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Accurate model of the stripe domain phase of perpendicularly magnetized multilayers

Ivan Lemesh,1, ∗ Felix Büttner,1, † and Geoffrey S. D. Beach1
1Department of Materials Science and Engineering,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

We develop an accurate analytical model for the stray field energy of parallel stripe domains in
multilayer films with perpendicular magnetic anisotropy, taking into account the effects of finite
domain wall width and variable domain wall angle. By minimizing the total energy we predict the
domain width, the domain wall width, and the domain wall angle for given material parameters.
We show how the domain wall width depends on the film thickness and the domain size. We
explore the domain wall angle as a function of Dzyaloshinskii-Moriya interaction (DMI) and derive
a threshold value Dthr beyond which the system is in a Néel state. We find that thicker films require
larger values of DMI to stabilize the Néel state. Finally, we test the effective medium theory, which
allows treating multilayers as effective single layer films and provide criteria for the applicability of
the model in the presence of both surface and volume stray fields. Our results are supported by
micromagnetic simulations, which indicate that the predictions are still precise even if the system is
in a labyrinthine domain state. Using our model, otherwise inaccessible magnetic parameters, such
as the DMI constant or the exchange constant, can now be obtained straight-forwardly from static
measurements of the stripe domain width in such films.

I. INTRODUCTION

Magnetic thin films with perpendicular magnetic
anisotropy (PMA) play a significant role in modern ap-
plications, such as magnetic memory and logic devices.
Multidomain patterns in these films form as a competi-
tion between various energies, which has been appreci-
ated since the days of Kittel1. A number of theoretical
approaches based on the so-called wall energy model2–4
have been presented in the past to describe the energy
terms in magnetic thin films and in multilayers. These
approaches considered domains separated by sharp do-
main walls, leading to two competing energy terms: mag-
netostatic energy and domain wall energy. These terms
are crucial for understanding of various magnetic struc-
tures formed in the films. The structures themselves, in
turn, can play a role in determining the magnetic parame-
ters. For instance, the domain width can be used to mea-
sure5–8 the exchange stiffness A or the Dzyaloshinskii-
Moriya interaction (DMI)9–11 in multilayer films. How-
ever, the derivation of magnetic constants from earlier
theories, which ignore the internal structure of the do-
main wall, leads to significant errors. In this paper, we
present an analytical model that considers magnetic do-
mains with an accurate domain wall profile, which, unlike
earlier theories, also accounts for the magnetostatic in-
teractions between magnetic charges residing within the
domain walls. Our model leads to substantial improve-
ments over earlier models at the same level of complex-
ity. In particular, we introduce a thickness dependence
of the domain wall width ∆ and the domain wall an-
gle ψ, for which we provide simple analytical expressions
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in Eqs. (20) and (22). In analogy to previous theories,
the domain widths of majority and minority stripe do-
mains are obtained from numerical minimization of the
total energy function. The revised total energy function
of a multilayer film in a multidomain state, as presented
in Eq. (31), is the final main result of the paper. Com-
bined, Eqs. (20), (22), and (31) are sufficient for any ap-
plications. The interested reader can understand the ori-
gin of these equations from the step-by-step derivations
presented in the paper and the appendix.

In the wall energy model, the energy density of the wall
is assumed to be a constant parameter σ that depends on
the magnetic material. The surface stray field energy of
the binary stripe state, in which domains are viewed as
an alternating sequence of parallel strips, has been cal-
culated for single layer films3,12 and in multilayers13,14.
Minimization of the total energy yields the equilibrium
domain width W , which depends on domain wall energy
σ, saturation magnetization Ms and film thickness d.
The resulting curve W (d) possesses a characteristic min-
imum and shifts up for larger σ. Additionally, a bubble
lattice phase has also been considered2. It becomes more
stable than the stripe phase above a critical out-of-plane
field. A labyrinthine domain pattern, frequently occur-
ring in experiments has, to the best of our knowledge,
not been analyzed so far. The wall energy model is valid
only for a bulk material with sharp domain walls, i.e.,
when ∆ � W and ∆ � d, where ∆ is the domain wall
width and d is the film thickness. There exist a few cor-
rections to this model, but they only involve the surface
stray field energy of a stripe domain state with simplis-
tic linear15 and sine domain walls16. However, studies
for stripes with a realistic profile are still absent in the
literature. Also, stray field interactions between domain
walls have been ignored so far. As we show later in the
paper, ignoring these effects for domains of intermedi-
ate size (W < 50∆) leads to wrong values of extracted
parameters, such as exchange stiffness or DMI strength.
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It is commonly agreed that the profile of straight do-
main wall (with a domain wall plane orthogonal to the x
direction) is analytically described by

mx(x) = sin(ψ) cosh−1(x/∆) (1)

my(x) = cos(ψ) cosh−1(x/∆) (2)
mz(x) = tanh(x/∆), (3)

where m = (mx,my,mz) is the normalized magnetiza-
tion, ∆ is the domain wall width, and ψ is the domain
wall angle (see Fig. 1). Depending on ψ, the domain
walls belong to the Bloch type if sin(ψ) = 0, Néel if
| sin(ψ)| = 1, and transient for all other cases. Stripe
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Figure 1. a) The profile of a straight domain wall in a mul-
tilayer film with arrows denoting the magnetization distribu-
tion (adapted from Ref. 17). b) Top-view and c) side-view
of the magnetization in a magnetized multidomain state with
domain periodicity λ, domain widthW , domain wall width ∆
and domain wall angle ψ. The schematic distribution of sur-
face (volume) charges is depicted with red (white) plus and
minus signs.

domains of width W and periodicity λ (see Fig. 1b) can
be described as a periodic repetition of the single do-
main wall profile (1)-(3), as long as the distance be-
tween the domain walls is at least 8∆, as shown later in
this paper. The magnetostatic energy associatied with
interactions between volume charges (i.e., the volume
stray field energy) formed in a single wall state with a
given profile has been calculated in single layer films and
multilayers17. The result is a thickness-dependent trans-
verse anisotropy, i.e., a local hard-axis anisotropy that
describes the energetic costs to tilt the spins from Bloch
to Néel orientation. The surface stray field energy of sin-
gle walls has been calculated for ultrathin and ultrathick
film limits18,19. Within those limits, the equilibrium wall
parameters can be expressed as

∆ =
√
A/K (4)

σ = 4
√
AK, (5)

where K is the local effective anisotropy value, which
should not be confused with the total effective magnetic
anisotropy energy Keff, as measured from the in-plane

and out-of-plane hysteresis loops20,21. Depending on the
film thickness, K can be estimated as

K =

{
Ku − µ0M

2
s

2 = Keff, for ultrathin films
Ku +

µ0M
2
s

2 sin2(ψ), for ultrathick films,
(6)

where Ku is magnetocrystalline anisotropy. The motiva-
tion for these equations comes from the fact that in ul-
trathin films it is the interaction between surface charges
surrounding the domain wall that dominates, while in
thicker films volume charge interactions takes over.

In this paper, we calculate the equilibrium parame-
ters of an isolated wall with a profile (1)-(3) including
the effects of DMI and (surface and volume) stray field
energies. We quantitatively predict the Bloch-Néel evo-
lution of the wall as a function of DMI and film thick-
ness. We also consider the multidomain state, calculat-
ing its equilibrium domain size and domain wall width.
We extend our calculations to multilayers, for which we
derive the exact analytical energy expressions and rigor-
ously prove the limits of the previously suggested effective
medium approach5,8,13 with incorporated Zeeman and
volume stray field energy effects. We use micromagnetic
simulations to confirm our calculations as well as to com-
pare the labyrinthine (maze-like) domains that are more
common experimentally, with the binary stripe pattern.

II. CALCULATIONS OF EQUILIBRIUM
PARAMETERS

In the following section we calculate the equilibrium
parameters, such as domain wall width ∆, domain wall
angle ψ and domain width W in magnetic films with
PMA. We consider a domain wall state described by
Eqs. (1)-(3) with demagnetized stripe domains (i.e., the
domain periodicity is λ = 2W ). The total energy of the
film per unit volume can be summarized as

E i,jtot(∆,W, ψ) =
1

W

[
2∆Ku +

2A

∆
+ πD sin(ψ)

+σi,jd,s(∆,W ) + σi,jd,v(∆,W, sin(ψ))
]
, (7)

where σi,jd,s and σ
i,j
d,v are the surface and the volume stray

field energies per domain wall area with i denoting the
number of domain walls and j is the number of multilayer
repeats. Local energy terms are derived in Appendix A.
Here, byD we mean the interfacial DMI constant, though
the bulk DMI can be incorporated by adding22 an ex-
tra term −πDbulk cos(ψ) to Eq. (7). Non-local magneto-
static interactions σi,jd,s, σ

i,j
d,v can be calculated using the

Coulomb integral

E i,jd =
µ0

8π

∫∫
d3rd3r′ρα(r)ρβ(r′)

1

|r− r′|
, (8)

with the volume charges ρv = −∇ ·M and the surface
charges ρs = (M · nk)δ(z − zk), where M = Msm, the
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index k enumerates the surfaces, and nk is the surface
normal. The exact solutions for single wall and multido-
main states in single-layer and in multilayer systems are
provided in Appendices B, C. The strategy behind all the
calculations there is to eliminate the r− r′ dependency
by transforming to Fourier space, in which the integra-
tions become more straightforward. This allows us to
eventually reduce a six-fold integral either to an analyti-
cal function or to a sum over a single variable. Note that
the cross-interactions between the surface and the volume
charges vanish due to the symmetry23 of our system, i.e

E i,jd,sv ≡ 0. (9)

The minimization of Eq. (7) with respect to ψ,∆,W leads
to the system of nonlinear equations24


sin(ψ) = f̃

(
− πD

2σi,jd,v(ψ=3π/2)

)
∂σi,jd,s
∂∆ +

∂σi,jd,v
∂∆ = 2A

∆2 − 2Ku

∂(σi,jd,s/W )

∂W +
∂(σi,jd,v/W )

∂W =
2∆Ku+ 2A

∆ +πD sin(ψ)

W 2 ,

(10)

where

f̃(x) =

{
x, x ≤ |1|
sign(x), else

(11)

with the first equation in (10) stemming from
the form of the volume charge interactions,
σi,jd,v(ψ,∆,W ) ≡ sin2(ψ)α(∆,W ). Note that the
form of the equation allows us to separate the variable
ψ from other variables and hence, reduce the number of
independent equations by one. Below, we describe the
results of the total energy minimization for single and
multilayer films.

A. Single domain wall

First, consider an isolated domain wall in a single, uni-
form layer of magnetic material. Fig. 2 illustrates the
results of the micromagnetic simulations for the equilib-
rium ∆ as a function of film thickness d. We can imme-
diately observe an intrinsic thickness dependence of ∆
that is caused by the magnetostatic interactions, which
change the local value of anisotropy K in the proximity
of the domain wall.

To describe the domain wall profile theoretically we can
use the expression for the stray field energy associated
with the volume charges inside of the isolated domain
wall obtained by Büttner et al.17:

σ1,1
d,v(∆, ψ) =

πµ0M
2
s∆2 sin2 (ψ)

2d
G

(
d

2π∆

)
, (12)

Figure 2. Domain wall width as a function of film thickness
from micromagnetic simulations with 1 nm grid (dots), from
numerical solution of the isolated wall theory and from our
multidomain theory (dashed).

with

G(α) =

∫ +∞

0

dq
e−qα + qα− 1

q cosh2(q/4)
=

− 8

{
Ψ−2(α+ 1)−Ψ−2

(
α+

1

2

)
− α ln(Γ(α+ 1))

+α ln

[
Γ

(
α+

1

2

)]
−Ψ−2(1) + Ψ−2

(
1

2

)}
, (13)

where Ψ−2(z) =
∫ z

0
dt ln Γ(t) is the second anti-derivative

of the digamma function. For the stray field energy of
surface charges surrounding the domain wall, we can
use the expression that we derive in the Appendix B
(Eqs. (B11) and (B20)). Our derivation of the surface
stray field energy deals with two domain walls forming a
magnetic domain of width W , but we can isolate them
by considering the limit W → ∞:

σ1,1
d,s(∆) = lim

W→∞
σ∆
d,s =

=
µ0M

2
s

πd

{
πd∆ +

d2

2
− d2 ln

(
d

π∆

)
+2πd∆ ln

[
Γ

(
d

π∆

)]
− 2π2∆2Ψ−2

(
d

π∆

)}
,

(14)

where we ignored the term from Eq. (B11), which has no
∆ dependence. After the total energy minimization, the
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first two equations of the system (10) take the form:sin(ψ) = f̃

(
− 2πD

∆µ0M2
sG
∗( d

2π∆ )

)
µ0M

2
s sin2(ψ)

8

(
1 + ∆ ∂

∂∆

)
G∗
(

d
2π∆

)
+ 1

2

∂σ1,1
d,s

∂∆ = A
∆2 −Ku,

(15)

whereG∗(x) = G(x)/x. By inserting sin(ψ) from the first
equation in system (15) into the second one, we obtain
an expression that depends only on ∆25. In the limit of
small and large d, the resulting system can be expanded
in series, which leads to the following explicit form for
the equilibrium domain wall width:

lim
d→0

∆ = ∆0 −
µ0M

2
s

4πKeff
d (16)

lim
d→∞

∆ = ∆∞ =

√
A

Ku +
µ0M2

s

2 sin2(ψ)
, (17)

where

∆0 =

√
A

Keff
, (18)

Keff = Ku −
µ0M

2
s

2
. (19)

Though the exact solutions for films of an intermediate
thickness can be found only numerically, we can use the
fact that the resulting ∆ is a linear function of d for ultra-
thin films and a constant function for ultrathick films and
approximately extrapolate ∆ to the intermediate thick-
ness regime as follows:

∆(d, ψ) = ∆0 −
1

2π(Q−1)
d + 1

∆0−∆∞(ψ)

, (20)

with the quality factor Q being defined as

Q =
2Ku

µ0M2
s

(21)

The domain wall width as described by the simplified
explicit Eq. (20) accurately represents the exact implicit
result of Eq. (15), unless Q is very close to one. Specif-
ically, we find that in the intermediate thickness regime
the relative error of Eq. (20) is below 10% for Q ≥ 1.2,
with the error decreasing rapidly for larger Q. For thin
and thick films Eq. (20) becomes precise for any Q > 1.

The domain wall width implicitly depends on DMI
(Fig. 3a) via the ψ = ψ(D)-dependence of ∆. Such a
dependence exists only for transient walls, in which the
contribution of the volume stray field energy depends on
the domain wall angle ψ. After plotting the numerical so-
lution for sin(ψ) (Fig. 3b), we can see that thicker films
require larger values of DMI in order to stabilize Néel
walls. The transient regime spreads from DMI values of
zero, at which the domain wall has a Bloch profile, up
to some threshold value Dthr of DMI. Once D = Dthr,

Figure 3. The values of equilibrium domain wall width ∆
and domain wall angle sin(ψ) as a function of DMI for an
isolated wall in an infinite single layer film with material
parameters: A = 1.0× 10−11 J/m, Ms = 6.0× 105 A/m,
Ku = 5.0× 105 J/m3. Continuous curves represent theoreti-
cal values, corresponding to the exact numerical solutions of
(15), while dots represent single layer micromagnetic simula-
tions, with a slight mismatch caused by a finite cell size.

a transient wall becomes purely Néel. A further increase
of DMI leads to no change of domain wall width ∆ as a
function of DMI.
Dthr can be found by imposing the Néel character of

the walls, i.e., by plugging | sin(ψ)| = 1 into Eq. (15).
The resulting numerical solution is plotted in Fig. 4a.
We can derive the ultrathick and ultrathin film limits of
Dthr and the equilibrium ψ by inserting the analytical
limits of the equilibrium ∆ from Eqs. (16) and (17) into
the first eqution in the system (15). Just like in the
case of ∆, we can use these solutions to approximate the
equilibrium ψ and Dthr in the entire film thickness range
as follows:

sin(ψ) =

{
−D/Dthr, D < Dthr

−1, D ≥ Dthr
(22)

Dthr(d) =
2µ0M

2
s

π2

d ln(2) + π

√
Ku+

µ0M
2
s

2

A

(23)
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Figure 4. Theoretical values of the threshold DMI. a) Dthr as
a function of film thickness for single layer films. The dots in-
dicate the results from 1nm-grid micromagnetic simulations
with varying the DMI, where Dthr was found from the mini-
mum D, yielding a Néel state. b) Dthr as a function of scaling
factor f = T /P for multilayer films (via the effective medium
model) with single magnetic layer thickness T = 1 nm,
and unscaled magnetic parameters Ms = 1.4× 106 A/m,
A = 1.0× 10−11 J/m, for different values of magnetic layer
quality factor Q = 2Ku/µ0M

2
s and multilayer repeats N .

To further confirm our predictions, we performed a
series of micromagnetic simulations with Mumax3 mi-
cromagnetic software26. We used a fine monolayer grid
of 1 nm in lateral directions and the number of cells
(Nx, Ny, Nz)=(32768× 512×1), in which we applied the
periodic boundary conditions to remove the influence of
boundary effects27 caused by DMI. By starting from an
isolated transient wall state, we further relaxed it until
the minimum energy state was reached. Such simulations
precisely confirm the equilibrium ∆ and ψ obtained nu-
merically from Eq. (15).

B. Extension to stripes

Consider a single, uniform layer of a magnetized film
with a periodic domain pattern with a periodicity λ, mi-
nority domain width ofW and domain wall width ∆ (see
Fig. 2). In Appendices B 2 and C1, we calculate for the
surface and volume stray field of such a state, resulting
in the following expressions normalized per unit volume

of the film:

E∞,1d,s =
µ0M

2
s

2

(
1− 2W

λ

)2

+
2πµ0M

2
s∆2

λd
×

×
∞∑
n=1

sin2
(
πnW
λ

)
sinh2

(
π2n∆
λ

) 1− exp(− 2πnd
λ )

n
(24)

E∞,1d,v =
2πµ0M

2
s∆2 sin2(ψ)

λd
×

×
∞∑
n=1

sin2
(
πnW
λ

)
cosh2(π

2n∆
λ )

exp(− 2πnd
λ ) + 2πnd

λ − 1

n
(25)

We can find the equilibrium values of W and ∆ after
incorporating the magnetostatic energies E∞,1d,s and E∞,1d,v
into the total energy expression:

E∞,1tot =
2

λ

[
2A

∆
+ 2Ku∆ + πD sin(ψ)

]
+ E∞,1d,s (Ms, d, λ,W,∆) + E∞,1d,v (Ms, d, λ,W,∆, ψ)

−Ms

(
1− 2W

λ

)
Bz, (26)

where Bz is the component of the external field along
the magnetization direction. Considering a demagne-
tized state W = λ/2, the minimization of Eq. (26) with
respect to W,∆, ψ leads to Eq. (10). Fig. 5 shows the
results of the numerical minimization procedure, i.e., the
equilibrium domain width is plotted as a function of film
thickness for a material with Q > 1.

The equilibrium domain width W = W (d) possesses
a minimum as a function of film thickness, enclosed by
a slow increase of W towards larger d and a sharp in-
crease (divergence) for thinner films. Qualitatively, such
a trend is in agreement with theories developed earlier3,
which used a constant wall energy model. Quantita-
tively, however, earlier theories possess an inherent error
as they completely ignore the thickness dependence of
the domain wall energy and neglect the inter-wall inter-
actions. These errors are addressed in the multidomain
model that we developed.

Our explicit model can be simplified using the follow-
ing approximation: (i) use ∆, ψ found from the derived
single wall model (Eqs. (20) and (22)), (ii) plug them into
the total energy (Eq. (26)), and (iii) minimize it with re-
spect to a single variable W . This approach is valid (see
Fig 5, dot-dashed curve), because the equilibrium ∆ de-
pends on the domain size W only weakly (dashed lines
on Fig. 2).

Note that the DMI interaction leads to the shrinking
of the domain size by lowering the energetic cost of the
formation of domain walls. Above some critical DMI,
Dcr 6= Dthr, the multidomain state evolves into a cycloid
state27. It is hence useful to compare our theoretical re-
sults with micromagnetic stripe simulations at extremes.
The limits of our theory can be tested by tuning DMI to
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Figure 5. a) Equilibrium domain width at remanence as a
function of film thickness for films with a single magnetic
layer: from the exact theory and from the micromagnetic sim-
ulations of the labyrinthine and stripe state (see also Fig. 7).
b) Mismatch between various multidomain approximations,
micromagnetic simulations and our multidomain theory. Our
theory uses the numerical minimization of Eq. (10). The mod-
els that we compare it against are constant wall energy models
(depicted with dashed lines), and the isolated wall approxi-
mation to our multidomain theory (shown with a dotdashed
line), which uses ∆ and ψ found from the single wall model
(Eq. (15)), followed by the minimization of Eq. (26) with re-
spect to a single variableW . Note that the thin-film deviation
of simulation results from our predictions originates in the
quantization due to a finite simulation area, which is more re-
stricting for larger domain sizes, i.e., smaller film thicknesses.

the point at which the size of the domain becomes equal
to the domain wall width. From Fig. 6 we can see that
our theory works well as long as W & 8∆. Real domains
rarely exceed this limit, so our theory holds true for the
majority of experimentally relevant cases.

Our calculations are verified by micromagnetic sim-

Figure 6. The ratio of the equilibrium domain size W and
domain wall width ∆ as a function of DMI for states with
Néel walls (D > Dthr ≈ 1.0× 10−3 J/m2) following the
developed theory and multidomain stripe simulations with
d = 10 nm, A = 1.0× 10−11 J/m, Ms = 6.0× 105 A/m,
Ku = 5.0× 105 J/m3.

ulations that reproduce the desired values for W , ∆,
and ψ (Fig. 7, dots and stars in Fig. 5). In addi-
tion, simulations show that those parameters are also
the same if the system is in a state of randomly oriented
labyrinthine domains. We attribute contradicting exper-
imental observations28,29 to the effect of pinning.

a b c

Figure 7. Simulated demagnetized multidomain patterns of a
material with A = 1.0× 10−11 J/m, Ms = 6.0× 105 A/m,
Ku = 5.0× 105 J/m3, D = 1.5× 10−3 J/m2 with applied
periodic boundary conditions. a) Binary stripe pattern,
(10µm × 3µm) which was selected after comparing the to-
tal energies of the simulated states with various number of
stripes and finding the one that results in the smallest to-
tal energy (after the relaxation procedure), with the cell size
of 1 nm × 1 nm × 100 nm. The true domain width at
the absolute energy minimum can be found after fitting the
parabolic discrete curve Etot = Etot(Nstripes) and locating
the minimum of the resulting curve. b) Labyrinthine (maze)
pattern (10µm × 10µm) that was found after the relaxation
procedure of a randomly magnetized state; the cell size is
2 nm×2 nm×100 nm. c) FFT of the respective state (magni-
fied 10x) used for measuring domain width W at equilibrium.
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C. Extension to multilayers and revised effective
medium approach

Now, consider multidomain patterns in a multilayer
structure, which has N multilayer repeats with a stack
periodicity P and a single magnetic layer thickness T . In
Appendices B 3 and C2, we provide the exact solution of
Eq. (8) for the surface σ∞,Nd,s and volume σ∞,Nd,v stray field
energies (see Eqs. (B34) and (C24)). We thus provide the
reader with all the tools to find the equilibrium multilayer
parameters λ, W , ∆, ψ, which can be accomplished by
minimizing the total energy

E∞,Ntot =
2

λ

[
2A

∆
f + 2Ku∆f + πD sin(ψ)f

]
+ E∞,Nd,s (Ms, T ,P, λ,W,∆)

+ E∞,Nd,v (Ms, T ,P, λ,W,∆, ψ)

−Ms

(
1− 2W

λ

)
Bzf (27)

where E∞,Nd,s , E∞,Nd,v are defined as follows:

E∞,Nd,s =
µ0M

2
s

2

(
2W

λ
− 1

)2 T
P

+
2πµ0M

2
s∆2

λP

∞∑
n=1

sin2(πnWλ )

n sinh2
(
π2n∆
λ

)×2 sinh
(
πnT
λ

)
sinh

(
πn(P−T )

λ

)
sinh

(
πnP
λ

) +

+
sinh2

(
πnT
λ

)
N sinh2

(
πnP
λ

) (1− e− 2πPNn
λ

)}
, (28)

E∞,Nd,v =
2πµ0M

2
s∆2 sin2(ψ)

λPN

∞∑
n=1

sin2
(
πnW
λ

)
n cosh2(π

2n∆
λ )

×
{
N
(
e−

2πnT
λ +

2πnT
λ
− 1

)

+
e−

2πn(PN+T )
λ

(
e

2πnT
λ − 1

)2

(
e

2πnP
λ − 1

)2

×
(
e

2πnP
λ + e

2πnP(N+1)
λ (N − 1)−N e 2πnNP

λ

)}
.

(29)

However, at this point the explicit energy expressions
become too involved. Instead, we prove and test a single
layer effective medium model5,8,13. In accordance with
this model, the multilayers can be effectively treated as
a single layer film with thickness d = NP with magnetic
constants scaled by a factor f = T

P
8,13. Such a model has

been introduced previously, but neither a rigorous proof
nor the limits of validity have been discussed. The error

of the equilibrium domain width, extracted from the ef-
fective medium model, is plotted in Fig. 8. As we find
in Appendix B 3 and C2, the effective medium model
is accurate if W � P, W � ∆ (imposed by the sur-
face stray field energy) and P � 2π∆ (imposed by the
volume stray field energy). The conditions are met in
most experimentally relevant cases. At these limits, the
surface stray field energy not only scales Ms by a factor
f , but also generates an additional anisotropy-like offset
term Ka (see Eq.(B38)) defined as

Ka =
µ0M

2
s

2

(
f − f2

)
(1− 4∆

λ
) at 2∆/λ→ 0, (30)

which results in modifying the magnetocrystalline energy
term as well as in making a constant energy offset. The
volume stray field energy density, as we demonstrate in
Appendix C 2, should be scaled by a factor f2, which is
equivalent to the scaling of Ms by the factor f . Overall,
we can express the energy of the mutidomain multilayers
in the effective medium model as follows:

E∞,Ntot, eff =
2

λ

[
2A′

∆
+ 2K ′u∆ + πD′ sin(ψ)

]
+ E∞,1d,s (Ms = M ′s, d = PN)

+ E∞,1d,v (Ms = M ′s, d = PN)

+ C −M ′s
(

1− 2W

λ

)
Bz, (31)

where the effective constants are defined as:

A′ = fA, D′ = fD, M ′s = fMs

(32)

K ′u = Kuf −
µ0M

2
s

2
(f − f2), C =

µ0M
2
s

2

(
f − f2

)
(33)

The form of the scaling of magnetocrystalline anisotropy
term Ku obtained in the Eq. (33) is equivalent to the
claim by Woo et al.8 that the effective anisotropy Keff =

Ku − µ0M
2
s

2 should be scaled by a factor f . Also, the
derived constant term C is equivalent to an extra surface
stray field energy term found by Suna13 in a multilayer
binary domain pattern.

III. CONCLUSIONS

We have developed a theory to calculate the equilib-
rium domain size W , domain wall width ∆ and domain
wall angle ψ in multilayers possessing a multidomain
state with an accurate profile of domain walls. This the-
ory can be used inversely to find material parameters
such as DMI or exchange stiffness from the known do-
main width. We have also verified the validity of the
effective medium model, which allows treating multilay-
ers effectively as a single layer film, and have found the
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Figure 8. Equilibrium domain width as a function of scaling
factor f and the number of multilayer repeats N for a mul-
tilayer film with magnetic layer of thickness T = 1 nm,
and magnetic parameters Ms = 1.4× 106 A/m, Ku =
2.7× 106 J/m3, A = 1.0× 10−11 J/m, D = 1.5× 10−3 J/m2.
Solid lines represent the explicit multilayer theory solution,
dashed lines are the effective medium approximation. The
minimum domain width is reached at the number of multi-
layer repeats N ≈ 15. The equilibrium domain wall width
(not shown) ranges from ∆ ∼ 2.5 nm for small f to ∆ ∼
1.7 nm for films with large f .

limitations of the model for multidomain multilayers. Us-
ing micromagnetic simulations, we have found that the
labyrinthine and stripe phases result in very close values
of the equilibrium domain width.
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Appendix A: Local Energy Terms

To express the local energy terms of the isolated wall
state per domain wall area, we need to integrate the
well-known expressions of micromagnetic energy densi-
ties using the one-dimensional magnetization profile (1)-
(3). Thus, the energy of magnetocrystalline anisotropy,

exchange interaction and DMI11,22 per domain wall area
can be found as follows:

σk = Ku

∫ +∞

−∞
dx
[
(mx)2 + (my)2

]
= 2∆Ku

(A1)

σexch = A

∫ +∞

−∞
dx

[(mx

∂x

)2

+
(my

∂x

)2

+
(mz

∂x

)2
]

=
2A

∆
(A2)

σdmi = D

∫ +∞

−∞
dx

[
mx

∂mz

∂x
−mz

∂mx

∂x

]
= πD sin(ψ)

(A3)

Appendix B: Surface Stray Field Energy
Calculations

1. Single Domain Case

A single stripe domain is an area of width W sep-
arated by domain walls. The profile of the normal-
ized out-of-plane component of the local magnetization
mz(r) = mz(x) can be written as

mz(x) = 1− tanh

(
W + 2x

2∆

)
− tanh

(
W − 2x

2∆

)
(B1)

= (f1 ∗ g)(x) (B2)

with

g(x,W ) =

{
−1 |x| < W/2

1 else
, (B3)

f1(x,∆) =
1

2∆

1

cosh2 (x/∆)
. (B4)

The unit box function g(x,W ) is a model for a domain
of width W with zero domain wall width and the convo-
lution with the f1(x,∆) yields a finite domain wall width
∆. The function for mz(x) is not an exact model for a
360◦ domain wall30, but it is a very accurate approxima-
tion for W > 8∆. The out-of-plane component of the
magnetization determines the surface charge density via

ρs(r) = (δ(z − d)− δ(z))Msmz(r) (B5)

where d is the film thickness, Ms is the saturation mag-
netization. The in-plane components mx and my do not
generate surface charges and the interaction of surface
charges and volume charges is zero in the average over
z31. In general, the stray field energy Ed,s related to sur-
face charges of density ρs(r) can be calculated via the
integral

Ed,s =
µ0

8π

∫∫
d3rd3r′ρs(r)ρs(r

′)
1

|r− r′|
(B6)
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In the following, we express our results in terms of the
energy per unit area of the domain wall

σd,s =
Ed,s − E0

2Ld
, (B7)

where L is the length of the domain, measured in the
y direction, and E0 is the energy of a homogeneously
magnetized film. The factor 2 in the denominator comes
from the fact that the domain has two domain walls.
With the tools provided in Ref. 17, the integration along
y and z can be performed analytically. In the limit L→
∞, the integration kernel reads

h(x, d) = lim
L→∞

1

2L

∫∫ L/2

−L/2
dydy′

∫∫ d

0

dzdz′

× (δ(z − d)− δ(z))(δ(z′ − d)− δ(z′))√
x2 + (y − y′)2 + (z − z′)2

(B8)

= ln(x2 + d2)− ln(x2). (B9)

With the help of h(x), we can write σd,s as

σd,s =
µ0M

2
s

8πd

∫∫
dxdx′

× [(f1 ∗ g)(x)(f1 ∗ g)(x′)− 1]h(x− x′, d). (B10)

The −1 represents the subtraction of the stray field en-
ergy of a homogeneously magnetized film. Because of
the −1 term, it is difficult to write the integral in Fourier
space. However, by further subtracting the known stray
field energy2 of a stripe domain with zero domain wall
width

σ0
d,s =

µ0M
2
s

8πd

∫∫
dxdx′[g(x)g(x′)− 1]h(x− x′, d)

= −µ0M
2
s dv

[
1− (2π)−1 (4 arctan(v)−

−2v ln(v) +

(
v − 1

v

)
ln
(
v2 + 1

))]
, (B11)

where v = W/d, we can write the difference

σ∆
d,s = σd,s − σ0

d,s

=
µ0M

2
s

8πd

√
2π

∫
dk(2πf̂1

2
(k)− 1)ĝ2(k)ĥ(k, d)

(B12)

as a single integral in Fourier space17. Here, the hat
above the functions denotes a Fourier transform

f̂1(k) =
1√
2π

∫
dxf1(x)eikx. (B13)

To derive Eq. (B12), we made use of the fact that

F(f1 ∗ g)(k) =
√

2πf̂1(k)ĝ(k) (B14)

and that both f̂1 and ĝ are real valued. The Fourier space
functions are

2πf̂1
2
(k) =

π2

4
∆2k2 1

sinh2
(
π∆k

2

) , (B15)

ĝ2(k) =
8

π

1

k2
sin2

(
kW

2

)
, (B16)

ĥ(k, d) =
√

2π
1− exp(−|k|d)

|k|
. (B17)

Actually, the Fourier transform of g contains more terms
proportional to δ(k), but those terms integrate to zero
because the remaining integrand is zero at k = 0. All
together, the equation for σ∆

d,s reads

σ∆
d,s = 4

µ0M
2
s

πd
∆2

∫ ∞
0

dq

(
π2

4
q2 1

sinh2
(
πq
2

) − 1

)

× sin2
(qw

2

) 1− exp(−qt)
q3

(B18)

where we substituted q = k∆, reduced the symmetric
integral to positive values of q, and introduced the new
variables t = d/∆ and w = W/∆. The integral can be
solved analytically by noting that 1−e−qt =

∫ t
0
qe−qx dx,

changing the order of the q and x integration, and using
the fact that∫ ∞

0

dq π2 sin2
(
qw
2

)
sinh2

(
πq
2

) exp(−qx)

= i(w + ix)Ψ

(
x− iw
π

)
+ (−x− iw)Ψ

(
iw + x

π

)
+ 2xΨ

(x
π

)
(B19)

The result is

σ∆
d,s =

µ0M
2
s∆

2π
(a− 2πb− 2π2t−1c) (B20)

a = 4π log Γ

(
t

π

)
+ t
(
2v2 log(v)

−
(
v2 − 1

)
log
(
v2 + 1

)
− 4v arctan(v)

)
(B21)

b = −iv log Γ

(
itv

π

)
+ (1 + iv) log Γ

(
ivt+ t

π

)
+ (1− iv) log Γ

(
t− itv
π

)
+ iv log Γ

(
− itv
π

)
(B22)

c = Ψ(−2)

(
itv

π

)
−Ψ(−2)

(
ivt+ t

π

)
−Ψ(−2)

(
t− itv
π

)
+ Ψ(−2)

(
− itv
π

)
+ 2Ψ(−2)

(
t

π

)
(B23)

where i is the imaginary unit, Γ is the gamma function,
and Ψ−2(z) =

∫ z
0

dt ln Γ(t) is the second anti-derivative
of the digamma function.
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The error made by using the binary approximation σ0
d,s

instead of the correct σ0
d,s + σ∆

d,s is

∆σ0
d,s =

σ∆
d,s

σ∆
d,s + σ0

d,s

(B24)

The error made by using the thin film effective anisotropy
model

σKd,s = −µ0M
2
s∆ (B25)

is

∆σKd,s = 1−
σKd,s

σ∆
d,s + σ0

d,s

(B26)

Both errors are plotted in Fig. 9 as a function of reduced
thickness t for various values of w. For a given thickness,
∆σ0

d,s vanishes whenW becomes large, but logarithmicly
slow. For typical domain widths, i.e., for 10 < w < 1000,
we show that there is a significant error ∆σ0

d,s of 10%
and more for t < 3. The thin film approximation, on
the contrary, is reasonably accurate only for small t <
0.1. For the important intermediate regime 0.1 < t < 3,
the full term σd,s = σ∆

d,s + σ0
d,s needs to be considered.

Note that both approximations underestimate the correct
result.

Figure 9. Relative error for using the zero wall width model
of Cape and Lehman (CL) and for using the thin film limit
effective anisotropy model (K).

2. Extension to stripe arrays

Consider a periodic stripe domain pattern with peri-
odicity λ and a width W of one of the domains. To start
with, consider a finite number of domains N and a finite
total width of the sample of Nλ. The effective domain
wall energy associated with the surface stray fields is then
given by

σd,s =
Ed,s

2NLd
. (B27)

With the help of the identities derived in Appendix D,
σd,s can be written as

σd,s =
√

2π
µ0M

2
s λ

8πd

∑
k

|ĝk|2ĥ(k). (B28)

For a square wave domain pattern with zero domain wall
width, the Fourier coefficients of g are3

|ĝk|2 =
32

λ2k2
sin2

(
kW

2

)
= 4π|ĝ(k)|2 (B29)

with k = 2πn/λ and n ∈ N\0 and

|ĝ0|2 =

(
2W

λ
− 1

)2

. (B30)

All together,

σd,s =
λ

4
µ0M

2
s

(
2W

λ
− 1

)2

+
µ0M

2
s λ

2

π3d

∞∑
n=1

sin2

(
πnW

λ

)
1− exp(−2πnd/λ)

n3

(B31)

which is consistent with the result derived by Kooy and
Enz3 for µ = 1 considering that 2W

λ − 1 = 〈Mz〉/Ms is
the average relative out-of-plane magnetization and that
the volume density of the energy is Ed,s/V = 2σd,s/λ.
As noted by Johansen et al.,6 the sum can be written in
terms of polylog functions:

4

∞∑
n=1

sin2

(
πnW

λ

)
1− exp(−2πnd/λ)

n3

= −2Li3
(
e−

2dπ
λ

)
+ Li3

(
e

2iπW
λ − 2dπ

λ

)
+

+ Li3
(
e−

2πd
λ −

2iπW
λ

)
− Li3

(
e

2iπW
λ

)
− Li3

(
e−

2iπW
λ

)
+ 2ζ(3). (B32)

A finite domain wall width ∆ can be included in the
model in exact analogy to the single stripe domain case
by multiplication by 2πf̂1

2
(k) in Fourier space. The con-

volution theorem holds also for discrete Fourier series.
Hence, we obtain

σNdw=∞,Nl=1
d,s =

λ

4
µ0M

2
s

(
2W

λ
− 1

)2

+

+
πµ0M

2
s∆2

d

∞∑
n=1

sin2
(
πnW
λ

)
sinh2

(
π2n∆
λ

) 1− exp(−2πnd/λ)

n
.

(B33)

3. Extension to multilayers

Consider a multilayer film with a multidomain stripe
state containing walls of finite size. To find its surface
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stray field energy, we can use exactly the same approach
as for the single layer film (B33). Multiplication of the
explicit multilayer energy of a binary pattern given by
Suna13 and Draaisma14 by a factor of 2πf̂1

2
(k) in Fourier

space results in:

σNdw=∞,Nl=N
d,s =

λ

4
µ0M

2
s

(
2W

λ
− 1

)2 T
P

+
πµ0M

2
s∆2

P

∞∑
n=1

sin2(πnWλ )

n sinh2
(
π2n∆
λ

)×2 sinh
(
πnT
λ

)
sinh

(
πn(P−T )

λ

)
sinh

(
πnP
λ

) +

+
sinh2

(
πnT
λ

)
N sinh2

(
πnP
λ

) [1− exp

(
−2πPNn

λ

)]}
. (B34)

The resulting expression for σ∞,Nd,s can be simplified un-
der the condition λ� πP, which is most often the case.
By expanding the terms inside of the curly brackets of
Eq. (B34) in Maclaurin series up to the first order in
πnT /λ and πnP/λ, we obtain:

σ∞,Nd,s

∣∣∣λ�πP =

λ

4
µ0M

2
s

(
1− 2W

λ

)2 T
P

+

[
πµ0(MsT /P)2∆2

(PN)

×
∞∑
n=1

sin2(πnWλ )

sinh2
(
π2n∆
λ

) 1− exp(−2πnPN/λ)

n

]
+

+
2π2µ0M

2
s∆2

λ

[
T
P
−
(
T
P

)2
] ∞∑
n=1

sin2(πnWλ )

sinh2
(
π2n∆
λ

) .
(B35)

Consider the function

F

(
∆

λ
,
W

λ

)
= 8π2 ∆2

λ2

∞∑
n=1

sin2(πnWλ )

sinh2
(
π2n∆
λ

) (B36)

By performing the asymptotic analysis of F in the vicin-
ity of ∆/λ = 0 we obtain the following strict asymptotic
relation:

F ∼ Fapprox =

(
1− 4∆

λ

)
−
(

1− 2W

λ

)2

at ∆/λ→ 0

(B37)
Here, the second and all the higher order terms converge
to zero as ∆/λ → 032. Therefore, the surface stray field

Figure 10. a) The error of the asymptotic approximation of
F
(

∆
W

)
for various values of minority domain size.

energy of a multilayer film finally becomes:

σ∞,Nd,s

∣∣∣λ�πP =

λ

4
µ0M

2
s

(
1− 2W

λ

)2(T
P

)2

+

[
πµ0(MsT /P)2∆2

(PN)

×
∞∑
n=1

sin2(πnWλ )

sinh2
(
π2n∆
λ

) 1− exp(−2πnPN/λ)

n

]

+
µ0M

2
sW

2

(
1− 4∆

W

)[
T
P
−
(
T
P

)2
]

(B38)

The error of the effective model of the demagnetized state
is plotted on Fig. 11. As we can see, this model works
very well even for intermediate and small domains as long
as W & 10P.

Figure 11. The error of the effective medium model for the
surface stray field energy of a demagnetized multilayer film
with a multilayer period of P = 5 nm and N = 10 multilayer
repetitions.
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Appendix C: Volume Stray Field Energy
Calculations

1. Stripe array and isolated wall states in single
layer films

Consider a magnetized single layer film, in which
2M− 1 domain walls of fixed chirality with transient
wall angle ψ separate stripe domains of periodicity λ and
width W of one of the domains. The calculation of the
volume stray field energy of this state is accomplished by
calculating the integral

σd,v =
µ0

8πLd(2M− 1)

∫∫
d3rd3r′ρ(r)

1

|r− r′|
ρ(r′)

(C1)

with the following volume charge distribution:

ρ(r) =

M−1∑
j=−M+1

[ρ1(x− jλ, y, z)− ρ1(x− jλ+W, y, z)]

(C2)
ρ1(r) = ρ1(x)θ(L/2− |y − L/2|)θ(d/2− |z − d/2|)

(C3)

ρ1(x) = −∇ ·M =
Ms

∆
sin(ψ)

tanh(x/∆)

cosh(x/∆)
,

(C4)

where θ(x) is the heaviside function, L is the width in the
y direction, d is the film thickness, and ∆ is the domain
wall width.

Figure 12. Distribution of volume charges in single layer
films with multidomain stripe state (with domain periodicity
λ = 45∆ and minority domain size of W = 15∆) possessing
Néel domain walls of fixed chirality.

By following the approach of Büttner et al.17 we find

in the limit L→∞ (compare with Eq. 24 from 17):

σ1,1
d,v =

µ0

8πd(2M− 1)

2M−2∑
m=−2M+2

(2M− 1− |m|)

×
∫ d

0

dz

∫ d

0

dz′
∫ +∞

−∞
dxdx′ρ1(x)ρ1(x′)

× [h1(x− x′ +mλ, z − z′)
−h1(x− x′ +mλ−W, z − z′)] , (C5)

where

h1(x, z) = lim
L→∞

1

L

∫ L

0

dy

∫ L

0

dy′
1√

(y − y′)2 + x2 + z2

= − ln(x2 + z2) (C6)

To facilitate the calculations, we can use the following
property of convolution:∫∫

dxdx′f(x)g(x′)h(x− x′ + c) =

=
√

2π

∫
dkĝ(k)ĥ(k)[f̂(k)]∗e−ikc, (C7)

which can be derived by following the logic from 17. In-
troducing

ζ(x) =
1

∆

tanh(x/∆)

cosh(x/∆),
(C8)

we have the following result for 2M − 1 domain walls
(compare with equation (29) from17):

σNdw=2M−1,Nl=1
d,v =

=
µ0M

2
s

√
2π sin2(ψ)

8π(2M− 1)d

2M−2∑
m=−2M+2

(2M− 1− |m|)

∫∫ d

0

dzdz′
∫ +∞

−∞
dk|ζ̂(k)|2ĥ(k, z − z′)e−ikλm(1− eikW )

(C9)

=
µ0M

2
s∆ sin2(ψ)

4t/2π

2M−2∑
m=−2M+2

{
2M− 1− |m|

2M− 1

×
∫ +∞

0

dq
e−qt/2π + qt/2π − 1

q cosh2(q/4)

×
[
cos

(
qλm

2π∆

)
− cos

(
q(λm−W )

2π∆

)]}
, (C10)

where we introduced q = 2πk∆ and a reduced thickness
t = d/∆. To simplify the expression (C10) we can swap
the integral and sum symbols. By recognizing that the
following sum can be expressed analytically as

2M−2∑
m=−2M+2

(2M− 1− |m|) [cos(kλm)− cos(k(λm−W ))]

= 2 sin2

(
kλ

2
(2M− 1)

)
csc2

(
kλ

2

)
sin2

(
kW

2

)
,

(C11)
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we can express the volume stray field energy of the mul-
tidomain state with 2M− 1 domain walls as follows:

σ2M−1,1
d,v =

µ0M
2
s∆ sin2(ψ)

4t/2π

∫ +∞

0

dq

2
(
e−

qt
2π + qt

2π − 1
)

sin2
(
qW
4π∆

)
sin2

(
qλ

4π∆ (2M− 1)
)

q cosh2(q/4)(2M− 1) sin2
(

qλ
4π∆

) .

(C12)

In the limit of a regular stripe domain array 2M−1→∞,

σ∞,1d,v = lim
M→∞

σ2M−1,1
d,v

=
µ0M

2
s∆ sin2(ψ)

2t/2π
lim
M→∞

∫ +∞

0

dq

{
e−

qt
2π + qt

2π − 1

q cosh2(q/4)

×
sin2

(
qW
4π∆

)
sin2

(
qλ

4π∆ (2M− 1)
)

(2M− 1) sin2
(

qλ
4π∆

)
 . (C13)

Swapping the limit and integral symbols should be care-
fully performed, as the function under the integral lacks
the property of uniform convergence, which would erro-
neously lead to the conclusion that σ∞,1d,v = 0. Instead,
we substitute the function under the integral with the
Dirac comb function:

lim
M→∞

sin2
(

qλ
4π∆ (2M− 1)

)
(2M− 1) sin2

(
qλ

4π∆

) =
4π2∆

λ

∞∑
n=0

δ

(
q − 4π2∆

λ
n

)
.

(C14)

The equivalence of both functions in the limit M → ∞
is proved in Appendix E. Thus, we have

σ∞,1d,v =
µ0M

2
s∆ sin2(ψ)

2t/2π

4π2∆

λ

∞∑
n=0

∫ +∞

0

dq

sin2

(
qW

4π∆

)
e−

qt
2π + qt

2π − 1

q cosh2(q/4)
δ

(
q − 4π2∆

λ
n

)
(C15)

By using the property of the delta function∫
δ(x− x0)f(x)dx = f(x0), we finally obtain

σ∞,1d,v =
πµ0M

2
s∆2 sin2(ψ)

d
∞∑
n=1

sin2
(
πnW
λ

)
cosh2(π

2n∆
λ )

exp(− 2πnd
λ ) + 2πnd

λ − 1

n
.

(C16)

As a side note, the derived expression for the volume
stray field energy of the multidomain state intrinsically
contains both the self-interaction contribution σ1,1

d,v as
well as the interaction term ∆σ∞,1d,v = σ∞,1d,v −σ

1,1
d,v, respon-

sible for the interaction between different domain walls.

The self-interaction term σ1,1
d,v can be found by plugging

M = 1 into Eq. (C10) and looks as follows17:

σ1,1
d,v =

πµ0M
2
s∆2 sin2(ψ)

2d
G

(
d

2π∆

)
. (C17)

The interaction term ∆σ∞,1d,v results in a positive value

Figure 13. The interaction term ∆σ∞,1
d,v = σ∞,1

d,v −σ
1,1
d,v for the

single layer film with a demagnetized state Wmin = Wmaj =
λ/2, which characterises the difference between the volume
stray field energy of the multidomain state with finite walls
and the energy of the isolated Néel wall state. a) the absolute
magnitude and b) the relative value. The tipping point in
b) corresponds to the change from a repelling behaviour of
domain walls (at large and intermediate domain width) to an
attractive behaviour (at small domain width)

for large domains, and in negative values for very small
domains. The latter is caused by the overlapping tails
from the neighbouring domain walls, which creates finite
volume charges of the opposite signs inside of the neigh-
bouring domains. The interaction term is negligible when
W ≫ 2π∆, so a fair approximation for σ∞,1d,v would be
a single self-interaction term σ1,1

d,v from Eq. (C17). How-
ever, the same treatment for domains of intermediate and
small size (when W < 50∆) would result in significant
energy underestimations, so the explicit Eq. (C16) must
be used there. (see Fig. 13)
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2. Extension to multilayers

The multilayer volume stray field energy for an isolated
domain wall σ1,N

d,v has already been calculated in Ref. 17:

σNdw=1,Nl=N
d,v =

µ0M
2
s∆ sin2(ψ)

8p/2π

N−1∑
i=−N+1

N − |i|
N

×
[
G

(∣∣∣∣ ip+ t

2π

∣∣∣∣)+G

(∣∣∣∣ ip− t2π

∣∣∣∣)− 2G

(∣∣∣∣ ip2π
∣∣∣∣)] ,
(C18)

where t = T /∆ is the reduced single magnetic layer thick-
ness, p = P/∆ is the reduced multilayer periodicity. In-
corporating the results of the previous subsection, we can
modify Eq. (C18) to characterize a magnetized multido-
main state with N layer repeats and 2M-1 domain walls:

σ2M−1,N
d,v =

µ0M
2
s∆ sin2(ψ)

8p/2π

N−1∑
i=−N+1

N − |i|
N

2M−2∑
m=−2M+2

2M− 1− |m|
2M− 1

[
G̃

(∣∣∣∣ ip+ t

2π

∣∣∣∣ , ml2π
,
w

2π

)
+G̃

(∣∣∣∣ ip− t2π

∣∣∣∣ , ml2π
,
w

2π

)
− 2G̃

(∣∣∣∣ ip2π
∣∣∣∣ , ml2π

,
w

2π

)]
,

(C19)

G̃(α, β, γ) =∫ +∞

0

dq
e−qα + qα− 1

q cosh2(q/4)
[cos(βq)− cos((β − γ)q)] ,

(C20)

where l = λ/∆ is the reduced domain periodicity, w =
W/∆ is the reduced domain size. The integral (C20) has
an analytical solution, though a lengthy one. However,
we can instead incorporate the derived solution (C16) for
single layer films with an infinite number of domain walls
into Eq. (C19) and thus eliminate the sum over m:

σ∞,Nd,v =
πµ0M

2
s∆2 sin2(ψ)

2P
N−1∑

i=−N+1

N − |i|
N

∞∑
n=1

sin2
(
πnW
λ

)
n cosh2(π

2n∆
λ )

×
[
e−

2πn|iP+T |
λ + e−

2πn|iP−T |
λ − 2e−

2πn|iP|
λ

+
2πn|iP + T |

λ
+

2πn|iP − T |
λ

− 2
2πn|iP|

λ

]
.

(C21)

After using the symmetry i→ −i to remove the modulus
symbol and swapping the sums in Eq. (C21) we obtain

σ∞,Nd,v =
πµ0M

2
s∆2 sin2(ψ)

2PN

∞∑
n=1

sin2
(
πnW
λ

)
n cosh2(π

2n∆
λ )
×{

2N
(
e−

2πnT
λ +

2πnT
λ
− 1

)
+ 2

N−1∑
i=1

(N − i)[
e−

2πn(iP+T )
λ + e−

2πn(iP−T )
λ − 2e−

2πniP
λ

]}
.

(C22)

Finally, using the property of sums:

N−1∑
i=1

(N − i)e−iβ =
e−βN

(
eβ + eβ(N+1)(N − 1)−N eβN

)
(eβ − 1)2

,

(C23)

we can simplify the expression even further with the fol-
lowing final result:

σ∞,Nd,v =
πµ0M

2
s∆2 sin2(ψ)

NP

∞∑
n=1

sin2
(
πnW
λ

)
n cosh2(π

2n∆
λ )

×
{
N
(
e−

2πnT
λ +

2πnT
λ
− 1

)

+
e−

2πn(PN+T )
λ

(
e

2πnT
λ − 1

)2

(
e

2πnP
λ − 1

)2

×
(
e

2πnP
λ + e

2πnP(N+1)
λ (N − 1)−N e 2πnNP

λ

)}
(C24)

The expression (C24) is the exact volume stray field en-
ergy of multilayers with a magnetized multidomain state
and finite transient walls with a fixed angle ψ. However,
it can be simplified in many experimentally relevant cases
as follows:

σ∞,Nd,v =


σ1,N
d,v , if λ� ∆

σ1,1
d,v, if λ,P/2π � ∆(T
P
)2
σ1,1
d,v(d = NP), if P � 2π∆� 2πλ(T

P
)2
σ∞,1d,v (d = NP), if P � 2π∆, λ/2π

(C25)
where σ1,N

d,v is the energy of the isolated wall in a mul-
tilayer structure (C18). The last two cases represent an
effective medium approach, in which the saturation mag-
netization scales with scaling factor T /P. Very often
real multilayer structures operate in this regime. All the
mentioned cases are depicted in Fig. 14

Let us prove the effective medium treatment for volume
charge interactions. Assuming P � λ

2π and hence, T �
λ
2π , we can expand the expression in curly brackets of
Eq. (C24) in Maclaurin series around 2πnT /λ = 0 and
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Figure 14. The error of various approximations to the exact
multilayer multidomain volume stray field energy as a func-
tion of multilayer period P and domain widthW for a system
with single magnetic layer thickness T = 0.2∆ and N=10
multilayer repetitions.

2πnP/λ = 0. The expansion results in

σNdw=∞,Nl=N
d,v → πµ0M

2
s∆2 sin2(ψ)

NP

∞∑
n=1

sin2
(
πnW
λ

)
n cosh2(π

2n∆
λ )
×

T 2

P2

[
1

2

(
2πnP
λ

)2

− 1

6

(
2πnP
λ

)3

+
1

24

(
2πnP
λ

)4

− 1

120

(
2πnP
λ

)5

+ ...

]
+
T 2

P2

[
4

3

π3P3n

λ3
+O(

P4n2

λ4
)

]
.

(C26)

Recognizing that the expression inside the first brack-
ets represents the expansion of an exponent around zero
without its first two terms, we can reduce the expression
to a single-layer-like form33:

σ∞,Nd,v → πµ0M
2
s∆2 sin2(ψ)

NP

(
T
P

)2 ∞∑
n=1{

sin2
(
πnW
λ

)
cosh2(π

2n∆
λ )

e−
2πnPN

λ + 2πnPN
λ − 1

n
+O(

P3n

λ3
)

}
(C27)

Appendix D: Discrete Fourier space identities

Let g(x) be a real valued function with a discrete rep-
resentation in Fourier space:

g(x) =
∑
k

ĝke
ikx =

∑
k

ĝ∗ke
−ikx (D1)

with ĝk being the Fourier coefficients of g. Now assume
we wish to calculate the following integral:

I =

∫∫
dxdx′g(x)g(x′)h(x− x′) (D2)

with some function h. We can write the integral as

I =

∫∫
dxdx′

∑
k

ĝkĝ
∗
ke
ik(x−x′)h(x− x′) (D3)

=
∑
k

|ĝk|2
∫∫

dxdx′eik(x−x′)h(x− x′) (D4)

=
∑
k

|ĝk|2
∫∫

dxdyeikyh(y) (D5)

=
∑
k

|ĝk|2
∫

dx
√

2πĥ(k) (D6)

=
√

2π
∑
k

|ĝk|2ĥ(k)

∫
dx (D7)

=
√

2πNλ
∑
k

|ĝk|2ĥ(k) (D8)

where N is the number of periods in along the x dimen-
sion (which we will set to infinity at a later stage) and λ
is the period length, so Nλ is the total length of the sam-
ple. Note that there are no restrictions on which values
of k we are summing over. ĥ is the regular, continuous
Fourier transform of h, which is evaluated at the discrete
values of k. For the particular case of g(x) = 1 and h as in
Eq. (B9), we get I = −2πdNλ, which is consistent with
the volume energy density E

V = 2σ
Nλ =

2µ0M
2
s I(g=1)

8πdNλ =
1
2µ0M

2
s of a homogeneously magnetized film.

Appendix E: Dirac comb

Consider a function Z(q):

Z(q) = lim
N→∞

1

N
sin2(qaN )

sin2(qa)
, (E1)

where N = 2M− 1 is an odd number. Such a function
contains critical points at q = πn

a . Note that at the
critical points the following holds true:

lim
q→πn

a

1

N
sin2(qaN )

sin2(qa)
= N , (E2)

where we have applied the L’hospital’s rule twice for
Eq. (E2). Thus, evaluating Z(q) we obtain the follow-
ing:

Z(q) = lim
N→∞

1

N
sin2(qaN )

sin2(qa)
=

{
∞, if q = πn

a

0, q ∈
(
πn
a − ε,

πn
a + ε

)
(E3)
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Note that Z(q) can also be integrated around critical
points, resulting in∫ πn

a +ε

πn
a −ε

Z(q)dq =
π

a
(E4)

Therefore, a normalized function Z(q)/πa — when evalu-
ated around its critical points — repeats the properties

of the Delta function. Hence, Z(q) in the entire range
q ∈ [0,∞) can be expressed as the Dirac comb function:

Z(q) =
π

a

∞∑
n=0

δ
(
q − πn

a

)
. (E5)
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