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Valley-spin coupling in transition-metal dichalcogenides (TMDs) can result in unusual spin trans-
port behaviors under an external magnetic field. Nonlocal resistance measured from 2D materials
such as TMDs via electrical Hanle experiments are predicted to exhibit nontrivial features, com-
pared with results from conventional materials due to the presence of intervalley scattering as well
as a strong internal spin-orbit field. Here, for the first time, we report the all-electrical injection
and non-local detection of spin polarized carriers in trilayer MoS2 films. We calculate the Hanle
curves theoretically when the separation between spin injector and detector is much larger than spin
diffusion length, λs. The experimentally observed curve matches the theoretically-predicted Hanle
shape under the regime of slow intervalley scattering. The estimated spin life-time was found to be
around 110 ps at 30 K.

PACS numbers: 72.25.Dc, 75.40.Gb, 73.50.-h, 85.75.-d

I. INTRODUCTION

The discovery of two-dimensional (2D) transition
metal dichalcogenides (TMDs) has attracted consider-
able attention recently due to their exotic properties,
which are very important for their applications in elec-
tronic, optoelectronic, and spintronic devices [1–4]. The
members of the TMD family possess spin as well as valley
degrees of freedom which make them attractive for next-
generation quantum computing applications too. One of
the most studied examples of above materials is MoS2,
which, contrary to graphene, possesses a band gap of
∆ = 1.9 eV in its monolayer form [5–7]. The valleys
in 2D MoS2 are located at two energetically equivalent
symmetry points, K and K ′, in the hexagonal Brillouin
zone. Because of large spin orbit coupling (SOC) which
originates from the d orbitals of heavy Mo atoms [8–14],
and the inversion asymmetry induced Dresselhaus cou-
pling [15–19], the valence band edges of 2D MoS2 un-
dergo a large spin splitting (λ ∼150 meV). In the case of
conduction band, there is a competition between the con-
tributions from the d orbitals of the Mo atoms and the
p orbitals of the S atoms which results in much smaller
spin-orbit splitting in the conduction band than that in
the valence band. Furthermore, the Hamiltonian of 2D
MoS2 possesses time reversal symmetry, which leads the
two valleys to exhibit opposite sign of spin-orbit field, see
Fig.1 [16,20–22]. Because of the above unique character-
istics, both the spin as well as valley degrees of freedom
can be addressed and manipulated in 2D MoS2, lead-
ing to its potential for applications in next-generation
valleytronics-based devices.

Despite MoS2’s great potential in future spintronic de-
vices, there are still very few experimental studies on the
spin transport and relaxation mechanisms operating in
the material [23–27]. Among those, the most notewor-
thy study is by Yang et al. [26] in which they used op-
tical Hanle-Kerr experiment to measure the spin-valley
dynamics in 2D MoS2 and observed a long spin lifetime

of 3 ns at 5 K. Though the above observation is very
important for obtaining fundamental understanding of
the spin-valley dynamics, it is also important to explore
spin transport characteristics of the material using all-
electrical techniques. Nonlocal Hanle techniques have
been widely used to investigate spin transport in several
semiconducting systems, see e.g. Refs. [28–35], however,
there are no such reports for 2D MoS2.

In nonlocal Hanle measurements, spin polarized carri-
ers are injected into the semiconductor channel from a
magnetized ferromagnetic electrode. Accumulated spin-
polarization just below the injector electrode diffuses in
the channel and creates spin imbalance below the de-
tector electrode which is again made of a ferromagnetic
metal. This imbalence in spin results in a voltage signal
in the detector. However, when a transverse magnetic
field is applied, the spin of the electrons starts precessing
around the applied field with Larmor frequency [36–38].
Because of the combined effect of spin precession and spin
dephasing, the spin accumulation and hence the voltage
signal at the detector decays with magnetic field follow-
ing the shape known as Hanle curve. The shape of the
Hanle curve yields important information about spin life-
time and spin diffusion length.

One reason which is probably responsible for the lack
of reports on nonlocal Hanle studies on 2D MoS2 is that
large area films were not availabe until recently. Nonlocal
Hanle experiments require four electrode contacts and at
least two of those contacts must be long enough so that
their shape anisotropy preserve their in-plane magnetiza-
tion when a traverse magnetic field is applied. These ex-
perimental requirements are indeed quite challenging in
the case of micron sized MoS2 films normally produced
by exfoliation based techniques. However, recently the
growth of centimeter-scale high-quality 2D MoS2 films
by CVD and PVD techniques has been demonstrated by
several groups [3,39,40]. Availability of these relatively
large area films now can catalyze the spin transport stud-
ies on this exotic material system.
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FIG. 1: (a) Schematic of energy spectrum of trilayer MoS2

at K and K′ valleys. ΩSO is the spin splitting at the Fermi
level; λ is the spin splitting at valence band top; and ∆ is
the band gap. Intervalley scattering rate, γv, is determined
by short range impurities. (b) Bottom scheme indicates the
internal spin orbital field, ±BSO, induced by spin orbital cou-
pling along z direction in the case of trilayer MoS2. Here we
find it appropriate to mention that there is still no consensus
about whether K(K′) or Q point of the Brillouin zone should
be the minima of the conduction band for trilayer MoS2. Re-
cent report by Brumme et al [22]showed that for relatively
high electron doping (1.69× 1014 cm−2), all 8 minima in the
conduction band may be populated. However, they showed
that for relatively lower doping level (2.25×1013 cm−2), only
the minima at K(K′) point are occupied. Based on our Hall
effect results which showed that the carrier concentration in
our films was 1.3× 1013 cm−2 at 30 K, we assumed that the
later (i. e. electrons populating only the minima at K and
K′’s points) is the case.

Other important factor, which possibly precluded the
Hanle studies is the fact that electrically injected spin-
polarized electrons in 2D MoS2 experience a very strong
out-of-plane intrinsic magnetic field due to the spin-orbit
splitting in the conduction band. In our previous theoret-
ical study, we showed that the Hanle curve under normal
field orientation is expected to exhibit a two-peak struc-
ture with maxima located at the values of external field
B = ±BSO, where BSO is internal spin-orbit field. For
monolayer MoS2 the value of BSO is in the range of a
few Tesla [41]. Thus, in experiments where the measure-
ments are performed over a small out-of-plane external
field interval, the peaks cannot be detected.

While the strength of SOC in monolayer MoS2 is ex-
pected to be the strongest, it is expected that SOC will
also be present in other inversion asymmetric odd-layered
MoS2 films, see Ref. [17]. The magnitude of SOC is sup-
posed to decrease on increasing the number of layers. As
a result, the two peaks will get progressively closer and
might fall within the measurement range.
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FIG. 2: (a) Raman spectra of trilayer MoS2. The separation
of vibration frequency E1

2g and A1g indicates three monolay-
ers of MoS2. (b) Schematic illustration of Hanle experiments
performed through electrical methods on trilayer MoS2, three
dimensional view and top view. The measure of a nonlocal
resistance is a voltage between right two contacts (3 and 4),
while the current flows through the first two contacts (1 and
2), which are made of 15 nm NiFe. The distance of middle
two contacts (2 and 3), d (distance between the spin injector
and detector) is 1 µm. We studied the Hanle curves under
condition of d > λs. The arrows in the FM indicate the mag-
netization direction and also the spin polarization direction.
Hanle experiments were performed under normally oriented
external magnetic field.

With this motivation, we performed nonlocal Hanle
measurements on trilayer MoS2 films and obtained non-
trivial results, which we report in this paper. To compare
these results with theory, we have also extended our pre-
vious theoretical work Ref. [42] to incorporate the case
of a finite distance between injector and detector.

The paper is organized as follows. In Section II, we dis-
cuss the sample preparation, characterization and Hanle
experiments. Section III describes a theoretical model
used in our study. In Section IV, we present our experi-
mental Hanle results and compare them with theory.



3

II. EXPERIMENTAL DETAILS

Trilayer MoS2 films were grown on sapphire substrates
by pulsed laser deposition (PLD) following the proce-
dure described in previous report [39]. The number of
monolayers deposited was controlled precisely by control-
ling the number of laser pulses. After deposition, Raman
spectra were collected from the MoS2 films as shown in
Fig. 2(a). The two Raman vibrational modes, E1

2g and
A1g, confirm the presence of MoS2. In prior studies it
has been demonstrated that the separation between these
modes can be used to determine the number of monolay-
ers [3]. The observed peak separation of 23.0 cm−1 in the
present study confirmed the formation of trilayer MoS2

[39,43].
Electrical Hanle measurements were conducted using

a four probe geometry as shown in Fig. 2(b). The
pattern of ferromagnetic (FM) contacts was fabricated
through photolithography, and electron beam evapora-
tion was used to deposit 15 nm thick NiFe contacts. Af-
ter lift-off, the edge-to-edge separation of the middle two
contacts was found to be 1 µm. Hall effect measurements
were performed to determine the carrier concentration in
the as-grown films.

I-V measurements performed between contact 1 and 2
showed the presence of a Schottky barrier between NiFe
and MoS2. Presence of this barrier elinimated the need
for depositing any additional tunnel barrier layer[44,45].
To determine the Schottky barrier height (ΦB), tempera-
ture dependent I-V curves were recorded. Fig.3(a) shows
the I-V curves at different temperatures on a logarith-
mic scale. The barrier height was extracted using the
thermionic emission function described in Appendix A.
For this, first of all, In(I12/T

3/2) vs. 1000/T was plotted
for various V12 values as shown in Fig. 3(b). In the next
step, slopes of these plots were determined as a function
of V12 (see Fig. 3(c)). From the y-axis intercept of Slope
vs. V12 plot, value of Schottky barrier height was de-
termined to be 41.3 mV. For Hanle measurement, the
current was passed between first two contacts, 1 and 2,
while the non-local voltage, V34, is measured through the
other two contacts, 3 and 4.

III. THEORY

In the theory of the Hanle effect [36,37,46–48], the non-
local resistance, R(ωz

L), is related to the spin density,
Sx(t), as follows

R(ωz
L) =

P 2Dρ

A

∞∫
0

dtSx(t)Pd(t), (1)

where ωz
L is the Larmor frequency, ωz

L = µBgB/~, µB

is the Bohr magneton, g is the g-factor, B is the mag-
netic field, ~ is the reduced Planck constant, P is the spin
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FIG. 3: (a) I-V curves of the trilayer MoS2 sample with
NiFe contacts from 75 K to 300 K. (b) Arrhenius plots, In

(I12/T3/2) vs 1000 T−1, at different V12. (c) Extraction of
Schottky barrier height,ΦB.

injection/detection polarization, D is the diffusion coeffi-
cient related to the mobility (µ) via the Einstein relation,
D = µkBT/e, ρ is the resistivity of channel material, A
is the cross-sectional area of the channel, and Pd(t) is the
diffusion propagator defined as:

Pd(t) =
1

(4πDt)1/2
exp

(
− d2

4Dt

)
(2)

In above equation, d denotes the distance between the
injector and detector electrodes.
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The shape of the Hanle curve depends on the relation
between d and the spin diffusion length, λs. In Ref. [42]
we considered the case d � λs. With regard to our
present experimental study, the opposite limit d � λs
is relevant. Physically, in this limit, the Hanle curve is
expected to exhibit numerous oscillations due to the fact
that the spin of injected electron can accomplish integer
number of full precessions before it reaches the detector
[47].

The unique characteristics of the spin dynamics in
TMDs originates from the fact that there exist two
groups of spins corresponding to two valleys K and K ′.
Due to a finite intervalley scattering rate, γv, the time
evolution of SK(t) and SK′

(t) is described by the follow-
ing system of coupled equations:

dSK

dt
= (ΩSO + ωz

L)ẑ × SK− γv
(
SK−SK′

)
,

dSK′

dt
= −(ΩSO − ωz

L)ẑ × SK′
+ γv

(
SK−SK′

)
, (3)

where ΩSO = µBgBSO/~. The above equations reflect
the fact that the external field, ωz

L, adds to the internal
spin-orbit field ΩSO in the valley K and −ΩSO in the val-
ley K ′, see Fig. 1. As is shown from the above relation,
the value of spin splitting at the Fermi energy depends
directly on the value of g. In principle the value of g can
be calculated by using the methodology described in the
paper by Li et al [49]. However, this requires the knowl-
edge of the exact positions of the band edges in trilayer
MoS2. Since, at this time we do not know these positions,
we assumed a value of 2 for g. This assumption is based
on the reports by Kormányos et al [12] and Yang et al
[26] in which they showed a g value of 1.8 for monolayer

MoS2. For trilayer, which is closer to bulk, the difference
of g − 2 is expected to be even smaller.

The system Eq. (3) should be solved with initial con-
ditions, S(0) = x̂, which reflects the fact that at the
moment of injection the spin is directed along the x-axis.
In our earlier paper Ref. [42] we have demonstrated that
the analytical solution of the system depends on the di-
mensionless ratio

Γ =
γv

ΩSO

. (4)

For a slow intervalley scattering, Γ < 1, the solution for
the x projection of the net spin, Sx(t) = SK

x (t) +SK′

x (t),
reads

Sx(t) =
1

2

{
Γ√

1− Γ2

[
sin
(
ωz
L + Ω̃SO

)
t− sin

(
ωz
L − Ω̃SO

)
t

]

+

[
cos
(
ωz
L + Ω̃SO

)
t+ cos

(
ωz
L − Ω̃SO

)
t

]}
exp

[
− ΓΩSOt

]
,

(5)

where we have introduced modified spin-orbit coupling

Ω̃SO =
√

1− Γ2ΩSO. (6)
From Eq. (5) the calculation of nonlocal resistance is

straightforward and the result can be obtained in a closed
form. This is apparent, because, in the absence of spin-
orbit coupling, the integral of the product exp(iωz

Lt)Pd(t)
appears in the expression for the conventional Hanle
shape and can be evaluated analytically. In our case,
Sx(t) is the combination of two oscillating functions. Fi-
nal result for R(ωz

L) reads

R(ωz
L) = R0

{( π

|y+|

)1/2
exp

[
− 2|y+|1/2 cosφ+

]
cos
(
φ+ + 2|y+|1/2 sinφ+

)
+
( π

|y−|

)1/2
exp

[
− 2|y−|1/2 cosφ−

]
cos
(
φ− + 2|y−|1/2 sinφ−

)
− Γ√

1− Γ2

{( π

|y+|

)1/2
exp

[
− 2|y+|1/2 cosφ+

]
sin
(
φ+ + 2|y+|1/2 sinφ+

)
−
( π

|y−|

)1/2
exp

[
− 2|y−|1/2 cosφ−

]
sin
(
φ− + 2|y−|1/2 sinφ−

)}}
. (7)

R0 is the prefactor which depends on spin injec-
tion/detection polarization, channel dimensions, and ma-
terial resistivity [50]. Parameters y± and φ± entering into

Eq. (7) are defined as:

|y±| = d̃2
[
1 +

(
ωz
L ± Ω̃SO

)2
(τ∗s )2

]1/2
,

φ± =
1

2
arctan

[(
ωz
L ± Ω̃SO

)
τ∗s

]
, (8)
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where d̃ is the dimensionless distance

d̃ =
d

λs
=

d

(Dτ∗s )1/2
, (9)

and τ∗s is the inverse spin relaxation rate. In the absence
of other relaxation mechanisms, this rate is determined
by the intervalley scattering rate. In the presence of ad-
ditional mechanisms, this rate is the sum of the partial
rates

1

τ∗s
= ΓΩSO +

1

τs
. (10)

A. The case of slow intervalley scattering

In Fig. 4 the Hanle curves plotted using Eq. (7) for
two different values of spin-orbit field and several sets of
τ∗s are shown. For these plots, the value of parameter Γ
was chosen to be Γ = 0.2. As can be seen, the nonlocal
resistance decays away from B = ±BSO in an oscillatory
fashion. Naturally, for shorter τ∗s , the decay of oscilla-
tions is faster. For “strong” BSO = 1 T (as in a mono-
layer) the most pronounced oscillations take place away
from the origin. However, with regard to experiment,
we are interested in the behavior of nonlocal resistance
only within the domain |B| < 0.2 T. For this reason, the
central regions of the plots are enlarged, as shown in the
inset figures of Fig. 4 (a-c). We see that the evolution of
the Hanle shape near B = 0 is quite lively, so that the
shape changes significantly even when τ∗s changes slightly
from τ∗s = 5 ps and τ∗s = 8 ps. Still, the distance between
the two maxima exceeds 0.2 T for all τ∗s near B = 0. For
a smaller value of the spin-orbit field, BSO = 0.1 T, the
behavior of nonlocal resistance near B = 0 evolves with
increasing τ∗s as follows. There are pronounced oscilla-
tions at τ∗s = 20 ps, less pronounced at τ∗s = 100 ps, and
almost no oscillations for τ∗s = 200 ps, as shown in Fig.
4 (d-f). This behavior is the consequence of the fact that
the bigger is τ∗s , the more “bound” are the oscillations
to the points B = ±0.1 T. Still, in all three curves the
distance between the left and right extrema is close to
0.1 T near B = 0.

B. The case of fast intervalley scattering

For fast intervalley scattering we have Γ > 1 and the
expression Eq. (7) for spin dynamics does not apply any-
more. Physically, in the domain of fast intervalley scat-
tering spin-orbit field effectively averages out as a result

of fast switching of a carrier between the valleys. The
modes of spin dynamics in the domain Γ > 1 are clas-
sified into valley-symmetric (we denote it with +) and
valley-asymmetric (−). As a result of averaging out of
±BSO the − mode has a long lifetime, ∼ Ω2

SO/γv, while
the lifetime of the symmetric mode is ∼ γv. The actual
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FIG. 4: Theoretical Hanle curve calculated from Eq. (7) in
the case of slow intervalley scattering. In all six panels the
value of parameter Γ is 0.2, the distance d is chosen to be
d = 1 µm, and the diffusion coefficient is equal to D = 2.6
cm2/s; (a) BSO = 1 T, τ∗s = 10 ps, d̃ = 19.7; (b) BSO = 1 T,

τ∗s = 8 ps, d̃ = 22.0; (c) BSO = 1 T, τ∗s = 5 ps, d̃ = 27.8;

(d) BSO = 0.1 T, τ∗s = 200 ps, d̃ = 4.4; (e) BSO = 0.1 T, τ∗s
= 100 ps, d̃ = 6.2; (f) BSO = 0.1 T, τ∗s = 20 ps, d̃ = 13.9.
Inset figures of (a-c) exhibit the zoom-in curve in smaller field
range, |B| < 0.2 T.

form of Sx(t) in the domain Γ > 1 is still the sum of the
products of oscillating and exponentially decaying func-
tions, as we have demonstrated in Ref. [42]. This allows
to calculate the Hanle curve explicitly for finite separa-
tion, d, between the contacts. The result, representing
the sum of contributions from + and − modes, reads
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R(ωz
L) = R0

{(
1− Γ√

1− Γ2

)( π

|Y+|

)1/2
exp

[
− 2|Y+|1/2 cos Φ+

]
cos
(

Φ+ + 2|Y+|1/2 sin Φ+

)
+
(

1 +
Γ√

1− Γ2

)( π

|Y−|

)1/2
exp

[
− 2|Y−|1/2 cos Φ−

]
cos
(

Φ− + 2|Y−|1/2 sin Φ−

)}
. (11)
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FIG. 5: Theoretical Hanle curve calculated from Eq. (11),
R(B) vs external field B, under conditions of Γ = 2 for differ-
ent BSO and τ∗s ±. (a) BSO = 0.1 T, τ∗s+ = 3 ps, τ∗s− = 68 ps,

d̃+ = 17.1, d̃− = 7.5; (b) BSO = 1 T, τ∗s+ = 1.5 ps, τ∗s− =

18 ps, d̃+ = 50.8, d̃− = 14.9.

The notations in Eq. (11) are the following

|Y±| = d̃2±

[
1 + (ωz

L)2(τ∗s±)2
]1/2

,

Φ± =
1

2
arctan

[
ωz
Lτ
∗
s±

]
. (12)

The relaxation times in Eq. (12) are defined as

1

τ∗s±
= (Γ±

√
Γ2 − 1)ΩSO +

1

τs
. (13)

Two values of τ∗s result in two spin diffusion lengths, λs±,

so that d̃+ in Eq. (12) is equal to d/λs+ and d̃− is equal
to d/λs−.

Fig. 5 shows the resulting Hanle curves calculated from
Eq. (11) for different values of BSO. A distinctive feature
of these curves compared to Fig. 4 is that R(B) falls off
from B = 0 with oscillations, so that the maximum at
B = 0 is the highest.

IV. EXPERIMENTAL HANLE DATA

Fig. 6 shows the experimental Hanle data recorded at
30 K (Data recorded at other temperatures are shown
in Appendix B). Measurements of nonlocal resistance
were performed using the experimental geometry shown
in Fig. 2(b). Before measurements, injector and detec-
tor contacts were magnetized parallel to each other by
applying an in-plane magnetic field which was parallel
to the length of the electrode. Once the electrodes were
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FIG. 6: (a) Experimental results, R(B), in normal field (max-
imum 0.06 T) performed at 30 K. The red curve is the guide
to eye line. (b) Calculated R(B) curve using Eg. (7) in which
the zoom-in portion of the curve matches the experimental
result shown in (a).

magnetized, in-plane field was removed and a perpendic-
ular magnetic field was applied to record Hanle data. To
avoid the misalignment of the injector and detector mag-
netization, the out-of plane magnetic field was restricted
between ±60 mT. For Hanle measurements, current was
applied between electrode 1 and 2, and the voltage was
measured between 3 and 4 while the transverse magnetic
field was scanned from +60 mT to −60 mT.

Some salient features of the observed RNL vs. B curve
at 30 K are: (a) value of RNL at B = 0 T is almost
zero; (b) on increasing the magnetic field, the sign of
RNL becomes negative and its magnitude starts increas-
ing on either side of B = 0 T; (c) at around B = 0.03
T, the magnitude of RNL starts decreasing and finally at
B = 0.05 T, again becomes zero; (d) after 0.05 T,RNL be-



7

come positive and its magnitude increases with increase
in field. The above features are obviously very different
from the typical Hanle curves shown by normal materials
where a maxima is observed at B = 0 T in RNL vs. B
curve. In order to understand the mechanism responsible
for the observed behavior, we compared the experimental
data with our theoretical prediction discussed in section
III.

First of all, a quick comparison of the curve shown in
Fig. 6(a) with theoretical curves shown in Fig. 4 and
Fig. 5, suggested that the sample under investigation is
in the regime Γ < 1. Specifically if the sample was in
the regime Γ > 1, it should have exhibited a maxima
at B = 0 T in RNL vs. B curve. Once we found out
the regime to which our sample belongs, we fitted the
experimental data to the corresponding expression, i.e.
equation (7). In Eq. (7), there are four independent
unknown parameters namely, BSO, τ∗s , Γ, and µ, which
were varied during the fitting procedure. Figure of merit
of the fit was determined by calculating the quantity χ2 =
1
N

∑N
n=1[

Ydata−Yfit

Yerror
]2.

The experimental data was found to fit very well in Eq.
(7) with a value of χ2 = 1.16. Fitted curve is shown by
solid red curve in Fig. 6(a). The best fitting parameters
were found to be BSO = 0.12± 0.01 T, τ∗s = 110± 10 ps,
Γ = 0.35± 0.05, and µ = 900± 50 cm2/V s.

It is important to note that even though, because of
experimental constraints, range over which we could scan
the out-of-plane field was limited to ±60 mT, we could es-
timate BSO which was much higher than that field. Now
using the experimentally determined values of BSO, τ∗s ,
Γ, and µ, in equation (7), we calculated the R(B) curve
over a magnetic field range of ±0.25 T and obtained a
curve shown in Fig. 6(b).

The curve exhibits two peak structure with maxima
located at ±0.12 T corresponding to two valleys. Fur-
thermore, both of the peaks are accompanied with os-
cillatory signal on both sides of the main peaks which
is understood to arise because of the integer number of
full precession accomplished by the spin of the injected
electrons before it reaches the detector electrode.

It is interesting to note that though the main Hanle
peaks belonging to two valleys are well separated corre-
sponding oscillatory peaks overlap near the origin and
give rise to the shape in RNL vs. B plot as observed in
our experiment. See the part of curve shown in red line
in Fig. 6(b).

To check the consistency of the fit, from the values of
Γ and BSO obtained above by the fitting of experimental
data, we calculate the intervalley scattering rate γv =
ΓΩSO = 7.4× 109 s−1. If the mobility is limited entirely
by the intervalley scattering, it is related to γv and the
carrier density n as [42]:

µ =

(
∆

λ

)
e

2π~Γn
=

(
∆

λ

)
eΩSO

2π~γvn
. (14)

Using the value of mobility obtained from the fit, and

the value of density n = 1.3 × 1013 cm−2 as determined
from Hall effect data we got the value Γ = 0.20 in rea-
sonable agreement with Γ = 0.35 inferred from the fit.

V. CONCLUDING REMARKS

(i) In summary, using the all-electrical technique of in-
jecting and detecting spin polarized carriers, we have ob-
served the signature of Hanle precession in trilayer MoS2

films.
(ii) Our theoretical calculations showed that because of
the valley-specific spin-orbit field present in the odd-
layered MoS2 films, two distinct Hanle peaks centered
at B = ±BSO are expected.
(iii) In the case of trilayer MoS2, the strength of SO field
is smaller than that for monolayer films. As a result,
under certain experimental conditions, secondary oscil-
latory signals belonging to the two valleys can overlap
and give rise to a detectable signal near the zero external
magnetic field.
(iv) By comparing the experimental data with the the-
oretically predicted results, we found that the trilayer
MoS2 films prepared by PLD undergo a slow interval-
ley scattering which is very important from the point of
view of realizing practical valleytronic devices. A spin
life-time of around 110 ps was estimated at 30 K.
(v) In our theoretical model, we made following assump-
tions. Firstly, we assumed that, similar to monolayer,
the minima of conduction band in trilayer MoS2 is lo-
cated at K and K ′ points. Secondly, we assumed that
the interlayer scattering processes do not affect the spin
relaxation in the trilayer MoS2 so the model developed
for the monolayer in Ref.[42] is also applicable to trilay-
ers.
(vi) Here we find it interesting to bring into the reader’s
attention that in certain system, nontrivial spin transport
effect can also arise because of the intervalley scattering
and g-factor anisotropy as described by Li et al in Phys.
Rev. Lett. 111, 257204 (2013) [51].
(vii) Availability of large-area trilayer MoS2 films, in
which valley specific spin transport can be investigated
by electrical means, is likely to expedite further research
in this area.
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Appendix A: Calculation of Schottky barrier height
using thermionic equation

In the case of 2D materials, the thermionic emission
equation is [45]:

I12 = A2DST
3/2 exp

[
− q

kBT

(
ΦB −

V12
n

)]
, (A1)

where A2D is the 2D equivalent Richardson constant, S is
the contact area between MoS2 film and probe, q is elec-
tron charge, n is the ideality factor, kB is the Boltzmann
constant. The slope of the Arrhenius plot, In(I12/T

3/2)
vs 1000/T, is given by the expression:

S = − q

1000kB

(
ΦB −

V12
n

)
. (A2)

Appendix B: Experimental Hanle Data at different
temperatures

In order to gain further understanding, temperature
dependent measurements were also performed over the
temperature range between 10 K to 300 K. At tempera-
tures below 30 K, because of the large resistance of the
sample, which exceeded the compliance of our measure-
ment system, the noise level was very high. On the other
hand, for temperatures above 50 K, the strength of the
Hanle signal was very weak and undetectable by our mea-
surement system. So the useful temperature range of our
study was 30 K - 50 K. Fig.7(a), (b), (c), (e), (g), and
(i) show the plots of non-local resistance measured at 25
K - 55 K. As can be seen from Fig.7(a) and (b), we were
not able to fit the Hanle results at 25 K and 55 K. How-
ever, at intermediate temperatures, the results resemble
distinguishable shapes, which differ substantially as tem-
perature varies.

We performed the fitting of these curves to the the-
ory using Eq. (7) and concluded that the changes of
the shape is due to shorter spin life time, smaller mo-
bility, and stronger intervalley scattering rate as temper-
ature increases. Table I presents the fitting parameters
of Hanle results at various temperatures. Using these
values, we calculated the R(B) curve over a larger mag-
netic field range of ±0.25 T and obtained the complete
curve including the two major peaks, which is shown in
Fig.7(d), (f), (h), and (j).
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FIG. 7: Experimental Hanle data at (a) 25 K, (b) 55 K, (c)
35 K, (e) 40 K, (g) 45 K, and (i) 50 K. The calculated Hanle
curves are also shown at various temperatures of (d) 35 K, (f)
40 K, (h) 45 K, and (j) 50 K, over the magnetic field range
of ±0.25 T. The red part of the curve shows the fitting of the
experimental data to Eq. (7).

TABLE I: Values of fitting parameters of Hanle measurement
at different temperatures (T ).

T (K) BSO (T) τ∗s (ps) Γ µ (cm2/V s)

35 0.12± 0.01 88± 10 0.47± 0.05 750± 50

40 0.12± 0.01 90± 10 0.45± 0.05 580± 50

45 0.12± 0.01 67± 10 0.57± 0.05 450± 50

50 0.12± 0.01 55± 10 0.80± 0.05 400± 50
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