⇔ Υi,η (d†i↑d

†
i+η↓ − d†i↓d

†
i+η↑)/

√
2

and c†i,η,σ ⇔ Υi,η(d†i,σ + d†i+η,σ)/
√

2. The phases Υi,η

represent a gauge choice and we shall follow the one
by Rokhsar and Kivelson [1] and define Υi,ŷ = 1 and

Υi,x̂ = (−1)
iy , where iy is the y-component of the 2D

square lattice site index i.

Given the conventional inner product for the electron
Hilbert space, the dimer basis is not orthonormal. This
issue can be addressed in general by Gram-Schmidt or-
thogonalization [25]; however, it is customary to use
the leading order approximation and to assume that the
dimer states are orthogonal (and normalized) [23]. The
relevant Hamiltonian can then be determined by pro-
jecting Eq. (8) onto this basis. The pairing term (four-
fermion interaction) comes from the spin-spin term in the

t − J model, namely HJ = J
∑
〈i,j〉

(
~Si · ~Sj − 1

4ninj

)
.

Let us focus on a single plaquette term and consider
eight relevant states for this plaquette, c†i,x̂,αc

†
i+ŷ,x̂,β |0〉

and c†i,ŷ,αc
†
i+x̂,ŷ,β |0〉, α, β =↑, ↓. The Hamiltonian HJ

is non-zero only in the singlet channel and therefore
we must restrict the spins α, β to be in a singlet state,
thereby the effective Hamiltonian for the dimers is given

by H̃J =
(
−J/2 0

0 −J/2

)
[23]. As such we add to our Hamil-
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tonian in Eq. (2) the term:

H̃J = −J
4

∑
i

(
εαγ c

†
i,x̂,α c

†
i+ŷ,x̂,γ

)(
εβδ ci+ŷ,x̂,β ci,x̂,δ

)
+ x↔ y . (9)

For convenience we define ∆x = εαγ〈c†i,ŷ,α c
†
i+x̂,ŷ,γ〉 and

∆y = εαγ〈c†i,x̂,α c
†
i+ŷ,x̂,γ〉, whereby d-wave pairing corre-

sponds to ∆x = −∆y = ∆ (which in turn can be chosen
real with an appropriate choice of phase). Using a HS

transformation on Eq. (9), H =
∑
~k Ψ†~k

H~k Ψ~k
, where

H~k =


ξx~k γ~k ∆x

~k
0

γ∗~k ξy~k
0 ∆y

~k
∆x
~k

0 −ξx
−~k
−γ−~k

0 ∆y
~k
−γ∗
−~k
−ξy
−~k

,

 (10)

and Ψ†~k
= (c†~k,ŷ,↑

, c†~k,x̂,↑
, c
−~k,ŷ,↓

, c
−~k,x̂,↓

). Here ∆x
~k

=
J
2 ∆x cos kx and ∆y

~k
= J

2 ∆y cos ky. The eigenvalues of
this Hamiltonian are given by

E±,±,~k = ±
√

Θ~k ±
√

Λ~k + Ξ~k (11)

where

Θ~k =
1

2

[
(ξx~k )2 + (ξy~k

)2 + (∆x
~k
)2 + (∆y

~k
)2 + 2|γ~k|

2
]

Λ~k =
1

4

[
(ξx~k )2 − (ξy~k

)2 + (∆x
~k
)2 − (∆y

~k
)2
]2

Ξ~k = |γ~k|
2
[
(ξx~k + ξy~k

)2 + (∆x
~k
−∆y

~k
)2
]
.

When T1, T2 and T3 are such that there are four Fermi
pockets (in the absence of superconductivity), there are
eight Dirac points in the dispersion, i.e., there are eight
nodes where the gap E+,−,~k = E−,−,~k = 0. These points
are located along the diagonals of the Brillouin zone.
When kx = ±ky, Λ~k vanishes, and the gap closing condi-
tion Θ~k =

√
Ξ~k is equivalent to ξ2

~k
+∆2

~k
−|γ~k|

2 = 0, where

ξ~k = (ξx~k + ξy~k
)/2 and ∆~k = (∆x

~k
− ∆y

~k
)/2. Notice that

the Fermi surface in the absence of superconductivity is
given by ξ2

~k
− |γ~k|

2 = 0. Therefore, whenever there are

four Fermi pockets, for a range of ∆2
~k

there will be two
nodes for each pocket, slightly shifted along the diagonal
from the original Fermi surface [23].

Using self consistent equations for the superconducting
order parameter, we can then compare s-wave and d-wave
instabilities. Up to an unimportant constant energy shift,
the Gibbs free energy is given by

G =
J

4

(∣∣∆2
x

∣∣+
∣∣∆2

y

∣∣) (12)

− 2

β

ˆ
d2k

4π2
ln

[
cosh

(
β

2
E+,+,~k

)
cosh

(
β

2
E+,−,~k

)]
.

Minimizing the free energy with respect to ∆x, we obtain:

∆x=
∑
s=±

ˆ
d2k

4π2

tanh
(
β
2E+,s,~k

)
cos (kx)

2E+,s,~k

(13)

×

{
∆x
~k

+
s√

Λ~k + Ξ~k

[√
Λ~k ∆x

~k
+
∣∣γ~k∣∣2 (∆x

~k
−∆y

~k

)]}

and similarly for ∆y. From the symmetries of this equa-
tion we see that there are two solutions, ∆x = ∓∆y,
corresponding to d-wave and extended s-wave supercon-
ductivity.

We numerically compare the two solutions at zero tem-
perature and find that d-wave superconductivity wins for
a large range of ratios T2/T1 and T3/T1, as illustrated in
Fig. 2B. The correlation between the region with fermion
pockets depicted in Fig 2A and the region with d-wave
superconductivity in Fig. 2B is evident [23]. This can
be qualitatively understood as the largest change in the
Gibbs free energy upon entering the superconducting
state comes from the contribution of the integral around
the FS. Since the shape of the four Fermi pockets follows
largely the nodal lines of the s-wave order parameter,
and it anti-correlates with the d-wave nodal lines, one
expects the appearance of the pockets to favor d-wave
superconductivity.

Whereas the horizontal boundaries match very well in
the two panels in Fig. 2, the vertical boundaries less
so. Indeed, along the horizontal boundary the disper-
sion transitions smoothly from having a single minimum
at the Γ point to having four minima along the Γ −M
direction in the Brillouin zone, i.e., the minima move con-
tinuously away from the Γ point (which thus becomes a
maximum). On the other hand, along the vertical bound-
ary, the minima jump discontinuously from the Γ point
to the new four minima, as four local minima at finite
momenta dip down to become the global minima. De-
pending on the value of the chemical potential, there is
a region in the T2/T1 vs. T3/T1 plane near the verti-
cal boundary where the Fermi surface has five sheets,
four pockets coexisting with a surface surrounding the Γ
point. The latter favors s-wave superconductivity as it
has no nodes at the Γ point, and it is therefore expected
to shift the position of the boundary between d-wave and
s-wave superconductivity, as observed.

V. CONCLUSIONS

We presented a slave particle formulation of a mixed
boson+fermion quantum dimer model recently proposed
in the context of high-Tc superconductors [10–12]. A key
finding of this work is that substantial progress can be
made using a mean-field analysis that simply assumes a
translational and rotational invariant (liquid) state for
the bosonic component. We analyze the effective theory
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for the remaining fermionic degrees of freedom, and dis-
tinguish between two regimes of Fermi surface topology,
depending on the effective couplings obtained from both
microscopic parameters and correlations of the bosonic
liquid state. The two regimes correspond to one Fermi
surface around the Γ point, or four Fermi pockets cen-
tered along the Γ − M lines. By including additional
interactions that arise from the t−J model, we find that
the system is unstable to superconductivity. The sym-
metry of the superconducting order parameter, s-wave
vs. d-wave, is shown to correlate strongly with the Fermi
surface topology, with d-wave being favored when four
Fermi pockets are present.
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