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We discuss the influence on spin-fluctuation pairing theory of orbital selective strong correlation
effects in Fe-based superconductors, particularly Fe chalcogenide systems. We propose that a key

ingredient for an improved itinerant pairing theory is orbital selectivity, i.e.

incorporating the

reduced coherence of quasiparticles occupying specific orbital states into the pairing theory. This
modifies the usual spin-fluctuation pairing via suppression of pair scattering processes involving those
less coherent states and results in orbital selective Cooper pairing of electrons in the remaining
states. We show that this paradigm yields remarkably good agreement with the experimentally
observed anisotropic gap structures in both bulk and monolayer FeSe, as well as LiFeAs, indicating
that orbital selective Cooper pairing plays a key role in the more strongly correlated iron-based

superconductors.

I. INTRODUCTION

In both copper-based and iron-based high temperature
superconductors, fundamental issues include the degree
of electron correlation and its consequences for enhancing
superconductivity. In both archetypes, there are multi-
ple active orbitals (two O p-orbitals and one Cu d-orbital
in the former, and five Fe d-orbitals in the latter). This
implies the possibility of orbital-selective physics, where
states dominated by electrons of one orbital type may
be weakly correlated and others much more strongly cor-
related, leading to substantial differences in quasiparti-
cle spectral weights, interactions, magnetism and orbital
ordering[1-7]. Cooper pairing itself could then become
orbital-selective, [8, 9] with the electrons of a specific
orbital character binding to form the Cooper pairs of
the superconductor. The superconducting energy gaps
of such a material would therefore generically be highly
anisotropic [8, 9], being large only for those Fermi sur-
face regions where a specific orbital character dominates.
Such phenomena, although long the focus of theoreti-
cal research on higher temperature superconductivity in
correlated multi-orbital superconductors, have remained
largely unexplored because orbital-selective Cooper pair-
ing has not been experimentally accessible.

Spin fluctuations are proposed as the dominant mech-
anism driving Cooper pairing in a wide variety of un-
conventional superconductors: heavy-fermion systems,
cuprates, two-dimensional organic charge transfer salts,
and iron-based superconductors (FeSC)[13-16]. There
is currently no version of spin-fluctuation based pair-
ing theory that enjoys either the well-controlled deriva-
tion from fundamental interactions or the consensual suc-
cess explaining observed properties of the BCS-Migdal-
Eliashberg theory of conventional superconductivity. On
the other hand, the calculational scheme referred to as
random phase approximation (RPA) in the case of one-
band systems[17, 18], or matrix-RPA in the case of multi-

band systems[19, 20], has achieved considerable qualita-
tive progress for unconventional systems.

While material-specific calculations of the critical tem-
perature T, within spin-fluctuation theory appear dis-
tant, considerable success has been achieved under-
standing qualitative aspects of pairing, particularly in
Fe-pnictide systems[15, 21, 22]. In the 122 materi-
als, which were the subject of the most intensive early
study, itinerant spin-fluctuation theory provided con-
vincing, material-specific understanding of the varia-
tion of gap anisotropy with doping within the domi-
nant sign-changing s-wave channel, particularly the ex-
istence or nonexistence of nodes; the interplay with d-
wave pairing; the rough size of T,.; and the origin of
particle-hole asymmetry. In retrospect, such agreement
was somewhat fortuitous, possible because the 122 sys-
tems have large Fermi surface pockets of both hole-
and electron-type, and are relatively weakly correlated.
In other pnictides like 111[4, 23, 24], and in 11 Fe-
chalcogenide systems|[3, 25|, correlation effects are consid-
erably more significant. In LiFeAs, for example, ARPES
measurements[26, 27] show that the I'-centered d,./d, .
hole pockets are considerably smaller than predicted by
density functional theory (DFT), while the dg, pocket
is larger. Taking these effects into account via a set of
renormalized energy bands is insufficient, however, to ac-
count for the accurate gap structure of LiFeAs within
spin-fluctuation theory[12] (see Ref. 15 and references
therein).

The consequences of correlations for the band structure
of FeSC are more profound than simple Fermi surface
shifts, however. If one examines compounds where the d-
bands are closer to half-filling (5 electrons/Fe), the effect
of electron-electron interactions are enhanced in a way
distinctly different from one-band systems: different d
orbital effective masses are enhanced by different factors.
This “orbital selectivity” predicted by theory[1-3, 28-30]
has been confirmed by ARPES experiments. While most
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Figure 1. Fermi surfaces together with orbital character of the models considered in this work. The individual sheets are labeled
as indicated: (a) Model for FeSe (bulk)[10] including orbital order, (b) 2D model for FeSe monolayer derived from the previous
one where maps of ARPES intensities obtained from measurements with horizontally polarized (LH) and circular polarized
(CR) initial photons have been overlayed to show agreement to experimental results[11] and (c) model for LiFeAs[12]. Plots as
a function of the angle ¢ around the Fermi surface sheets are done with the angle measured from the k, axis as indicated in

(b).

Fe-based systems have more electrons/Fe, closer to 6, the
effects are still nontrivial in the Fe-chalcogenides. For ex-
ample, the electrons in bands with d, orbital character
have been claimed to exhibit single particle masses up to
10-20 times the band mass, while in d,,/d., states the
renormalization is closer to 3-4[31, 32].

In Fermi liquid theory, excitations in a system of inter-
acting fermions are described by quasiparticles that have
the same quantum numbers but deviate from the free par-
ticles in dynamical properties such as the quasiparticle
mass, which renormalizes the Fermi velocity. Generally,
interactions in electronic systems also lead to reduced
quasiparticle weights, corresponding to reduced values of
the residue at the pole of the Greens function describing
those dressed electrons. Even in one-band systems where
orbital selectivity does not play a role, pairing in super-
fluid systems with reduced Landau quasiparticle weight
is an important unsolved theoretical problem. While one
generally expects pairing interactions to be reduced as
the quasiparticle weight is suppressed as other aspects
of pairing are held fixed, pairing in completely incoher-
ent non-Fermi liquids is not impossible, as discussed re-
cently in Ref. 33. The effect of orbital selective quasi-
particle weights on pairing in FeSC has been discussed
elsewhere in various approximations(8, 9], with differing
conclusions.

In the present work, we implement a simple scheme
to incorporate aspects of renormalization of the elec-
tronic band structure, including reduced quasiparticle
coherence that is orbital selective into spin-fluctuation
pairing theory, and apply it to several FeSC. This orbital
selective approach to pairing provides an excellent
description for the superconducting gap deduced from
quasiparticle interference measurements on the nematic
Fermi surface pockets of bulk FeSe, as shown already in
Ref. 10. Here we discuss the generality of this approach,
and show how it explains the exotic gap structures of

FeSe, FeSe monolayers and in the LiFeAs system as well.
These findings encourage us to believe that the proposed
paradigm is the correct way to understand the physics in
these materials, but we cannot rule out completely that
other effects affecting the gap such as spin-orbit coupling
or orbital fluctuations[34] may contribute. While the
microscopic origin of the phenomenology remains an
open challenge, we believe that it provides a major
step towards a quantitative, material-specific theory of
superconductivity in strongly correlated FeSC.

II. MODEL

The starting point of any uncorrelated multiband sys-
tem is the electronic structure described by a tight-
binding model[12, 34-36]

H=" tc,&)cr(k), (1)
kol

where c;[a (k) is the Fourier amplitude of an operator that
creates an electron in Wannier orbital ¢ with spin o and
tf?l is the Fourier transform of the hoppings. By a unitary
transformation from orbital to band space, H becomes
diagonal H =3, &u(k)ch, (K)cuo (k), with eigenener-
gies £, (k) and CLU (k) creating an electron in Bloch state
u, k. In Fig. 1 we show examples of Fermi surfaces de-
rived from the eigenenergies &, (k). For three dimensional
(3D) models considered in this work, the zero energy sur-
faces, i.e. the set of k vectors with &, (k) = 0 are corru-
gated tubes identified as «, § and e sheets in Fig. 1(a)
(FeSe, bulk) or the 8 and « sheets in (c¢) (LiFeAs), but
can also be closed surfaces as the a pocket in (c). For a
2D model as shown in (b), the Fermi surface is given by
elliptical lines such that it is convenient to plot quantities

as a function of the angle .
In the orbital basis the uncorrelated Greens function
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Figure 2. Comparison of the orbitally diagonal components of
the susceptibility of the uncorrelated model for bulk FeSe (a)
and the same quantities including the quasiparticle weights
that suppress contributions from orbitals with small weight
factors according to Eq. (4) (b).

is given by
at (k)al* (k)
Go (k,wy) = Y =L ==, (2)
" i, — &u(k)
where aﬁ(k) are the matrix elements of the unitary trans-

formation mentioned above. The orbital weight |af, (k)|
becomes important when discussing low-energy (Fermi-
surface driven) properties and is therefore visualized color
coded for the important Fe d orbitals £ = {dyy, ds=, dy.}
in Fig. 1 as well.

In order to include the effects of correlations, we now
make the orbital selective ansatz that the operators

CZ(k) create quasiparticles with weight \/Z, in orbital

l, c}(k) — \/chZ(k). Note that £ runs over the Fe 3d-
orbitals (dgy,dy2_y2,dy., dyz,ds,2_p2).  The associated
Greens function becomes

~ a’ (k)a*(k
GM' (k7 wn) =\ ZEZE Z 7::(_)1%8{;’ (3)

where Eu(k) are the renormalized band energies. A sim-
ilar approach has been used recently when parametriz-
ing the normal state Green’s functions in a Fermi lig-
uid picture[37], with the formal difference that we ex-
plicitly employ the renormalized quasiparticle energies

E,(k), which include the static real part of the self-
energy, and retain the quasiparticle weights in the nu-
merator. Following state-of-the-art pairing calculations
from spin-fluctuation theory[12, 38-40] (see Appendix
C), important effects of the \/Z, factors enter in two
places: 1) the calculation of the susceptibility includes
the renormalized quasiparticle Greens function, and 2)
when projecting the pairing interaction from orbital to
band space, one needs to account for the replacement
of ¢h(k) = VZsch(k). In cases where the Hamiltonian
already correctly describes the quasiparticle energies of
a correlated system &,(k) — E,(k) (as obtained e.g.
from fits to measured quasiparticle energies from spec-
troscopic experiments), the bare susceptibility in orbital
space needs to be simply multiplied by the quasiparticle
weights

Nev 0300 =N Z0, 20,20, Z0, X0, 03050,(2),  (4)

in order to obtain the corresponding quantity (with tilde)
in the correlated system. Our models as shown in Fig.
1 already match the true quasiparticle energies F,(k),
such that we can use Eq. (4) to examine the effect of
the quasiparticle weights on the susceptibility. In Fig.
2(a) the diagonal components of the orbitally resolved
susceptibilities where ¢; = ¢ = {3 = {4 are plotted as
obtained from our model of FeSe (bulk). For all orbitals,
the overall magnitude is similar (except for £ = d_2 that
does not play any role for the subsequent discussion), but
the momentum structure is distinct: The d,, component
has a maximum at q = (7, 7), whereas the components
for d,. (dy,) have maxima at q = (7,0) (q = (0,7)).

correlated:
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Figure 3. Plot of the spectral function at zero energy in

the first Brillouin zone. (a) Spectral function A(k,0) =
—1/7Im Tr G(k, 0) of the uncorrelated model for FeSe (bulk)
at k., = 0 with the Greens function as in Eq. (2). (b)
Spectral function A(k, 0) of the model including quasiparticle
weights inducing orbital selective reduced coherence. For the
pair scattering of Cooper pairs at momenta k to k' on the
Fermi surface (arrows) two quantities determine the scatter-
ing strength: (i) the susceptibility x(q) to which the pairing
vertex I'y i is proportional and (ii) the quasiparticle weight at
initial and final momentum. In summary, some processes get
largely suppressed (thin red and blue arrows) such that other
processes (thick green arrow) dominate the Cooper pairing.
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Figure 4. Results for FeSe (bulk): (a) Calculated susceptibility with quasiparticle weights (¥, thick lines) compared to the
susceptibility without quasiparticle weights (x, thin dashed lines), (b) gap symmetry function as obtained from conventional
spin-fluctuation pairing and (c) the same quantity when taking into account orbital dependent quasiparticle weights. For both
calculations, the dominant pair scattering processes leading to a large order parameter are symbolized with a double arrow.
The calculations are done for a fixed ratio J = U/6, but with an overall scale U as indicated.

Introducing quasiparticle weights as indicated in Fig.
2(b), it is obvious that some components get more sup-
pressed than others such that for the present choice of
{VZ} = [0.2715,0.9717,0.4048, 0.9236,0.5916], the d,.
contribution dominates[41]. In a similar way, the pairing
interaction gets modified by prefactors from quasiparti-
cle weights (see Appendix C). Physically, this means that
orbital-selective pairing occurs because pairing from cer-
tain quasiparticle states is suppressed more than others
because the states themselves are more incoherent.

To visualize this effect, we have plotted the spectral
function A(k,w) = —1/7ImTrG(k,w) for k, = 0 at
zero energy in Fig. 3(a) for the uncorrelated system
and in (b) with the same choice of quasiparticle weights
as discussed above. We use the bulk FeSe Fermi
surface discussed below as an illustration of the idea,
but details of the bands are not important for this
purpose. The superconducting order parameter is now
determined by the strength of the pair scattering I'y ks
of a Cooper pair at k to k/ which is proportional to
the susceptibility within the spin-fluctuation approach.
In the uncorrelated case, scattering processes involving
three pairs of k-vectors as depicted by the arrows in
Fig. 3 are comparable in magnitude (with the process
in blue involving d,, states being slightly larger).
Taking into account the quasiparticle weights, the
spectral function and thus the pair scattering gets
suppressed on parts of the Fermi surface. Consequently,
the processes involving d,, states (green, thick ar-
row) dominate over those involving d,, states (blue)
and d, states (red), making the pairing orbital selective.

III. BULK FeSe

Early thermodynamic and transport studies of bulk
FeSe, as well as STM supported a state with gap
nodes[42, 43]. However, more recent measurements of
low-temperature specific heat [44, 45], STM [45], thermal
conductivity[46, 47] and penetration depth[48, 49] have
found a tiny spectral gap, indicating that the gap func-

tion is highly anisotropic but may not change sign on any
given sheet. The only experiments that provide informa-
tion on the location of these deep minima are an ARPES
measurement on the related Fe(Se,S) material[50] and a
recent QPI experiment[10], both of which find deep min-
ima on the tips of the hole ellipse at the center of the
Brillouin zone.

To test the mechanism of orbital selective pairing de-
termined by reduced coherence of some quasiparticles,
we show first how this mechanism modifies results for
the susceptibility and the superconducting gap for bulk
FeSe. Our starting point is a tight-binding model with
hoppings adapted such that the spectral positions of the
quasiparticle energies fit recent findings using ARPES,
quantum oscillations and STM experiments[10, 51-54].
As the band energies are “measured” in this case, these
can be identified with the renormalized band energies
E,, (k) in the presence of correlations, yielding the Fermi
surface in Fig. 1(a).

To construct a proper approximation of the quasipar-
ticle Greens function, Eq. (3), we need to addition-
ally include quasiparticle weights. Next, we fix the ra-
tio J = U/6 as found in cRPA calculations[55, 56] and
optimize the weights in the orbital basis. The result is
{VZ,} =0.2715,0.9717,0.4048, 0.9236, 0.5916] such that
the gap function yields a nodeless order parameter with
a large anisotropic gap on the a pocket, as seen from Fig.
4(c). These values for Z; are in reasonable agreement to
general trends in FeSC: The d, orbital exhibits strongest
correlations (smallest weight)[31], while the dy2_,2 or-
bital is the most weakly correlated[1-3]. We note that
the resulting gap structure is very different from the one
obtained from conventional spin-fluctuation calculations
(which also shows a distortion from tetragonal symmetry
as expected)[57], a result of the very different momentum
structure of the pairing interaction, compare Fig. 4(b,c):
The largest gap magnitude is on the tip electron pocket
(e) centered at the X point for the conventional calcu-
lation, because the largest pair scattering I'x x/ connects
this area of the Fermi surface with the corresponding
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Figure 5. Results for FeSe (bulk): Plot of the gap function
around the Fermi surface pockets for (a) the conventional spin
fluctuation calculation and (b) a calculation using the spin-
fluctuation pairing in presence of quasiparticle weights. For
direct comparison, the data from a Bogoliubov QPI analysis
from Ref.[10] and a ARPES investigation on a related com-
pound FeSe(S)[50] is displayed as well.

one on the Y centered pocket (blue arrow in Figs. 3(a)
and 4(b)). It appears on the a pocket when using the
orbital selective pairing ansatz, because the dressed elec-
trons mediate the strongest Cooper pair scattering from
the flat area of the a pocket to the flat area of the e
pocket, where also the gap is maximal (green arrow in
Figs. 3(b) and 4(c)). The physical origin of this can be
attributed to the strong splitting of weights of the d,,
and d, . orbitals where states of the d,, orbital are very
incoherent.

We observe that the susceptibility Y, originally
strongly dominated by (w,7), now shows dominant
stripe fluctuations with q = (m,0), see Fig. 4(a).
This result is in agreement with findings from neutron
scattering experiments[58, 59] which find strong stripe
fluctuations at low energies.  Taking into account
the results of a recent ARPES experiment[60] with
the conclusion that the electronic structure of FeSe
evolves in such a way that it becomes less correlated
as temperature increases, we can conclude that weight
of the spin-fluctuations should shift from (,0) towards
(m,m) as temperature increases. This can be understood
directly from Eq. (4), where the different orbital

components of the susceptibility are weighted accord-
ing to the quasiparticle weights; the d,, components
which are peaked at (mw,7) get suppressed. The d,
components, peaked at (0,7), are suppressed as well,
see Fig. 2. On individual pockets, the gap function then
follows the orbital content of the orbital with strongest
contribution (in this case the d,, orbital), compare
Fig. 1 (a). Consequently, the pairing is changed by
two mechanisms: First, it is modified directly by the
quasiparticle weights as discussed earlier and second,
the peak shifts in q in the (RPA) susceptibility. Both of
these effects make the pair scattering in the d,, orbital
more important (green thick arrow in Fig. 3(b)) yielding
the gap structure as shown in Fig. 4(c). To make the
agreement to experiment evident, we plot in Fig. 5 the
gap function at a cut of the Fermi surface at k, = =«
comparing to results from two different spectroscopic
methods. While the conventional calculation (a) does
not show any similarities, the correspondence in (b) is
evident. Finally, we note that this picture is different
than that ascribed to orbital selective physics in the
“strong-coupling” ¢t — J model approach, where the d,
pairing channel is enhanced rather than suppressed|9].

IV. MONOLAYER FeSe ON SrTiO3

Despite considerable excitement over the high critical
temperature in the FeSe/STO monolayer system, lim-
ited information is available regarding the structure of
the superconducting gap. Early ARPES measurements
suggested an isotropic gap on electron pockets[61, 62].
Theoretical possibilities for pairing states in the presence
of missing I'-centered hole band were discussed in Ref.
15. Quite recently, a new ARPES study identified sig-
nificant and unusual anisotropy on a single unhybridized
elliptical electron pocket[11], whereby the gap acquired
global maxima at the ellipse tips, and additional local
maxima at the ellipse sides. These authors showed that
the structure cannot be explained using any of the low-
order Brillouin zone harmonics expected from so-called
“strong coupling” electronic pairing theories.

Within the model for the electronic structure of bulk
FeSe, we perform a calculation with a few modifications
to account for differences in the monolayer from the bulk:
1) We ignore all hoppings out of the plane, yielding a
strictly 2D system; 2) We neglect orbital order, which
has never been observed in the monolayer; 3) Experi-
mentally, only electron-like Fermi pockets have been de-
tected, suggesting that the monolayer is actually electron
doped. Possible reasons for this doping are charge trans-
fers from the substrate or surface defects. We therefore
apply a rigid band shift by du = 60 meV, which removes
the I' centered hole pocket and leaves electron pockets
that have the size and shape of measured spectral func-
tions in ARPES[11], with n = 6.12 electrons/Fe, see Fig.
1(b) and Fig. 6(a) for a plot of the orbital character. The
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Figure 6. Results for monolayer FeSe: (a) Orbital weight at the Fermi surface.
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(b) Superconducting gap obtained from

conventional spin-fluctuation theory, and (c) the same quantity including orbital dependent quasiparticle weights compared to
measured gap functions in ARPES.[11] Symmetry operations of the tetragonal system have been applied to the measured data.
All calculations were done for a fixed ratio J = U/10, with overall scale U as indicated.

quasiparticle weights in the monolayer may be different
from the bulk for two reasons: 1) The absence of the or-
bital order, i.e. the tetragonal crystal structure dictates
that the weights for d,. and d,. orbitals are degenerate
(unlike bulk FeSe). 2) Correlations may be different in
the monolayer where a tendency towards fewer correla-
tions was found recently[6], such that we fix the ratio
J =U/10 in this case.

At this point we note that the states on the Fermi
surface have only tiny orbital weight of d,» and d2_,»
character, and additionally there are no pair scatter-
ing processes from k to k/ with q = (7,0) [or q =
(0,7)] such that a fit procedure with all quasipar-
ticle weights will be under-determined. In the op-
timization procedure we therefore fix the weights to
V/Zy2_2 = 08 > \/Z,2 = 0.7 and obtain {\/Z;} =
[0.4273,0.8000, 0.9826,0.9826,0.700] for the best agree-
ment to the gap measured in ARPES[11]. This result
does change the susceptibility slightly, but keeps the
(m,m) fluctuations dominant; for details we refer to Fig.
S 1 in the Appendix. These fluctuations drive an over-
all (nodeless) d-symmetry ground state as expected, but
with an unusual structure modified strongly by orbital
correlations, with the result as shown in Fig. 6(b,c). Ev-
idently the gap function for the standard spin-fluctuation
calculation (Fig. 6(b)) mostly follows the orbital content
of the d,, orbital (compare Fig. 6(a) for a plot of the
orbital weights as a function of angle ¢ around the X-
centered pocket[63]). For the current Fermi surface, this
is expected because the pairing interaction is dominated
by intra-orbital processes, and the d,, orbital has large
weight at positions k and k’ on the Fermi surface which
are separated roughly by (m,7) and can take advantage
of the strong peak in the susceptibility at that q vector.
The other two orbitals play a negligible role in the pairing
process. This situation is modified once the pairing inter-
action is renormalized by the quasiparticle weights and
therefore reduces the contribution of the d,, orbital. The
main effect is that a second maximum in the gap function
appears at a position in momentum space where the d,

or d,, orbital is dominant, see Fig. 6 (c).

In the pairing process, intra-orbital, inter-pocket
contributions dominate, whereby one pair on the X
pocket of d,. character scatters into another pair on
the Y pocket with the same orbital character, meaning
that the latter pair must be located on the tip of the
Y -pocket where the gap has largest magnitude. Because
the total weight of this orbital is smaller there, the
order parameter for k states dominated by this orbital
is enhanced. In summary, one gets a gap structure with
a large maximum at the tip of the ellipse and a small
maximum at the flat part of the ellipse, remarkably
similar to that detected by experiment.[11]

V. LiFeAs

LiFeAs is another Fe-based superconductor that is
known to have a Fermi surface quite different from that
predicted from DFT. Several theoretical attempts[12,
34, 36, 65] to understand the ARPES-determined gap
structure[26, 27, 64, 66] were reviewed recently in Ref.
15. All were based on an “engineered” tight-binding band
structure consistent with ARPES data[12], i.e. contain-
ing the correct spectral positions of the bands (including
the orbital content). Despite some success in explaining
certain features of the gap structure, others were not re-
produced properly in all approaches, although Ref. 34
claimed a good overall fit to experiment.

To reveal how and whether the standard spin-
fluctuation theory result changes upon inclusion of
quasiparticle weights, we use the same method as
described above for a band structure relevant to
LiFeAs[12]. The corresponding Fermi surface is
shown in Fig. 1(c). First, we note that moderate
changes in the quasiparticle weights which we set to
{VZ,} =10.5493,0.969, 0.5952,0.5952,0.9267] do change
the gap structure, but largely preserve the structure of
the susceptibility (see Appendix). The gap functions
however do undergo a remarkable change relative to
unrenormalized spin-fluctuation theory. These include
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Figure 7. Results for LiFeAs: (a) 3D plot of the gap function as obtained from spin-fluctuation calculation including quasiparticle
weights. (b) Cut at k. = 7 of the result of the s-wave gap function from conventional spin-fluctuation theory (solid lines) plotted
as a function of angle ¢ (as defined in Fig. 1) around the pockets (I" centered hole pocket («, magenta), M-centered hole pocket
(v, cyan) and X-centered electron pocket (3, black)) together with experimental results. The measured magnitudes of the gap
from an ARPES experiment[27] are symmetrized and displayed as crosses, and those from a Bogoliubov QPI experiment[64]
as filled dots. (c) The same quantity for the gap function as shown in (a) also compared to experimental data. All calculations

are done for a fixed ratio J = 0.37U[12], but with overall scale U as indicated.

first a stronger tendency towards si symmetry, even
with small values of J. Note that the conventional
spin-fluctuation scenario, d and s wave solutions are
nearly degenerate, a consequence of the poor (m,0)
nesting properties of LiFeAs[24, 26]. Secondly, orbital
selectivity enhances the gap on the small I'-centered
hole pocket (« pocket), see Fig. 7(a). This appears
to correct the crucial discrepancy in the calculation of
Wang et al.[12] relative to experiment, see Fig. 7 (b,c).
Finally, the procedure leads to weaker anisotropy of the
gap on the large d,, dominated pocket, also in better
agreement with experiment, whereas small deviations
between the ARPES data[26] and our calculation on
the electron pockets persist which could be due to
hybridization of the corresponding bands. We did not
investigate effects of spin-orbit coupling in this case
since these are supposed to be small[12]. Note further
that the (angular) position of the maximum gap on the
electron pockets change from 0 degrees to slightly off
90 degrees, opening the possibility of two maxima (and
two minima). Unlike the models for FeSe (bulk) and
monolayer FeSe, all 3 orbitals (dsy, dsz., dy.) play an
important role in determining the gap anisotropy on the
B pockets, making it more sensitive to changes in the
electronic structure.

VI. DISCUSSION

The above results are extremely encouraging, sug-
gesting that the orbital selective correlation effects are
indeed required when applying spin-fluctuation pairing
theory to Fe-chalcogenide and more strongly correlated
Fe-based superconductors. We caution, however, that
we have not derived the renormalizations entering the
pair vertex self-consistently from a microscopic theory.

Efforts along these lines are in progress. Secondly, by
construction the quasiparticle renormalizations describe
only the states near the Fermi level. Comparison with
ARPES measurements should be performed carefully,
as these analyses tend to emphasize renormalizations
on much larger energy scales, which may be quite
different. Possible imprints of the orbital selectivity
could be visible in the penetration depth[48] if calcu-
lated within the same theoretical framework, or Friedel
oscillations close to impurities in the case of bulk
FeSe which are rotating in direction as a function of
energy[43]. Calculations along these lines are in progress.

VII. CONCLUSIONS

In the absence of a fully controlled many-body
treatment of electronically paired superconductivity, it
may be very valuable to have a simple phenomenological
yet microscopic approach that includes aspects of the
low-energy quasiparticle renormalizations that affect
pairing most strongly. We have presented a paradigm
that allows for suppressed quasiparticle weight within
the framework of conventional spin-fluctuation pairing
theory, and argued that it provides accurate predictions
for the previously inexplicable superconducting energy
gap structures of the most strongly correlated FeSC. We
have given results of explicit calculations in three cases
where correlations are known to play an important role,
bulk FeSe, monolayer FeSe on STO, and LiFeAs. These
results reveal an immediate challenge to determine if our
approach can be combined with microscopic calculations
of quasiparticle weights to yield a material-specific
theory with predictive power for strongly correlated
FeSC.
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Appendix A: Hamiltonian and construction of
Greens function

Considering the tight binding Hamiltonian, Eq. (1)
together with its diagonalization to band basis, one
can construct the Greens function in the band basis
Guk,wy,) = (iw, — &u(k))~!. The unitary transforma-
tion that takes one from the band basis (Greek indices)
to the orbital basis (Roman indices) is

Clcr § a Cuo

Unitarity implies

(A1)

(A2)

so we can invert (Al) to find the orbital basis Greens
function as stated in the main text,

Gul k wn Za k Wn

Z %0900
Wy, —

(A3)

Appendix B: Quasiparticle description in band space

At this point, we make a short remark about the impli-
cations of quasiparticles in band representation. Starting
from Eq. (3), we can transform back to the band basis
and obtain the quasiparticle Greens function

-ty
(Zm Lo (i |ff> (k)

= Z,(K)Gy(k,wn) = Gy (k,wy),

k wn (k Wn)

(B1)

(k)

(k) “where the interaction parameters U, U’, J, J' are given

where Z, (k) = (3, |a(k)|*\/Z,)? are the quasiparticle
band weights near the Fermi surface. If the point k on
the Fermi surface sheet v is dominated by a particular
orbital weight |af(k)|?, the quasiparticle weight for that
band will be given predominantly by Z,. Calculating the
spectral function from such a Greens function and plot-
ting vs k at w = 0, one directly sees that part of the
Fermi surface is strongly suppressed in intensity when-
ever an orbital dominates that has small quasiparticle
weight, i.e. is strongly correlated. In Fig. 3 we show
this effect of the spectral function on the example of our
model for FeSe (bulk).

We stress that the approach applied in this paper is
phenomenological in the sense that the band renormal-
izations and the quasiparticle weights are not obtained
self-consistently from the same bare interaction param-
eters. Thus we do not address the problem of how to
quantitatively capture nontrivial self-energy effects and
the eventual transition to non-Fermi liquid behavior with
increasing correlations or hole-doping[4], but simply rely
on a wealth of previous theoretical studies showing the
existence of orbital selectivity, and study their influence
on the superconducting pairing structure.

Appendix C: Spin-fluctuation pairing: uncorrelated
model

Here, we remind the reader of the approach to calculat-
ing the gap function in the usual spin fluctuation pairing
model[38, 40]. First, local interactions are included via
the 5-orbital Hubbard-Hund Hamiltionan,

H=Hy+ Uzniﬁni& + U’ Z NipNipr

1,0/ <l
+J Z Zcz&v Cipr g Cito' Cill o (Cl)
0/ <l o0’
+J Z CIZTCI“Q@%CMT,
i, £L

in the notation of Kuroki et al. [67] with the choice
U =U-2J, J = J, leaving only U and J/U to
specify the interactions. Here, ¢ is an orbital index
with ¢ € (1,...,5) corresponding to the Fe 3d-orbitals
(day,dy2_y2,dyz, dyz, ds.2_p2). The orbital susceptibility
tensor in the normal state is now given as

Z 51525354 k q)Gu(k + q)GU(k)ﬂ

k,pv

X2122e3£4
(C2)

where we have adopted the shorthand k¥ = (k,w,), and
defined
MY o, (k@) = ayt (K)ag2 ™ (k)ay; (k + q)a? ™ (k + q).
(C3)
The Matsubara sum in Eq. (C2) is performed analyti-
cally, and we then evaluate Xgl 0,040, DY integrating over



the full Brillouin zone. As noted earlier[57], the Fermi
surface nesting condition gives significant contributions
to the susceptibility, but finite energy nesting also con-
tributes. The spin- (x*F4) and charge fluctuation (x57*)
parts of the RPA susceptibility for ¢ = (q,w, = 0) are

now defined within the random phase approximation as

75‘ _1
@ =@ 1 -0x@] "},
1020304

(C4a)
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01026504
(C4b)

The total spin susceptibility at w = 0 is then given by
the sum

E X1 Mé’é’

[

(C5)

The interaction matrices U® and U® in orbital space
are composed of linear combinations of U,U’, J,J’ and
their forms are given, e.g., in Ref. 39. We focus here on
the spin singlet vertex for pair scattering between bands

v and w,
= Re E
£1£253£4
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Ik, k') a,* (K)a,*" (—k) (C6)

'z
a,’ (-X'),
where k and k’ are quasiparticle momenta restricted to
the pockets k € C,, and k’ € €}, and is defined in terms
of the the orbital space vertex function
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Using this approximation to the vertex, we now consider
the linearized gap equation

’ N 9i(kK') _
Z/FS 45" Ty K) P20 = Nigi() (09

and solve for the leading eigenvalue A\ and corresponding
eigenfunction g(k). Here vp,(k’) is the Fermi velocity
of band p and the integration is over the Fermi surface
FS,. The eigenfunction g;(k) for the leading eigenvalue
then determines the symmetry and structure of the lead-
ing pairing gap A(k) x g(k) close to T.. Finally, the
area of the Fermi surface sheets is discretized using a De-
launay triangulation algorithm that transforms the inte-
gral equation Eq. (C8) into an algebraic matrix equa-
tion which is solved numerically. Typically, we use a k-
mesh of 80x80x30 points for the k integration and totally
~ 1200 points on all Fermi sheets for a 3D calculation,
while for a 2D calculation the k-mesh is on the order of
100x100 and ~ 200 points on all Fermi sheets are required
for reasonably converged results.

Figure S 1. Susceptibility x for our model for the mono-
layer FeSe as calculated from the orbital selective ansatz
using the quasiparticle Greens functions with {v/Z;}
[0.4273,0.8000, 0.9826,0.9826,0.700] compared to the conven-
tional calculation (), where the interactions have been scaled
down.

(x,7) <0Qn> (0,0)

(x.,0)

Figure S 2. Total susceptibility x for LiFeAs as calculated
from the electronic structure using a 3D model and same
quantity x , but calculated using the quasiparticle Greens
functions with {\/Z;} = [0.5493,0.969, 0.5952, 0.5952, 0.9267].

Appendix D: Spin-fluctuation pairing including
quasiparticle weights

In this section, we show the modified equations for
the pairing calculation as outlined above, but including
quasiparticle weights from dressed electrons. Taking the
ansatz for the dressed Greens function, Eq. (3), it is
obvious that from Eq. (C2) immediately follows Eq. (4)
which is then used in Eqs. (C4) instead of x7,,,,.,(9)
for the dressed quantities. The total susceptibility then
reads

~RPA
E X1 MM'
o

(D1)

For the FeSe (bulk) model, the total susceptibility is dis-
played and discussed in the main text, because the quasi-
particle weights have a strong effect on the qualitative
behavior. At this point, it is worth mentioning that this



is not the case for the model of monolayer FeSe, where
the quasiparticle weights are chosen closer to unity (ac-
counting for smaller correlation effects in this material).
In Fig. S 1, it can be seen that the total susceptibility
is practically unchanged. Similar conclusions can also
be drawn from the comparison of the total susceptibili-
ties for LiFeAs in the uncorrelated and correlated model,
see Fig. S 2. Note that the quasiparticle weights Z;
are consistent with DMFT results where it is found that
tyg orbitals are strongly correlated with dg, strongest,
and components of the susceptibility get suppressed (dy
strongest)[68].

The equation

N 3 .
Loipeqes (k. K) = §U5X¥PA(k -K)U (D2)

1- 1 _ 1_
+2U° — *UC)Z(I}PA(k—k/)UC—}—*UC
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for the orbital space vertex function is basically un-
changed except for the addition of the tilde. In the con-
struction of the pair scattering vertex, additional quasi-
particle weights enter from the replacement cZ(k) —

\/chz (k) such that it reads

T,.(k k) =Re Z 2\ Zy,al " (K)al* (—k)
L8030y
XL, 15050, (K, k') V2N Z,a? (K)al? (—K)

(D3)

and enters Eq. (C8) instead of I',, (k, k').
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Appendix E: Comparison of 2D calculations and 3D
calculations

In the present manuscript, we discuss 3 different phys-
ical systems, two of them parametrized using a band
structure including a k, dispersion as well. As noted al-
ready earlier, the susceptibility as calculated from a 3D
model (with weak dispersion in k., direction) shows only
very small dependence on k,[12]. Conclusions similar to
the ones in the main text can also be drawn in a two
dimensional calculation, where the initial band structure
is just the one at k., = 0. Taking the same interaction
parameters and quasiparticle weights, one obtains quali-
tative similar results as for the 3D calculation. This is ex-
pected since the electronic structure is found to be quasi
two dimensional, and especially since the susceptibility
and thus the pairing interaction has little dependence on
q.. Differences in the relative magnitudes of the gap func-
tions on the individual pockets can however arise due to
the variation of the Fermi velocities as a function of k.,
e.g. the weight at k, = 0 as included in a 2D calculation
is not just the average of the partial contributions to the
density of states from different k,[12]. In the solution of
the linearized gap equation, this can increase the gap on
individual pockets[12] or reduce the gap as seen on the
a pocket for the 3D calculation in Fig. S 3 (d).Overall,
the variation of the results is small and mostly of quan-
titative nature rather than qualitative. We note that the
Fermi surface properties can still strongly influence the
actual superconducting order parameter in such a calcu-
lation even if the pairing interaction itself has negligible
variation in ¢,. This will occur in a 2D calculation for
the LiFeAs model where the Fermi surface is different
at cuts in k, = 0 and k, = m because of the closed «
pocket. Because of this, we have not considered any re-
sults of a 2D calculation for this model further.Finally,
we present results for the gap structure obtained from
a fit where the relative magnitudes of the quasiparticle
weights of the d,. and dy. orbital are kept fixed. Even
when lowering the ratio between those, the agreement is
still good, see Fig. S 3 (g-h), but not allowing a larger
quasiparticle weight in the d,. orbital does not yield an
agreement (not shown).
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