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The standard interpretation of the phase diagram of type-II superconductors was developed in 1960s
and has since been considered a well-established part of classical superconductivity. However, upon
closer examination a number of fundamental issues arise that leads one to question this standard pic-
ture. To address these issues we studied equilibrium properties of niobium samples near and above
the upper critical field Hc2 in parallel and perpendicular magnetic fields. The samples investigated
were very high quality films and single crystal discs with the Ginzburg-Landau parameters 0.8 and
1.3, respectively. A range of complementary measurements have been performed, which include dc
magnetometry, electrical transport, µSR spectroscopy and scanning Hall-probe microscopy. Con-
trarily to the standard scenario, we observed that a superconducting phase is present in the sample
bulk above Hc2 and the field Hc3 is the same in both parallel and perpendicular fields. Our findings
suggest that above Hc2 the superconducting phase forms filaments parallel to the field regardless
on the field orientation. Near Hc2 the filaments preserve the hexagonal structure of the preceding
vortex lattice of the mixed state and the filament density continuously falls to zero at Hc3. Our work
has important implications for the correct interpretation of properties of type-II superconductors
and can also be essential for practical applications of these materials.

PACS numbers:

Interpretation of equilibrium properties of supercon-
ductors has a pivotal significance for the entire realm of
quantum physics, extending from neutron stars to the
standard model [1, 2]. Therefore it is important to verify
any concern related to description of these properties.

Type-II superconductors subjected to a magnetic field
H above the lower critical field Hc1 can be found in
three equilibrium states [3, 4, 6, 7]: in the mixed state
(MS), where average magnetic induction B̄ < H and cur-
rents form vortices organized in a hexagonal lattice; in a
“surface superconductivity” state, where B = H every-
where except a sheath with thickness of the order of the
Ginzburg-Landau (GL) coherence length near the surface
parallel to H ; and in the normal state (NS). The typical
phase diagram of type-II superconductors of cylindrical
geometry (such as, e.g., infinite circular cylinders and
slabs with thickness greatly exceeding the penetration
depth) in parallel magnetic field, or of massive samples
with demagnetizing factor η = 1 [5] is shown in Fig. 1.
Transitions between states, occurring at the critical fields
Hc2 and Hc3, are second order phase transitions. In ellip-
soidal samples with η 6= 0 the sheath formes an equatorial
band whose width decreases with increasing η. In sam-
ples with η = 1 (infinite slabs in perpendicular field) the
band vanishes and surface superconductivity disappears.
Since MS in such samples starts fromH = (1−η)Hc1 = 0,
their phase diagram consists of a single curve Hc2.

FIG. 1: Phase diagram of a massive type-II superconductor
of cylindrical geometry in parallel magnetic field. MS and NS
denote the mixed and the normal states, respectively.

This interpretation of the properties of type-II super-
conductors is based on two well known solutions of the
linearized GL equation obtained by Abrikosov [8] and
Saint-James and de Gennes [9]. In spite of a narrow range
of applicability of the GL theory [10–12], its tremendous
success has been due to an explanation of very puzzling
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FIG. 2: Magnetic moment of Nb-F and Nb-SC in parallel and
perpendicular fields at indicated temperatures. Inserts: same
data on an enlarged scale.

properties of these materials.

One of such puzzles was a factor of two discrepancy in
the upper critical field following from magnetic and resis-
tive measurements. It was often attributed to defects and
insufficient sensitivity of magnetometers (see, e.g. [13])
and therefore ignored in theories (e.g., [14]). Saint-James
and de Gennes treated superconductivity above Hc2 as
an equilibrium property, thus providing an interpretation
of the entire phase diagram within one theory.

However this standard picture raises some questions.
In particular, it implies that in parallel geometry super-
conductivity nucleates at a field (Hc3) almost twice as
large as the field at which it nucleates in perpendicular
geometry (Hc2). By definition, the field passes the sam-
ple in the NS being unperturbed, i.e. not noticing the
surface. Hence, nucleation at Hc3 should not depend on
the field-to-surface orientation. Also, in this scenario the
states coexisting atHc2 belong to different classes of sym-
metry, like crystal and liquid. Hence, the phase transition
at Hc2 should not be of second order [15]. In particular,
in samples with η = 1 the coexisting states are the MS
and the NS. Apart from different symmetries, the mini-
mum amount of a superconducting (S) phase needed to
create the vortex lattice is ≈ 10% of the sample volume.
Hence, this transition should not be continuous.

In this communication we challenge the standard in-

FIG. 3: Voltage V across the Nb-F2 sample. Green dots
represent V (T ) at H = 0; in (a) these data are shown on
a magnified scale. (b) and (c): V (H) obtained in parallel
(blue dots) and perpendicular (brown dots) fields at indicated
temperatures; the red and navy arrows indicate Hc2 and Hc3

inferred from the M(H) data, respectively. (d): current (i)
and the field configurations.

terpretation of the phase diagram of type-II supercon-
ductors by showing that above Hc2 the S phase forms
filaments parallel to applied field regardless of its orien-
tation.
To address the indicated questions, we measured mag-

netization, electrical transport, µSR spectra and took
scanning Hall-probe microscopy (SHPM) images on Nb
samples. Those were two high-purity 5.7µm thick films
4×6mm2 (Nb-F) and 2×4mm2 (Nb-F2), and two one-
side polished 1mm thick discs with diameter 7mm (Nb-
SC) and 19mm (Nb-SC2) cut from the same single crys-
tal rod. The film samples were cut from a film grown
on sapphire using electron cyclotron resonance technique
[16]; its residual resistivity ratio is 640. The GL param-
eter κ determined from magnetization curves in parallel
field is 0.8 (1.3) near the critical temperature Tc rising
up to 1.1 (1.6) at 2 K for the Nb-F (Nb-SC) sample. Tc

of the film (single crystal) samples is 9.25 K (9.20 K). As
verified by magnetization measurements, the samples are
nearly pinning-free at T & 8 K.
The magnetic moment M was measured on the Nb-F

and Nb-SC samples using Quantum Design MPMS sys-
tem. Typical data for high temperatures are shown in
Figs. 2a, b. We see that Hc2 and Hc3 are well distinguish-
able for both samples. At low temperatures flux trapping
is more significant, however it is still possible to resolve
the critical fields. An example of the low-temperature
data for the Nb-SC sample is shown in Fig. 2c. We ob-
serve that above Hc2 the S phase is present for both field
orientations, and in both cases Hc3 is the same. These
results are inconsistent with the surface sheath interpre-
tation. In particular, they suggest that above Hc2 the S
phase forms either droplets or filaments with decreasing
number density under increasing field.
The electrical resistance was measured for Nb-F2 sam-

ple using a low-current (2 mA) ac bridge. Voltage across
potential leads measured vs T at H = 0 and vs H at con-
stant T is shown in Fig. 3. In Figs. 3b and 3c we see that
resistance drops abruptly at Hc3 in parallel and at Hc2



3

FIG. 4: µSR spectra for (a) single crystal type-II Nb and (b)
single crystal type-I In at the same reduced temperature and
field. The inserts show the spectra for the same temperature
in the NS. The black (red) dots present the spectra recorded
along (opposite to) the initial direction of muon spin. Asy2
is the asymmetry caused by muons stopping in domains with
B = 0.

in perpendicular field, where Hc2 and Hc3 are inferred
from M(H). This is in line with the data on electrical
transport used to support the surface superconductivity
interpretation (see, e.g., [17–20]). However, this interpre-
tation conflicts with M(H) data. At the same time both
resistance and M(H) are consistent with a filament sce-
nario, provided the filaments are parallel to the applied
field. The resistance data rule out the droplet scenario.
Alternatively, magnetic properties can be studied by

µSR. Its bulk version makes use of 4MeV polarized
muons, probing B at ∼ 0.1 mm below the sample sur-
face, i.e. in the bulk (see, e.g., [21–23] for details).
µSR spectra were acquired for the Nb-SC2 sample in

perpendicular field at the Dolly instrument of the Swiss
Muon Source. Number of events of muon decays collected
in each data point is 3 · 106; statistical error in measured
field is . 0.1%. Typical time-spectra for the MS are
shown in Fig. 4a, where insert shows the spectra for the
NS. For comparison, Fig. 4b shows the spectra for the IS
taken at the same reduced temperature and field for a
type-I In sample; the insert shows the spectra of In in
the NS.
We see that apart from a much larger damping rate

(the damping rate for Nb in the MS normalized relative
to that in the NS is greater than the normalized damping
rate for In in the IS by a factor of 5), indicating for a
strong field inhomogeneity, the spectra of the MS differ
from that of the IS by absence of the asymmetry Asy2
(see Fig. 4b), caused by non-precessing muons stopped in

FIG. 5: Difference between the µSR measured Bµ and the
applied field H vs H at indicated temperatures. Green (blue)
circles are experimental points obtained at ascending (de-
scending) field. The red and navy arrows indicate Hc2 and
Hc3 obtained from magnetization measurements.

S domains with the Meissner (B = 0) phase [25]. Unlike
the IS, B 6= 0 throughout the sample in the MS [6, 24].
Therefore, all muons implanted in such samples precess,
resulting in disappearance of Asy2. The absence of Asy2
in µSR spectra of our Nb sample confirms that it is in
the MS but not in the intermediate-mixed state [26, 27].

Data for the most probable field Bµ extracted from
the µSR spectra [22] are shown in Fig. 5 in terms of
△B = Bµ −H vs H on two scales. As seen, (∂Bµ/∂H)T
abruptly changes at Hc2. At higher field △B decreases
vanishing near Hc3. Hc2 and Hc3 were inferred from
the M(H) data for the Nb-SC sample. The µSR data
are consistent with those on magnetization apart from
a greater hysteresis under descending field, probably
caused by a stronger pinning in the Nb-SC2 sample. The
µSR results confirm the presence of the S phase in the
sample bulk above Hc2 in perpendicular field, hence sup-
porting the filament scenario.

Images of the magnetic field pattern near the surface
of the Nb-F sample were taken using a scanning Hall-
probe microscope [28]. This was our most challenging
experiment due to the low field contrast and the limited
microscope resolution. To maximize the signal-to-noise
ratio, the images were taken at the lowest possible fields,
i.e. at a temperature (9.20 K) very close to Tc.

Typical images are shown in Fig. 6, where the col-
ors reflect the relative magnitude of the induction, the
brightest color corresponds to the strongest B. We see
that while vortices are clearly distinguishable in a weak
field, they become practically unresolvable as Hc2 is ap-
proached. However, a field contrast exceeding the noise
level remains below and above Hc2. To quantify this
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FIG. 6: Typical SHPM images of the Nb-F sample, with num-
bers indicating the applied field in Oe. Arrows up (down)
indicate images taken at increasing (decreasing) field. The
graph presents Brms(H) obtained from the SHPM data. Red
(blue) points represent Brms at increasing (decreasing) field.
The dashed line designates Hc2 inferred from M(H) data.

observation we calculated Brms =
√

< (B− < B >)2 >,
where < ... > represents a statistical average over the
scanned area (7.6 × 7.6 µm2). The graphs for Brms(H)
are shown in Fig. 6, where Hc2 is inferred from M(H).
Brms 6= 0 above Hc2 and it decreases with increasing H .
This agrees with the data on M(H) and Bµ(H), confirm-
ing that the tiny contrast in the SHPM images aboveHc2

is a real feature consistent with the filament interpreta-
tion.

We conclude that (a) all obtained results are in line
with each other; (b) the M(H) and µSR data reveal the
presence of the S phase above Hc2 in perpendicular field
at the same field range as in parallel field; (c) the resistiv-
ity data indicate that the S phase forms filaments parallel
to the applied field; (d) the filament interpretation is also
consistent with the SHPM images.

Now we turn to the question of what is happening near
Hc2. First we note that contrary to the IS, where M(H)
[29] and Bµ(H) [25] exhibit strong supercooling at the
critical field, in the MS, as seen from Figs. 2 and 5, both
M(H) and Bµ(H) are continuous functions exhibiting
discontinuous change in (∂M/∂H)T and (∂Bµ/∂H)T at
Hc2. M and B are the first derivatives of the thermody-
namic potentials F̃M (T, V,H) and F̃ (T, V,Hi), respec-
tively (Hi is the field strength inside the sample) [5].
Therefore our results meet the classical definition of sec-
ond order phase transition [31], thus confirming the stan-
dard interpretation of the transition at Hc2.

Next, since M(H), Bµ(T ) [27] and the heat capacity
C(T ) [32] are smooth functions in the MS, the equilib-
rium structure near Hc2 hardly differs from a periodic
lattice of vortices, well verified at low B̄ [30]. Therefore
the filament structure should also be periodic [15].

Due to hexagonal symmetry of the vortex lattice, a

FIG. 7: An induction map of the MS near Hc2. The field
is perpendicular to the page. P marks the “peaks” with the
highest B = Hi, T marks “troughs” with the lowest B, and
S marks the “saddle points” in between the peaks.

“landscape” of B has “peaks” (vortex cores) with max-
imum B = Hi, “troughs” with minimum B and “sad-
dle points” between the nearest peaks. Currents form
loops about the peaks. The current per unit length of
the vortex g(ϕ, r), being a function of the azimuthal (ϕ)
and radial (r) coordinates (see Fig. 7), is determined by
the local gradient of the induction ∂B/∂r [5]. The lat-
ter is minimal in the saddle points, thus making these
points weak spots in the loops. At Hc2 the current in the
loops ceases. This happens when the angular momen-
tum of electrons in Cooper pairs (or “superconducting
electrons”) decreases down to its minimum value, i.e. a
quantum of angular momentum m∗vr r = ~, where m∗ is
the effective mass of these electrons and vr is their speed
at radius r. This Bohr’s condition yields (see Appendix)
the minimum difference δBmin between the peaks and
the saddle points. In CGS units

δBmin = ~
4πnse

cm∗
ln

RS

Rc

=
Φ0

πλ2

L

ln
RS

Rc

, (1)

where ns and e are number density and charge of the
superconducting electrons, λL is the London penetration
depth, Φ0 is the flux quantum, Rc is the core radius, and
RS is the radius at the saddle point.
Hence, consistently with Abrikosov [8], one can con-

clude that at Hc2 the magnetic landscape is not flat. For
instance, if RS differs from Rc by only 0.01%, δBmin is
already ∼1 G. In the troughs B is smaller than in the
saddle points, therefore, upon collapse of the vortex cur-
rent at Hc2, S phase survives at the troughs where it
formes filaments in the out-of-plane (parallel to the field)
direction. The amount of S phase just above Hc2 can
be estimated from the difference between the areas of a
hexagonal unit cell of the lattice and a circle inscribed in
it, which yields about 10% of the sample volume. Cur-
rents driven by the field gradient in the troughs now cir-
culate in the filaments. It is important that right above
Hc2 the filaments keep hexagonal symmetry of the vor-
tex lattice below Hc2, thus removing the question about
impossibility of the second order phase transition at Hc2.
Under increasingH the filaments disappear one by one

as it happens with S laminae in the IS [33]. This implies
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that the filament density continuously decreases down
to zero at Hc3. This is consistent with the data on M
(Fig. 2) and Bµ (Fig. 5).
A final point to be addressed is the nucleation of super-

conductivity under decreasing field. One can expect that
the first stable nuclei are small droplets. Then the field
near the droplets is perturbed, making zones of depleted
field near the droplet poles. Therefore the next nuclei
will preferably appear in these zones, thus creating fila-
ments parallel to the field. In such case the transition at
Hc3 is continuous, in consistent with experiments.
To summarize, results of reported magnetization, elec-

trical transport, µSR and SHPM measurements per-
formed on Nb samples with different κ indicate that su-
perconductivity in type-II materials nucleates at Hc3 re-
gardless of the orientation of the applied field. Between
Hc2 and Hc3 superconducting phase exists in the sam-
ple bulk, most probably in form of filaments parallel to
the applied field. Under increasing field above Hc2 the
filament number density decreases vanishing at Hc3.
The suggested interpretation of properties of type-II

superconductors at high field is based on experimental
results obtained for two low-κ (0.8 and 1.3) supercon-
ductors. Therefore it is interesting to verify these obser-
vations with materials of higher κ. Single crystal A15
compounds and high-Tc materials at sufficiently close to
Tc temperatures (where pinning is minimal) can be ap-
propriate for such a verification.
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Appendix: Formula (1)

To calculate δBmin between the P and the S points at
Hc2 we will use cylindrical coordinates with axis parallel
to B with azimuthal ϕ and radial r coordinates shown in
Fig. 7.
Change dB in the normal (radial) direction over a ra-

dial interval dr (see Fig. 8) occurs due to the current
dI = ldg running in azimuthal direction in the cylin-
drical layer of radius r and thickness dr, where l is the
length of the cylinder (length of the vortex) and g is the
current per unite length of the cylinder. In CGS units
dB and dg are linked as [5]

dB =
4π

c
dg, (2)

FIG. 8: Profile of induction in a unit cell with a single vortex
along P-S line (see Fig. 7 of the main material).

where c is speed of light.
Therefore,

dI = ldg = l
c

4π
dB = (nsevr)ldr, (3)

where ns, e and vr is number density, charge and speed
of superconducting electrons (electrons paired in Cooper
pairs) in the layer, respectively, and nsevr is density of
the current running through the cross sectional area ldr.
Therefore,

nsevrrdr =
c rdB

4π
. (4)

At Hc2 the Bohr condition for the minimal angular
momentum of the superconducting electron is

Lmin = m∗rvr = ~. (5)

Therefore,

dB =
4πnse(vrr)

c r
dr|atHc2

= ~
4πnse

c rm∗
dr. (6)

Integrating the last expression over the radial interval
from the radius of the core Rc to the radius of the saddle
point RS one obtains formula (1)

δBmin = ~
4πnse

cm∗

∫ RS

Rc

dr

r
= ~

4πnse

cm∗
ln

RS

Rc

=

=
Φ0

πλ2

L

ln
RS

Rc

, (7)

where Φ0 and λL are the superconducting flux quantum
and the London penetration depth, respectively.
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