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Spin-driven nematicity, or the breaking of the point-group symmetry of the lattice without long-
range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry
point of view, nematic order can be described as a coherent locking of spin fluctuations in two
interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static
magnetism. Here, we argue that the low-temperature state of the recently discovered superconductor
BaTizSh20O is a strong candidate for a more exotic form of spin-driven nematic order, in which
fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest neighbor
bond order. We develop a low-energy field theory of this state and show that it can have, as a
function of temperature, up to two separate bond-order phase transitions — namely, one that breaks
rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The
resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no
long-range magnetic order, all consistent with reported measurements of the low-temperature phase
of BaTiz2Sb2O. We then use density functional theory calculations to extract exchange parameters

to confirm that the model is applicable to BaTiaSb2O.

I. INTRODUCTION

Spin-driven nematicity is the phenomena whereby
magnetic order that also breaks discrete lattice rotational
symmetries is melted by fluctuations in stages, giving
rise to a partially-melted order that preserves the spin-
rotation (and the time-reversal) symmetry but breaks
some lattice rotation symmetries. In analogy to the ne-
matic phase of liquid crystals, which are partially-melted
smectic phases, this type of order has been dubbed elec-
tronic nematic order!'. This idea, initially conceived the-
oretically within the framework of the 2D Heisenberg
model?, was propelled into the spotlight in 2008 as sev-
eral groups independently proposed it as an explana-
tion of the split orthorhombic-magnetic transition in the
newly discovered Fe-based superconductors (FeBS)34. In
these systems, the magnetic phase displays a single-stripe
configuration, characterized by spin-order with ordering
vector Q = (0,7) or (m,0) and a bond-order associated
with the correlations of nearest-neighbor parallel spins
(see Fig. 1a). Consequently, in the nematic phase, spin-
order is lost but the rotational symmetry breaking bond-
order is preserved, resulting in an orthorhombic param-
agnetic phase that extends above the onset of magnetic
order. Experimental signatures and theoretical implica-
tions of such a spin-driven nematicity have been widely
explored in FeBS®8, and similar concepts were applied to
other widely investigated systems, such as charge-driven
nematicity in the cuprates®!9 and tetragonal symmetry-
breaking in topological Kondo insulators''. Nematic de-
grees of freedom may also play an important role in the
onset of high-temperature superconductivity, as recent
experimental'> 4 and theoretical works!'® have proposed.

While the general concept of partially-melted magnetic

phases is well-established both theoretically and experi-
mentally, most work has focused on the single-stripe case.
How and whether more complex types of magnetic order
can also partially melt and promote novel nematic-like
phases remain relatively unexplored topics'®. Interest-
ingly, the FeBS provides another opportunity to inves-
tigate such ideas: while it is true that most of these
materials display single-stripe (SS) magnetic order, the
Fe-based chalcogenide FeTe exhibits a more complicated
“double-stripe” (DS) magnetic order!”'8. As shown in
Fig. 1, the DS phase has not only spin-order with order-
ing vector Q = (7/2,7/2), but also two types of bond-
order involving nearest-neighbor (NN) and next-nearest-
neighbor (NNN) parallel spins. A natural question is
whether these bond-orders can be stabilized even in the
absence of long-range magnetic order, similarly to the
nematic phase in the SS case, and whether they appear
separately or at the same temperature.

In this paper, we systematically explore the bond-
orders that can arise above the onset of long-range DS
magnetic order and argue that it may have been already
observed as a density-wave-type transition accompanied
by an orthorhombic distortion in the Ti-based oxypnic-
tide BaTiySb,O and related compounds!'®. This conclu-
sion results from a combination of ab-initio calculations
and low-energy field-theoretical modeling. In particu-
lar, the model is consistent with the low-temperature
orthorhombic (Pmmm) structure of BaTisSboO with
an accompanying intra-unit-cell charge-density wave,'®
which we also observe using density functional theory,
but only when magnetic ordering is allowed. In contrast,
distortions induced via the charge-density wave obtained
in nonmagnetic calculations either do not have the req-
uisite Pmmm symmetry or are significantly higher in



energy than the magnetic solutions. This is in strik-
ing similarity with the FeBS where structural relaxation
calculations in the magnetic single stripe pattern also
reproduce the low-temperature lattice distortion. More
importantly, the ground state magnetic order is a double-
stripe (also known as bicollinear) pattern, similar to the
FeTe ground state. We map the calculated ab-initio ener-
gies onto an effective spin model and by extension a cor-
responding low-energy field-theory, which comprises not
only exchange interactions up to third neighbors, but also
four-spin coupling up to second neighbors. To investigate
the onset of bond-ordered phases within this model, we
analyze the low-energy field theory beyond mean field to
account for the role of spatial fluctuations. We find that,
in general, the DS order can melt in up to three stages,
as shown in Fig. 1: as temperature is lowered, first NNN
bond order appears, lowering the Cy rotational symmetry
of the system down to Cs (in BaTizSboO this lowers the
symmetry from P4/mmm to Pmmm!®). Upon further
reduction of temperature, there is an onset of NN bond-
order, breaking the translation and reflection symmetries
of the lattice. Finally, at a lower temperature, long-range
magnetic order sets in. More generally, our work unveils
the existence of two emergent bond-order degrees of free-
dom in systems with DS ground states, which may have
fundamental impact on their thermodynamic properties,
including superconductivity, both in BaTisSboO and also
in the iron-chalcogenides.
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FIG. 1. Multi-stage melting of the magnetic order in a square
lattice as occurs in (a) single-stripe (SS) magnetism, and (b)
double-stripe (DS) magnetism. The nearest (next-nearest)
neighbor ferromagnetic bonds are indicated with blue (yellow)
ovals. While in (a) there is one nematic bond-order degree of
freedom associated with rotational symmetry-breaking, in (b)
two bond-order degrees of freedom are associated with rota-
tion, translation and reflection symmetry breaking. The new
two site unit cell associated with the translation symmetry is
indicated by the red dashed line.

II. GENERAL PROPERTIES OF THE
DOUBLE-STRIPE PHASE AND ITS NEMATIC
PHASES

The phenomenon of partial melting of magnetically-
ordered states, which is ultimately behind the onset of
nematic phases, is caused by long-wavelength magnetic
fluctuations (either thermal or quantum). Therefore,
only approaches that go beyond mean-field can capture
this effect. Here, as explained below in more detail, this
will be achieved via a large-N solution of the free energy
functional for the DS state. Before we introduce it, we
first discuss the different types of bond-order that ap-
pear in the DS ordered state, contrasting them with the
standard SS ordered state.

A. Brief review of single-stripe magnetism and
nematicity

Spin-driven nematicity in SS states is most straightfor-
wardly discussed by means of a Heisenberg spin Hamilto-
nian. Following Ref. 2, we consider the following Hamil-
tonian for classical spins on the two-dimensional square
lattice?,

H=J1) SiS;+] ¥ SiS;—K1» (Si-8;)%, (1)
(i) ((i4)) (i)

where J; and J; > 0 are nearest and next-nearest neigh-
bor exchange couplings, and K; > 0 is the nearest-
neighbor biquadratic coupling. In the context of the Fe-
pnictides, which are metals with itinerant Fe electrons,
such a model should be interpreted as an effective low-
energy model to describe the interplay between SS mag-
netism and nematicity. Indeed, the inappropriateness
of a purely localized approach is manifested by the fact
that DFT calculations®>?! not only give soft moments,
but also a large biquadratic exchange K7 as compared
to Jo, consistent with the experiment?2. In contrast,
the order-by-disorder mechanism of Ref. 2 gives a rather
small K;/Jy ~ 1073 [23].

Single-stripe magnetism and the related nematicity oc-
curs for Jo > J1/2, and is most simply understood by
taking Jo > Ji, where J; leads to two decoupled antifer-
romagnetic Néel sublattices. J; cannot couple these two
sublattices, as the exchange fields between sublattices one
and two cancel. However, the biquadratic term, K; re-
quires that the spins be collinear, leading to two degener-
ate ground states where the spins are ferromagnetically
correlated along either Z or ¢, and antiferromagnetically
correlated along the perpendicular direction. These two
degenerate ground states can be described by the wave-
vectors (0, 7) and (m, 0), respectively, and break both the
continuous spin-rotation symmetry, and the discrete Cy
lattice rotation symmetry (i.e. the symmetry of a square)
down to Cs (i.e. the symmetry of a rectangle), as shown
in the bottom left of Fiig. 1. These broken symmetries can
be captured by three different order parameters: two of



them are vector Néel order parameters, (M;) and (My)
defined on each sublattice, and a bond-order parameter
describing the rotational symmetry breaking,

1
=5 D (Si-Siys —Si-Sity)
= (My - My), (2)

where Ny is the number of sites. Effectively, the sign of
¢ describes the orientation of the ferromagnetic bonds,
either along & (¢ > 0) or along § (¢ < 0), while the
magnitude of ¢ describes the strength of both the ferro-
and antiferromagnetic bonds.

The Mermin-Wagner theorem precludes any mag-
netic order at any finite temperature, in a strict two-
dimensional lattice, as it breaks continuous spin-rotation
symmetry. Therefore, the Néel order parameters,
(M;) = (Mg) = 0. However, ¢ is a scalar (Ising) or-
der parameter and breaks only the discrete C4 symmetry,
and so it that can, and does, condense at a finite tem-
perature. While ¢ is called a nematic order parameter
because it describes how the magnetic fluctuations break
Cy4 symmetry, it can more generally be thought of as a
scalar bond order parameter that breaks a discrete lat-
tice symmetry, which we shall generalize onto the case of
DS magnetism. Here, although the spins themselves are
slowly fluctuating, the correlation of the fluctuations be-
tween the two sublattices provides additional free energy
gain and generates a long-range order without breaking
any continuous symmetry. In momentum space, one can
imagine that there is short range order at both Q = (0, )
and (,0) above T,,, while below T, the fluctuations in-
crease at one Q vector and decrease at the other, thus
breaking the rotational symmetry®. This has indeed been
observed experimentally by neutron scattering in the iron
pnictides??.

Realistic systems will have some finite inter-layer cou-
pling J, that allows magnetism to develop at a temper-
ature Ths governed by In (J, /J3), at which point long-
range magnetic order will develop at the Q vector already
chosen by ¢. For sufficiently small J,, these two tem-
perature scales can remain separate4, although they will
typically merge for sufficiently large J, %25, as the three-
dimensionality reduces the role of magnetic fluctuations.
However, the intuition developed from localized systems
may not apply to more itinerant systems, where other
factors may confound magnetic ordering.

B. Double-stripe magnetism and nematicity:
symmetry analysis

Double-stripe magnetism consists of a plaquette of four
spins — three up, one down, repeated with a staggered,
(w, ) pattern, as shown in Fig. 1b, bottom panel, leading
to an 4-site magnetic unit cell (see Fig . 8(a)). This order-
ing results in double-width ferromagnetic stripes along
the diagonal, alternating antiferromagnetically, hence the

name double-stripe (DS). The DS pattern can be thought
of as two copies of single-stripe orders in “even” and “odd”
sublattices, rotated by 45° and then coupled together by
another biquadratic coupling. In this case, the effective
low-energy Hamiltonian that displays this ground state
in the classical regime is:

H:J128183+J2 Z Slsj+J3 Z SZSJ
(i4) ((i5)) (({ig)))
— K1) (Si-8;)° Ky Y (Si-8;)?
(i5) ((i5))
+R1 Y [(Si-8;)(Sk-Si)+(Si-Si)(Sk-S;)]

plaquette

- Ry Z [(Si - Sk)(S;-S)] (3)

plaquette

where (), ((}), and ({{))) denote the first, the second and
the third nearest neighbors, respectively. The Zplaquette
is defined such that ijkl are the indices circulating a
square plaquette. Note that the ring exchange terms
are often included with an approximation R = R; = R
(which we also used in our DFT fits in Section III B), but
for itinerant systems the two coeflicients can, in principle,
be different.

While this model contains only spin degrees of free-
dom, it should be understood as a mapping of the full
itinerant model, with all of its charge, orbital and spin
degrees of freedom, onto these spin interactions. It ap-
plies equally well to itinerant and localized systems, how-
ever, the longer-ranged interactions required to stabilize
double-stripe magnetism are much more likely in an itin-
erant system like BaTisSbsO.

One can understand the physics captured by this
model by first considering the limit where Js > 0 is the
dominant interaction. If J3 plays the pivotal role in the
spin dynamics, it is natural to partition the system into
four antiferromagnetic Néel sublattices, so that J3 is the
nearest neighbor coupling for each of them, as shown in
Fig. 2. Then the J; — J3 model describes two copies of SS
magnetism. The biquadratic terms, K; > 0 and K5 > 0,
force all four sublattices to be collinear. However, the DS
and plaquette (Fig. 3) orders are exactly degenerate un-
less the ring exchange terms are included?%:27. Ab-initio
calculations (see Section III) indicate that the DS pattern
is the ground state, and also that the 4th order terms
are sufficiently strong to severely penalize noncollinear
states. To simplify our analysis while still accounting for
these details, we will drop both the ring exchange terms
and only keep solutions corresponding with the symmetry
of the DS ground state. We also drop J;, which generates
undesirable spiral solutions that we know are not present
in our DFT calculations. Thus, we retain only the terms
relevant to DS order, which are Jy J3 K, and K.

Besides the continuous spin-rotational symmetry, DS
order also breaks a number of discrete symmetries. One
can more clearly see those discrete symmetries by high-
lighting the location of the ferromagnetic bonds, as we
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FIG. 2. (Color online)The four degenerate ground states characterized by different configurations of M,’s and signs of corre-
sponding order parameters ¢, ¥,y and 4. Again the ferromagnetic bonds are indicated with blue/yellow ovals. The dashed

black line shows the mirror plane symmetry broken by .

have done in Fig. 2, for the four degenerate ground states.
They are: the translational symmetry, since the unit cell
is quadrupled in size; the C rotational symmetry, which
is broken along the diagonals of the squares (Ba, symme-
try) instead of along the sides of the square (B4 symme-
try), as it was the case for the SS order; and the reflection
symmetry (o) across one of the diagonals (z = £y lines).
Unlike the “broken” translation symmetry of the single-
stripe antiferromagnet, which can be restored by a time-
reversal operation (or a 180° rotation), here the layout
of the NN ferromagnetic/antiferromagnetic bonds breaks
translation symmetry and doubles the unit cell, which
is doubled again when long-range magnetic order con-
denses, as shown in Fig. 1. In momentum space, this cor-
responds to 2Q ordering, with pairs of Q = (7 /2, £7/2)
that are chosen to break the rotational symmetry appro-
priately. Note that in the case of the Ti-based oxypnic-
tides discussed in the next section, some of those symme-
tries are already broken in the nonmagnetic phase due to
crystallography.

To formally describe these discrete symmetries in
terms of the spins, we consider the four Néel order pa-
rameters (M) related to each of the four sublattices
a = 1,2,3,4 defined in Fig. 2. We first define the two
next-nearest-neighbor bond orders, which couple to Ko:

Poda = (M - M) (4)
Peven = <M2 ' M4> (5)

These order parameters characterize the emergence of
diagonal bond order in the absence of long-range mag-
netic order, where ¢eyen/oad > 0 indicates which bonds
within the four-spin plaquette are ferromagnetic. Fig. 3

shows that when ¢eyen/odda are opposite in sign, we can
obtain the DS magnetic order, where each four-spin pla-
quette has an odd number of up and down spins. In con-
trast, when ¢even/odqa have the same sign, we get the pla-
quette order discussed above. Note that, while we have
drawn all spins as collinear, at this point the two sets of
sublattices are decoupled and can rotate freely without
affecting the bond order. By symmetry, @even/odd must
condense at the same temperature, and indeed, it does
not make sense to condense anything but a linear combi-
nation, @even * Podd, as each of Yeyen/odq individually
does not break a well-defined symmetry. Considering
the bonds alone, ¢ = @Yeyen — Yoaa breaks the Cy ro-
tational symmetry, but not translation symmetry, while
¢ = Peven + Podd doubles the unit cell, but maintains Cy
symmetry, as shown in Fig. 3. ¢, of course, is consistent
with DS order, while ( is consistent with plaquette order,
and these would be distinguished by the ring-exchange
terms.

We have two reasons to believe that the DS order, and
thus ¢, is favored in the real materials. First, DFT cal-
culations for both FeTe?! and the Ti-based oxypnictides
considered in Sec. IIT show that the corresponding DS
magnetic state is clearly lower in energy, which is consis-
tent with the experimentally observed lattice distortions
in the magnetic and/or putative nematic state; this en-
ergy difference can be mapped on to the ring exchange
terms. Second, ¢ and ¢ couple to different elastic modes
and ¢ may be additionally stabilized through magnetoe-
lastic coupling?®. While there is some experimental evi-
dence that both plaquette and double stripe fluctuations
are present at high temperatures in FeTe??, these two



terms break different symmetries, and so will not couple
until eight-spin terms are considered. In addition, our
DFT calculations suggest that the plaquette fluctuations
will freeze out first and have no discernable effect on the
remaining terms in the model. In the following, we will
neglect ¢ and consider only the bond orders related to
DS order.
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FIG. 3. (Color online)Signs of @even/oaa in a double-stripe
order(left) and plaquette order(right).

Besides next-nearest neighbor bond-order, the DS or-
der also has nearest-neighbor bond-orders, as shown in
Fig. 2, which are driven by K. It is useful to define the
generic bond-order parameter ¢,;, = (M, - M;) on any
pair of NN sublattices, i.e. 12, 114, P23 and 34. How-
ever, there are only two combinations of these that are
compatible with a non-zero ¢,

Q/J:t = (le - 1Z)34) + (1/}14 - 7/123)

Each of these represents a pattern of alternating ferro-
magnetic and antiferromagnetic bonds along the z- and
y-axes, resulting in a (7, 7) ordering pattern that dou-
bles the unit cell. v, /, can be thought of as dimerization
along the xz-axis or y-axis respectively. Indeed, ¥+ couple
to a staggered strain associated with that dimerization of
the lattice®®. This symmetry breaking is also consistent
with the intra-unit cell charge density wave observed in
BaTisSby 0131 which we will discuss further in Section
ITI. In addition to translational symmetry, this bond or-
der breaks the diagonal reflection symmetry, o4, across
the line x = +y, for 11 respectively. Finally, it breaks
the same Cy rotation symmetry as . In particular, be-
cause 1+ has ordering vector Q = (m,7), while ¢ is a
Q = 0 order, they can only couple via a linear-quadratic
combination, i.e. (3 — %) = @,1,. Therefore, as
soon as 1+ develops, ¢ must also turn on, but the con-
verse is not true.

Thus, besides the standard degeneracy related to spin-
rotations, the DS ground state has an additional four-
fold degeneracy related to the scalar order parameters ¢
and 4. These order parameters are not independent,

as discussed above and shown in Fig. 2: ¢ < 0 is only
compatible with ¢ # 0, whereas ¢ > 0 is only compat-
ible with ¢_ # 0. Therefore, the symmetry analysis of
the DS state shows that when the magnetic ground state
is the DS state, where ¢ # 0 and ¢ = 0, we can have
two partially-melted magnetic phases: one in which only
¢ # 0, which breaks rotational symmetry only, and an-
other one in which both ¢ # 0 and 4 # 0, which breaks
rotational symmetry, diagonal reflection symmetry, and
translational symmetry. In the next section, we use a
field-theory approach to discuss the order and character
of these different transitions.

C. Double-stripe magnetism and nematicity:
quantitative analysis

The bond order parameters ¢ and 1+ discussed above
can describe partially-melted DS phases, as long as they
remain finite even in the absence of spin order, (M,) =
0. To characterize these phases, one needs to include
magnetic fluctuations and therefore go beyond mean-
field approaches. Within the specific spin Hamiltonian
(3), this can be achieved numerically by Monte Carlo
simulations?332 or analytically by 1/S expansions?33.
Here, we employ a different approach, similarly to Ref. 6,
that relies on a low-energy Ginzburg-Landau free energy
expansion of Eq. (3) in terms of the four real-space Néel
order parameters M, (a = 1,2, 3,4). As discussed above,
this picture is valid in the limit where the third-neighbor
magnetic coupling J3 is by far the largest, and has been
previously discussed for the double-stripe state!®2®. The
most general form of the free energy expansion, with bi-
quadratic exchanges taken into account, is:

Fv) = / M, vt (@) My _q

ab=1"4
4

a,b,c,d=1"T

IRgis)

/\ab,cd (Ma : Mb) (Mc : Md) ’ (7)

The Hamiltonian (3) generates numerous A terms, plus, if
we allow for soft moments, as in a more itinerant model,
terms with @ = b and/or ¢ = d are also allowed. How-
ever, most of these are irrelevant for the ¢ and v order
parameters, so we will keep only the two combinations
related to the DS order, and neglect the others. For the
same reason, we will also retain one high-symmetry term



accounting for softness of the magnetic moment. Then

(v

Z /M aXap (@M g+

a,b=1
g1
-2 (MM - M M)’
—%3 [(Ml'M2_M3'M4)2

(M- My — Ms -M3)2} . (®)

The physical meaning of each term can be understood
from the Hamiltonian (3). The exchange couplings Jo
and J3 describe the cost of spatial fluctuations of the
order parameters, and appear in the non-uniform sus-
ceptibility X;bl (q). As discussed in Appendix A, in our
derivation we expand X;bl (q) around the ordering vector
Q ={n/2,7/2}, where X, (Q) = r0dap, and rg < T —Tp,
with T denoting the mean-field magnetic transition tem-
perature. The quadratic term in (q — Q) terms are then
uniquely defined by J, and Js. The u term captures the
cost of non-symmetry breaking longitudinal fluctuations.
Together with the first term, it defines the amplitude of
the local moments in the fully disordered case, as well
as the softness of these moments. The four spin terms
between next-nearest neighbors (Ks, Rs) lead to the g4
term, which captures ¢, while those between nearest-
neighbors (K7, R;) lead to the g3 terms, which in turn
captures ¥4 order.

In the mean-field approximation, the system develops
DS order at Tj, simultaneous with ¢ and ¥+ bond or-
ders in a second-order phase transition. To go beyond
mean-field, we include the effect of the long wave-length
fluctuations, working in two-dimensions, where magnetic
order does not occur at any finite temperature due to the
Mermin-Wagner theorem. Here, the fluctuations sup-
press the magnetic order to 7' = 0. We then decou-
ple the four quartic terms of Eq. (8) using Hubbard-
Stratonovich transformations, which introduces four new
scalar fields,

o =g1 ((My - M3z) — (My - My)) 9)
Ve =g3 (M ) — (M3 - My)) (10
y =g3 (M1 - My) — (M - M3)) (11
n=u Z(M?% (12)

The scalar fields ¢ and v, /, are equivalent to the bond
order parameters introduced in the previous subsection,
and therefore break the rotational symmetry (p) and
translational /reflectional symmetries (¢, or 9+ ), and
are not subject to the Mermin-Wagner theorem. On the
other hand, 7 is the mean-value of the Gaussian mag-
netic fluctuations, and simply renormalizes the magnetic
transition temperature from its mean-field value Tj to the
value Ty defined via r = rqg+n o< T'—Tys. Thus, 1 is not
an order parameter, as it is non-zero at any temperature.

o
1 =

{1t order
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FIG. 4. Two examples of how ¢ and 4 orders develop, with
the proxy for the transition temperature, 7o plotted versus
u/g1 for two values of the relative strength of the biquadratic
terms, gs/g1. The upper, red line indicates the development
of rotational symmetry breaking (¢), while the lower, blue
line indicates the dimerization (i), which breaks the diag-
onal mirror reflection symmetry. Solid lines indicate second
order transitions, while dashed lines indicate first order tran-
sitions, with the double-dashed line indicating simultaneous
first order transitions. The regions of different classes of be-
havior are indicated in Fig 5.

To proceed, we consider the two-dimensional case,
where magnetic order does not occur at any finite tem-
perature, i.e. 17 > —rg. In particular, we consider the
large-N solution of the free energy in Eq. (8), which is
obtained by extending the number of components of the
M, fields from 3 to N and taking the limit N — oo.
This yields a system of coupled self-consistent equations
for ¢, ¥z, ¥y, and 1 (see detailed calculation in Appendix
A). An important result of this calculation is that the
first three scalar order parameters are not independent,
but coupled in the free energy expansion according to
the trilinear term, (;,. Furthermore, the combina-
tions ¢4+ = 1, £ 1, decouple from the self-consistent
equations, indicating that i, and 1, order simultane-
ously. Consequently, non-zero v, /, necessarily gives rise
to a non-zero ¢, as discussed in the previous subsection,
whereas the converse is not true.



Therefore, we define two different bond-order transi-
tion temperatures: T, which signals the onset of NNN
bond-order ¢ # 0 (with ¢+ = 0 and M, = 0), and Ty,
which signals the onset of NN bond-order 11+ # 0 (with
¢ # 0 and M, = 0). Note that whether ¥4 or ¥_ be-
come non-zero depend on the sign of p: while ¢ > 0 gives

Y- #0, ¢ <0 gives ¥ # 0 (see also Fig. 2).

In Fig. 4(a) and (b), we show two different classes
of phase diagrams. The critical 7o = rg + 8ulnA (as
defined in Appendix A), acts a proxy for temperature,
and is plotted versus u/g; for two representative relative
strengths of the biquadratic couplings, g3/g1. The NNN
bond-order always onsets at the highest temperature, ei-
ther alone (T, > Ty), in which case the transition can be
either first or second order depending on u/g;; or simul-
taneously with ¢4 (T, = Ty), in which case the double
transition must be first order. In the case T, > Ty, note
that T3 may be first or second order, depending on the
parameter regime.

We can also understand these orders in momentum
space, where the magnetic fluctuation spectrum at high
temperatures is isotropic, with broad peaks at all four
Q = (£7/2,£7/2) vectors. As the system cools down
below T, two combinations of the Q = (£n/2,+n7/2)
vectors develop stronger fluctuation amplitudes than the
other two combinations, breaking the rotational symme-
try. Upon further cooling to below T, the two sets of
fluctuations become phase correlated.

As we have two control parameters, u/g; and g3 /g1, we
can explore a two-dimensional phase space, as indicated
in Fig. 5. There are five different regimes of behavior. I:
@ and 14 turn on simultaneously at a first order tran-
sition. II: ¢ turns on continuously, with a second order
transition, followed by a first order transition of ¢, . III:
two distinct second order phase transitions of ¢ and ..
IV: two distinct first order transitions of ¢ and 9. V:
a first order transition to ¢ followed by a second order
transition to ¥ ;.. Note that these results are strongly
dependent on the two-dimensionality: any finite inter-
layer coupling will generate a finite temperature mag-
netic phase transition. For relatively weak couplings, the
phase diagrams can be quite complicated®*, although as
the couplings approach the three-dimensional limit, all
three transitions will become first order and simulata-
neous, and there are no pre-emptive nematic transitions,
as in the single-stripe case® 735741, The splitting between
the magnetic and nematic orders is identical to the single-
stripe case for g3 = 0934, and shrinks slightly as g3 in-
creases. We should note, however, that many phenomena
beyond dimensionality can suppress the magnetic order,
for example magnetic frustration in FeSe?, and so the
splitting in the iron based superconductors themselves
is not necessarily a bound on the expected splitting in
BaTiQSbQO.
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FIG. 5. (Color online) Classes of phase transition behavior as
the relative strength of the biquadratic terms, gs/¢1 and u/g:1
are varied. I: Simultaneous first order transitions of ¢ and
14; ITI: Second order transition to ¢ followed by a first order
transition to ¢4 ; III: Distinct second order phase transitions
of ¢ and t4; IV: Distinct first order transitions of ¢ and
14; V: First order transition to ¢ followed by a second order
transition to ¥4.

III. TITANIUM-BASED OXYPNICTIDES

In the previous section we outlined the general the-
ory of two-stage spin-driven nematicity, which made no
assumptions about the chemical composition of the sys-
tem. We now consider a real-world example using ab-
initio DFT calculations that show that our model may
be realized in the Ti-based oxypnictide BaTizSboO. We
begin by reviewing what is known experimentally about
this family of materials followed by a brief discussion
of previous DFT results. We detail our computational
methods and present our calculations, which we discuss
in the context of the model. The model and DFT results
provide a consistent framework for interpreting what is
known from experiment and indicates that magnetic fluc-
tuations drive phenomena such as the nematic phase and
the recently observed charge density wave.

A. Experimental status

The family of Ti-based oxypnictides contains two
groups of compounds, BaTi;Pn,O (Pn = As, Sb, Bi)
and NagTisPn,O (Pn = As, Sb). These materials
share common features, such as having layered tetrag-
onal crystal structures similar to the Fe-based super-
conductors and with most compounds also exhibiting a
density wave transition (the transition is suppressed in
BaTiQBiQO42’43>. The density wave transition occurs at
TDW = 50 K for BaTiQSb2044’45, TDW = 200 K for
BaTisAso0%, and Tpyw = 330 K and 120 K for the
respective NagTisPnoO (Pn = As, Sb) materials?” 9.
A subset of these compounds are superconductors, with



BaTisSbeO being the prototypical example***® with a

critical superconducting temperature of 7, = 1.2 K%,
Suppressing the density wave by substituting K for Ba
increases T, up to 7, = 6.1 K°°, meaning that, as in
the Fe-based superconductors, there is a correlation be-
tween superconductivity and the suppression of the den-
sity wave transition. However the critical superconduct-
ing temperatures are much smaller, so there is interest in
understanding the differences between the Ti-based and
Fe-based pnictides.

There is an active debate regarding the microscopic
details and origin of the density wave (DW) transition
in the Ti-based oxypnictides that hinges on two primary
questions: 1) Is it a charge-density wave or a spin-density
wave, and 2) what is the wave-vector of the DW? A set
of NMR and uSR measurements, while not being able to
resolve whether or not the DW has a charge or magnetic
origin® %3, placed symmetry constraints on the DW,
finding that it broke the four-fold rotational symmetry
at the Sb sites without enlarging the unit cell, making an
incommensurate DW unlikely. Neutron powder diffrac-
tion measurements'® tightened these constraints by de-
tecting a lattice distortion that accompanies the DW,
changing the space group from P4/mmm to Pmmm due
to a breaking of the four-fold rotational symmetry, but
follow-up electron diffraction measurements did not de-
tect a change in the number of Ti atoms per unit cell. The
authors of Ref. 19 identified this as a nematic phase sim-
ilar to what is observed in the Fe-based superconductors
and proposed an “intra-unit-cell” charge-density wave to
explain their results. This contrasts with Ref. 31, where
the authors claim to have detected a CDW with wave-
vector Q = (m,7) using angle-resolved photoemission
spectroscopy and scanning tunneling microscopy mea-
surements. This would mean that the DW breaks both
rotational and translational symmetry and increases the
unit cell size to four T1i sites, which is incompatible with
the Pmmm symmetry reported in Ref. 19. In addition,
while a long-range spin-density wave has yet to be de-
tected in BaTisSboO, none of these experiments have
ruled out the potential existence of magnetic fluctuations
around and below the DW transition temperature, and
indeed NMR measurements of the spin-lattice relaxation
rate strongly suggest the presence of magnetic fluctua-
tions above Ty in BaTisSbhyO5L.

B. Density functional theory calculations

While experimental measurements of BaTisSboO have
yet to detect magnetism, DFT calculations®* 5% show
a preference for magnetism in BaTisSboO and predict
the ground state to be the double stripe pattern. In-
cluding electronic correlations with the DFT+U correc-
tion further stabilizes the tendency towards magnetism®°.
In contrast, nonmagnetic calculations predict a phonon
instability at Q = (w,n) in the high temperature
structure®”®8.  Similar to experiment, the DFT calcu-
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FIG. 6. Schematic illustrating the different magnetic patterns
considered in our collinear calculations. The inequivalent Ti
sites are labeled as M7 and M5 in panel (d), and indicate NNN
FM bonds bridging oxygen or vacancy sites, respectively. The
relative sizes of the circles representing the Ti sites show the
variation in local moment amplitudes (based on LSDA+U
calculations with U = 3.5 €V) across the magnetic patterns.
(a) Ferromagnetic (FM), (b) Checkerboard (CB), (c) Parallel
stripes, (d) Double stripes (DS), (e) Oxygen-centered plaque-
ttes (f) Vacancy-centered plaquettes.

lations appear to point in multiple and exclusive direc-
tions, which complicates analysis of the DW transition
and leaves open the possibility that the superconductiv-
ity in BaTiySboO could be either conventional (electron-
phonon coupling) or unconventional (spin-fluctuation
mediated).

Many of these conflicts observed in both theory and
experiment can be equitably resolved in our model, pro-
vided it is applicable to BaTisSboO. To establish this,
we calculate exchange parameters using DFT calcula-
tions, which confirms that BaTisSboO is in the double-
stripe regime described in Section ITC. We also revisit
the nonmagnetic phonon instability and compare it with
structural relaxations performed on the double stripe
magnetic state, where we observe that the double-stripe
magnetic pattern calculations yields a charge imbalance
on two inequivalent Ti sites along with a orthorhombic
distortion, which is consistent with our model and also
the results of Ref. 19. We conclude that this provides
strong evidence that the DW transition corresponds to a
spin-fluctuation-driven nematic intra-unit-cell CDW that
breaks four-fold rotational symmetry.

1. Computational methods

Additional details of our DFT calculations can be
found in Appendix B. In most calculations, we used
the all-electron code ELK®?, with testing selected calcu-
lations against the WIEN2k code®®. For the exchange-
correlation potential we used both the local spin-density
approximation (LSDA)®' and the generalized gradient
approximation (GGA)%? when computing collinear mag-
netic energies. To account for correlations on Ti, we used
the DFT+U method in the fully localized limit%3, using



two values of U, 2.5 ¢V and 3.5 ¢V, and J = 0.5 ¢V. Due
to computational expense only the LSDA+U functional
with U = 3.5 eV was used in noncollinear calculations.

We used the experimental crystal structure in all of our
calculations®®. The space group symmetry is P4/mmm
and the lattice parameters were set to a — 4.1196 A and
¢ = 8.0951 A. The Wyckoff positions for the atoms, given
in fractional coordinates, are: Ba [1d] (0, 0, 0), Ti [2f]
(0, 0.5, 0.5), Sb [2g] (0.5, 0.5, 0.2514), and O [1¢] (0, 0,
0.5). The raw results of these calculations are presented
in Appendix B 2.

The computed DFT energies were fit to the Hamilto-
nian in Eq. 3, which includes the lowest-order ring ex-
change terms. We included this term to capture the en-
ergy difference between the plaquette and double stripe
configurations. Note that we assumed Ry = R = R for
our fits.

The crystallography of the Ti-based oxypnictides com-
plicates the comparison between these materials and the
model described above both by breaking symmetries and
modifying exchange interactions. With regards to the
exchange interactions, the positions of the O atoms in
the two-dimensional Ti;O plane, see for example the
schematics in Fig. 6, call for two types of NNN Ti-Ti
bonds, those that are bridged by an O and those that are
not. The consequences of this are two-fold: Jo and Ko
are split into two unequal terms and in the DS magnetic
pattern two Ti sites become inequivalent, see Fig. 6(d).
Because of the moment softness the local moment ampli-
tude of one site can be smaller by a factor of two when
compared with the other (in the most extreme case the
smaller moment collapses to zero, see Appendix B2). In
principle, this allows for two inequivalent DS patterns
that differ depending on whether the FM bonds bridg-
ing O involve either large- or small-moment Ti sites. The
moment softness also leads to different local moment am-
plitudes across magnetic patterns, which is illustrated in
Fig. 6 by varying the relative size of the circles, which
represent Ti sites, in the plots. While these complica-
tions are important for real Ti-based oxypnictides and is
a likely source of the crystallographic complexity of the
low-temperature phases, for simplicity we make the fol-
lowing assumptions when fitting to Eq. (3): we assume
that the spins S always have the same magnitude and
normalize the values of J’s and K’sto S = 1. For the pur-
pose of mapping our calculations to the model described
in Section ITC, we take the average of the crystallograph-
ically inequivalent J5’s, K»’s and R’s (see Appendix B1
and B2).

For the nonmagnetic and long-range antiferromagnetic
configurations we also performed structural relaxations
using the projector augmented wave potentials in the
pseudopotential code vASP9465, One should keep in mind
that, as we know from Fe-based superconductors, the role
of the long magnetic order is to break the symmetry and
create disbalance in orbital populations, which, in turn,
couples to the lattice and generate a small lattice distor-
tion. Many calculations for Fe pnictides and selenides

show that the crystal structure in the symmetry-broken
nematic states is very well described by the correspond-
ing long-range ordered magnetic states, and we expect
the same to be true here. In all our relaxations we fixed
the volume to the experimental value and allowed the c/a
ratio and ionic positions to relax. For the nonmagnetic
instability, we considered the vanilla GGA%? functional
as well as the LSDA+U and GGA+U functionals with a
rotationally invariant U — J = 3.0 eV%%, and for the dou-
ble stripe relaxation we considered both LSDA+U and
GGA+U with U — J = 3.0 V.

2.  Results and discussion

We checked both the LSDA and GGA functionals
with Hubbard U values of 3.5 eV and 2.5 eV. GGA
has more of a propensity towards magnetism, such that
the GGA+U = 3.5 eV calculations generated too large
magnetic moments, thus we did not use this combina-
tion. We calculated the following magnetic patterns:
ferromagnetic (FM), checkerboard (CB), double stripe
(DS), oxygen- and vacancy-centered plaquettes, parallel
stripes, and single stripes®”. Note that the DS states can
be converged, when U is included, to two different states
differing by the local moment amplitude on the “weak” Ti
site, which can either stay finite or collapse to zero%® (the
relative amplitude is always smaller than the “strong”
site). What is important is that the symmetry breaking
remains the same in both cases, regardless of whether the
“weak” site collapses. We also calculated the energy of
ferromagnetic planes with antiferromagnetic stacking to
get an estimate of the interplanar coupling. The energy
calculations are summarized in Appendix B 2.

The fitted values of the exchange parameters that we
obtained using LSDA+U with U = 3.5¢eV are J; =
0.89 meV, J, = —2.83meV, J3 = 279 meV, R =
—0.26 meV, K; = —0.37 meV, and K, = 2.06. The
full table of fitted parameters using different function-
als and values of U is available in Appendix B. While
we note that there is noticeable variation of the abso-
lute and even relative values of the exchange parame-
ters across different functional and U combinations, there
are important qualitative observations we can make that
hold in all cases: (1) the interaction is long-range, with
|J2| > |J1] and J3 > (J1 — |J2|)/2 (the latter condition
defines the double stripes as the mean-field ground state
for sufficiently large K); this is an important prerequi-
site for the double-stage bond-orders described above.
(2) J is ferromagnetic in contrast to the Fe-based pnic-
tides; however this sign difference is irrelevant to the
model derived in the previous section. (3) There is a size-
able biquadratic coupling, Ko > J3/2 > |J2|/2 > J1/2,
Ky +2R > J3/2 > |Jo|/2 > J1/2, in which both K7 and
K, enforce collinearity. This ensures that spiral configu-
rations play a minimal role and justifies setting J; to 0
in Section ITC. In addition, the distinction between K3
and R is subtle yet important, for if the latter is omit-



ted from the fitting, K7 turns positive, while including
R yields a K that is slightly negative (in the Fe-based
pnictides, including R does not change the sign of Kj).
In both cases, the strong NN quartic spin interactions
enforce collinear spin patterns.

The calculated exchange parameters for LDA+U sup-
port the conclusion that BaTi;SbsO is a real-world exam-
ple of the model discussed in Section II C, corresponding
to a case where J3 > Jy, Jo and (K; 4+ 2R), K are posi-
tive and of the same order as the Heisenberg parameters.
With this established, we now turn to discussing how the
model and DFT results describe the nature of the density
wave transition.

As previously discussed, due to the crystallography of
BaTisSboO the DFT calculation for the double stripe
state has two inequivalent local Ti moments. The DFT
calculations also show a charge imbalance between the in-
equivalent sites®® with there being ~ 0.02 more electrons
at site My (site with vacancy-bridging FM NNN inter-
actions) compared to M (site with oxygen-bridging FM
NNN interactions), forming a pattern consistent with the
intra-unit-cell charge-density wave reported in Ref. 19
and in contrast to the Q = (m,7) charge-density wave
argued for in Ref. 31, which would lead to four inequiv-
alent Ti sites per unit cell. Furthermore, our spin-driven
model is consistent with having an intra-unit-cell charge-
density wave in the absence of long-range magnetic order.
The argument is as follows: the presence of the oxygen
sites breaks the translational symmetry of the hypothet-
ical 1 Ti tetragonal cell, such that there are 2 Ti in the
primitive unit cell even for T > T,,. These Ti sites are
differentiated by the direction of their oxygen coordina-
tion, along either & 4+ ¢, and are related by rotational
symmetry. However, when T' < T,, the NNN bonds
order, breaking this symmetry; for example see Fig. 7.
The resulting FM bonds between Ti(1)-Ti(1) and Ti(2)-
Ti(2) are inequivalent, with one bridging an oxygen and
one bridging a vacancy. DFT calculations indicate that
this inequivalency shows up as an intra-unit-cell charge-
density wave. In addition, our model predicts that an
initial unit cell with 2 inequivalent Ti sites will have ne-
matic order and a charge-density wave condense at the
same time, in complete agreement with experiment. Note
that the mirror symmetry associated with ¥4 remains
unbroken until the NN bonds develop at Ty, even in the
2 Ti unit cell.

Further support for the spin-driven case comes from
our structural relaxation calculations, see Appendix B3
for additional details. Similar to the Fe-based pnictides,
structural relaxations of the DS pattern give rise to an
orthorhombic distortion with Pmmm symmetry (con-
sistent with Ref. 19). The intra-unit-cell charge imbal-
ance on the inequivalent Ti sites is also preserved af-
ter the optimization. In contrast, nonmagnetic calcula-
tions in the high temperature P4/mmm structure yield
a charge imbalance that resembles the double stripe pat-
tern. As shown in previous studies®”°®, this nonmag-
netic charge density wave is unstable and promotes one
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FIG. 7. (Color online) In BaTi2Sb2O, there are two Ti sites
[Ti(1), hollow circles and Ti(2), solid black circles| per unit
cell, that are differentiated by the orientation of their oxygen
coordination (red circles). The 2 Ti unit cell is shown by the
blue, dashed lines. At high temperatures, these are equivalent
and must carry the same charge, due to the rotation sym-
metry. However, below T, the ferromagnetic bonds break
rotation symmetry, and one Ti sublattice will have ferromag-
netic bonds that cross oxygen sites, while the other will not,
allowing a charge disproportionation to develop, such that
Ty, =Tcpw.

of two lattice distortions, (i) A slight rotation of the Ti
plaquettes centered around the oxygen sites as reported
in Refs. 57 and 58, which breaks rotation and transla-
tion symmetries (but not the v, ,, reflection symmetry)
without an orthorhombic splitting of the in-plane a and
b lattice parameters, or (i) an orthorhombic distortion
similar to what relaxing in the double stripe magnetic
pattern yields, which does break rotational symmetry
and splits the in-plane a and b lattice parameters. We
stabilized both distortions in our structural relaxations,
with the former distortion being lower in energy than
the latter when using “vanilla” GGA or LSDA+U with
U—J = 3.0 eV. These relaxations also remove the charge
imbalance on inequivalent Ti sites, implying that the dis-
tortions suppress the charge density wave.

It is important to emphasize that these nonmagnetic
distortions are inconsistent with experiment: the Ti pla-
quette rotation does not break all the necessary symme-
tries, the energy of the orthorhombic distortion is higher
than the plaquette rotation and within a tenth of a meV
of the undistorted structure, and in both cases the dis-
tortion removes the charge imbalance on inequivalent Ti
sites. Both nonmagnetic distortions are also significantly
higher in energy than the magnetic double stripe configu-
ration and its accompanying orthorhombic distortion for
the LSDA-+U functional. It is only within our spin-driven
model that one obtains an orthorhombic lattice distor-
tion with the correct symmetry, a charge imbalance on
inequivalent Ti sites that persists after structural relax-
ation, and still not require that long-range magnetic or-
der condense. The consistency of our model in explaining



all observed phenomena also points to BaTisSboO having
a spin-fluctuation-mediated superconducting state.

IV. CONCLUDING REMARKS

We have presented an extension to the spin-driven ne-
matic theory that describes fluctuations of double stripe
magnetic order, which can break symmetries via a three-
stage process. The first is the formation of second
nearest-neighbor ferromagnetic bonds along one of the
square diagonals, which breaks Cj rotational symme-
try, and the second is the formation of first nearest-
neighbor ferromagnetic bonds in a staggered zig-zag pat-
tern that breaks translational (doubling the unit cell) and
reflection symmetries. Despite breaking different symme-
tries, these transitions are both bond-order transitions.
In principle, in a quasi-three-dimensional system they
should be followed by an antiferromagnetic transition,
but, depending on the parameters and factors beyond
the model, the magnetic transition may sink to an un-
detectable temperature. This happens, for instance, for
SS nematicity in FeSe?S. While this seems to also be
the case for BaTiySboO, where magnetic order has not
been observed experimentally, despite some evidence for
magnetic fluctuations®, in the DS compound FeTe the
two bond-order transitions and the magnetic transition
seem to be simultaneous and first-order. Going back to
BaTisSboO, where the magnetic transition is likely ab-
sent, the two bond order transitions can, in general, occur
at either the same or different temperatures, depending
on the relative amplitudes of the first- and second-nearest
neighbor biquadratic exchange parameters and other fac-
tors, or the second transition may also sink to too-low
temperatures. We speculate that the former may be the
case in BaTisSboO and the resulting merged phase tran-
sition is of very weak first order character. This would
place BaTiySboO in region I of the theoretical phase di-
agram of Fig. 5. Our DFT calculations confirmed that
BaTisSb,O is within the regimes possible in this model
and that all details of existing experiments can be ac-
counted for in the spin-driven picture. The importance
of spin fluctuations in explaining these phenomena sug-
gests that the superconducting state may be unconven-
tional and driven by spin fluctuations.

Direct confirmation of our theory should be possi-
ble with additional measurements. We predict that
BaTisSboO  exhibits correlated magnetic fluctuations
without long-range order below the density wave tran-
sition temperature, similar to what is observed in para-
magnetic nematic phases of specific iron pnictide super-
conductors, for example BaFesAsy. Techniques such as
muon spin rotation, which have not found any evidence
for magnetism in the titanium-based oxypnictides, are
slow probes on the time-scale of magnetic fluctuations.
Fast-probe techniques such as inelastic magnetic neutron
scattering”®, photoemission spectroscopy’!, and x-ray
emission spectroscopy’? measurements are necessary to
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detect these fluctuations, as they have in the iron-based
superconductors. A successful detection would provide
direct evidence concerning the validity of our model.
Moreover, magnetic order should be realized somewhere
in the general phase diagram, presumably along some
un- or under-explored direction in phase space. While
no magnetic order has yet been found, these materials
are relatively unstudied; for reference, it took signifi-
cantly more effort to find the magnetism in FeSe un-
der pressure”® 7. There are several alternative theories
for the nematic intra-unit cell density wave transition in
BTSO. The first proposal requires only charge degrees of
freedom and longer-range Coulomb interactions!?; this
could be straightforwardly distinguished from our the-
ory by establishing the presence of strong magnetic fluc-
tuations. The second proposal is the development of a
nematic orbital order driven by spin-fluctuations, and is
based on a Hubbard model approach”; this could be re-
solved by searching for orbital order using ARPES mea-
surements.

In addition, our model may also apply to other mem-
bers of the titanium oxypnictide family, such as explain-
ing the two phase transitions at T = 320 K (density
wave)® and 150 K (breaking of rotational symmetry)?
in NagTisAs,O. Additional (magnetic) DFT calculations
and experiments searching for magnetic fluctuations in
NayTinsAsoO are therefore needed.

ACKNOWLEDGMENTS

L.I.M. acknowledges funding from the Office of Naval
Research (ONR) through the Naval Research Labora-
tory’s Basic Research Program. J.K.G. acknowledges the
support of the NRC program at NRL. R.M.F. is sup-
ported by the U.S. Department of Energy, Office of Sci-
ence, Basic Energy Sciences, under award number DE-
SC0012336. This research was supported in part by
Ames Laboratory Royalty Funds and Iowa State Uni-
versity startup funds (G.Z and R.A.F.). The Ames Lab-
oratory is operated for the U.S. Department of Energy
by Iowa State University under Contract No. DE-AC02-
07CH11358. R.A.F and R.M.F. also acknowledge the
hospitality of the Aspen Center for Physics, supported by
National Science Foundation Grant No. PHYS-1066293
where we initiated this project.

Appendix A: Derivation of equations of state in
effective field theory

In this appendix, we show briefly how to get the
equations of state. After introducing the Hubbard-
Stratonovich fields in eqns. (9)—(12), the free energy in



Eq. (8) becomes:
Feff[ iv¢r/y7§07 ] =

Z /MZ qXU

1,j=1

— ¢y (M; - My — M3 - My)

w(Ml'M3*M2'M4)

—¢y(M1'M4—M2'M3)

L ¥ vy 0
+ M? + L L (A1
7 (Z > 291 293 295  2u (AD)
Upon integrating out the M;, we obtain
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The determinant of the inverse Green’s function is:
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where we have introduced J; = J36¢% and Jy = J20q:0¢y
for simplicity. In the Landau theory, we can expand the
log det G~! by assuming that everything involving ¢, v,
and 1, is small in comparison to the first term. By doing
so, we get a new Landau theory in terms of ¢ and v, Jy-
Once we do this expansion, we see that Zq jg"“ type
terms vanish. So the linear and cubic ¢ terms vanish,
as the ¢ (1?2 + 1/)5) and 9,1, term. However, the 1,1,
term is really there, as we expected. Since 1., acts like
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an external field for ¢, so either ¢ turns on first, or ¥, ¥,
and ¢ all turn on at the same time.

The next step is to minimize the effective action with
respect to 1, ¢, ¥, and v, by taking the derivative of
Seft [z, Yy, ©,m] over ¥z, 1y, ¢ and 1 respectively and
force it to be zero. It is convenient to rewrite the action
as:

il Yy

29 293 293 2u

T
+§Zlog (ng +ngzqy+r+sﬁf¢x*¢y)
q

eff [%ﬂby, P, 77]

T
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—+ 5 Zlog (J3q2 + ngmqy +7r+ %) + 1/]:6 + %) (A5)
q

where we renormalize (¢, vy, %,) — 2(p,¥s,%,) and
gi — 4g; for convenience. The saddle point equations

as?iix” = 0(z; =1, p, ¢, and ¢,,) become:
Tu
n= 5 ;[Il( q)+L(q)+I5(q) + 14 (q)]
_ Tg

TZ[_M q) + 2 (@) + I3 (q) — 11 (q)]

ng Z (1 (q) + I (q) — Is (q) — 14 (q)]
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q
where I;(q)(I = 1,2, 3, 4) represents

Li(q) = Jq2+r+;—¢z—¢y
L (q) = Jq2+r—:v—wz+¢y
Is (q) = Jq2+r—;+¢x—¢y
Iy(a) = 1 (A7)

Jq2+r+50+7/}m+'¢)y
In this, we have rotated our momentum axes to define

the effective kinetic term Jg¢? = 1/ J2 — %(5q§+5q§) and
renormalized (¢, ¥z, ¥y) — 2 (p, ¥y, y) and g; — 4g; for
convenience.

In the spirit of Landau theory, we next approximate
T by Ty everywhere except in rg, which we assume to
be relatively small. We can then proceed to solve these
equations in two dimensions by evaluating the momen-
tum integrals I;(q) directly. These integrals diverge in



the ultraviolet, so we must introduce a cutoff A. We can
then absorb this into 79 = rg + 8ulnA. As the equa-
tions for 1), and 1, differ only by signs, we can decouple
their equations by defining ¢+ = v, £ 9, which have
identical equations. The trilinear term .1, becomes
(Y3 —¢2). As only 14 or ¢_ will develop, depending
on the sign of ¢, we consider only 14 (¢ < 0) and obtain
the three saddle point equations,

To—1T

” =ln(r+o—¢y)+In(r+e+¢vy)+2In(r —¢)

gf=1n<r+so—w+)+1n(r+so+w+>—21n<r—so>
1
P+

2%, (A8)

=-—In(r+p—v)+In(r+ep+)

where we have rescaled %(u,gl,gg) — (u,91,93) and

%(gp,z/}_s_,r) — (¢,%4,7r) and absorbed a pre-factor
1/(4m) into the temperature Tp.

Appendix B: DFT calculations

In this Appendix we give additional details about how
we performed the DFT calculations and also provide the
raw results of our calculations along with additional dis-
cussion.

1. Computational methods: additional details

A method similar to that used in Ref. 21 was employed
to extract the biquadratic interaction term. The config-
urations depicted in Figs. 8(a) and 8(b) indicate how we
varied 6 to calculate E(0) for the two different setups.
These involve rotations of the four Néel sublattices dis-
cussed in Section II B, and in our calculations two of the
sublattices are fixed and the other two are rotated to
interpolate between degenerate double stripe configura-
tions. Applying Eq. (3) to these configurations results in
the following two expressions that we use for fitting:

E(0) — E1(0) = 2(K; +2R)sin 0 (B1)
FEy(0) — Eq(0) = (K, + 2K5)sin? 6. (B2)

E1(0) corresponds to Fig. 8(a) and E3(#) to Fig. 8(b).
Note that the ring exchange enters as a term in
Eq. (B1)(a)™, which we take from our collinear fits.

We used the following parameters in the calculations
obtained using ELK. For the k-mesh, we used a 14x 14 x 8
k-mesh for the ferromagnetic and checkerboard unit cells,
a 12 x 8 x 8 k-mesh for the double stripe cell (also used
for noncollinear rotation in Fig. 8(a)), a 12 x 8 x 6 k-mesh
for the parallel stripes unit cell, a 14 x 14 x 4 k-mesh for
the antiferromagnetic layers unit cell, and a 8 x 8 x 8
k-mesh for the plaquette unit cell (also used for non-
collinear rotation in Fig. 8(b)). The number of empty
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states was set to 6 states/atom/spin. In addition, be-
cause of how ELK evaluates the exchange-correlation po-
tential, convergence of the § = 0 and § = 180° configura-
tions in Fig. 8(b) (which are supposed to be degenerate)
required setting the angular momentum cutoff for the
APW functions (parameter lmaxapw) and the muffin-tin
density and potential (parameter lmaxvr) to 10, and also
reducing the fracinr parameter to 0.00178.

For our fittings to Eq. (3), as mentioned in the
main text, the oxygen sites in BaTizAsoO lead to an
anisotropy in the Ti-Ti NNN couplings, which in princi-
ple splits the second-neighbor Heisenberg exchange pa-
rameter (Jo — Joo, J2y), biquadratic exchange param-
eter (K3 — Ksp,Ks,), and ring exchange parame-
ter (R — Ro,R,)). For consistency, we define a
set of averaged exchange parameters to use when fit-
ting: 2Jy = Jy, + Joo for NNN Heisenberg exchange,
2Ky = Koo + Ko, for NNN biquadratic exchange, and
2R = Rop + R, for NNN ring exchange.

For our VASP structural relaxations, we used a plane
wave energy cutoff of 600 eV. We also used the same k-
meshes for the different supercell geometries as was used
in the ELK calculations.

2. Total energy calculations and fitted exchange
parameters

Table I contains the full summary of our total energy
calculations and the Ti local moment amplitudes of the
different magnetic patterns. We find that our results are
consistent with the trends reported in Ref. 56, where in-
creasing U lowers the energy of each configuration and
increases the amplitude of the local moments. The local
moments themselves are soft and can vary by more than
a factor of 2 between magnetic patterns. Our calcula-
tions also capture the energy difference that arises due
to the anisotropy in the Jo parameter, which depends
on whether the NNN ferromagnetic bonds bridge either
an oxygen site or a vacancy. Overall NNN ferromagnetic
bonds are energetically preferred.

The results of our noncollinear energy calculations are
shown in Fig. 9, which we fit to Egs. (B1)—(B2) to obtain
the biquadratic parameters. In Fig. 9(a) the M> Ti mo-
ments collapse when 60° < 0 < 120°; for simplicity we fit
to Eq. (B1) using only the energy calculations obtained
for 6 outside this range. As a side note, the rotations
in Fig. 8 are analogous to the fluctuations discussed in
Sections IIB and IIC, with Fig. 8(a) being similar to
fluctuations between the (+ + —+) and (— + ++) states
in Fig. 2 that are frozen out when T' < T}, and Fig. 8(b)
being similar to fluctuations between the (+ + —+) and
(+ + +—) states in Fig. 2 that are frozen out when
T <T,.

The fitted exchange parameters are summarized in Ta-
ble II. For completeness, we included the interplanar
coupling J, that was neglected in the model treatment.
The sign of the Heisenberg and ring exchange param-
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FIG. 8. Schematics illustrating the four interpenetrating Néel sublattices (shown as different color vectors) that form the double
stripe magnetic configuration and the two different 0 < 6 < 180° noncollinear rotations used in our DFT calculations to obtain
the biquadratic terms K; and K». Red lines indicate the dimensions of the lateral supercell in each calculation. (a) Rotation
analogous to a fluctuation of the ¥+ order parameter (see Fig. 2). (b) Rotation analogous to a fluctuation of the ¢ order
parameter (see Fig. 2), which rotates between the Q = (7/2,7/2) and (—7/2,7/2) configurations.

LSDA+U GGA+U
U=25¢eV U =35eV U =25¢eV
Config E-E(NM) M M, E-ENM) M M, E-E(NM) M My
(meV/Ti)  (ug)  (meV/Ti)  (us)  (meV/Ti)  (ug)

FM 0.02993  0.2165 0.2165 -9.668  0.3761 0.3761 -21.761 0.4511 0.4511
CB -0.2748 0.01661 0.01661 -13.241 0.1102 0.1102 -28.414 0.1648 0.1648
DS -5.959 0.2631 0.3426  -20.950 0.3021 0.5537 -31.527 0.3452 0.5939
DS (O-FM only) -3.674 0.3220 0.0000 -12.158 0.4783 0.0000 -16.642 0.5383 0.0000
DS (v-FM only) -4.188 0.0000 0.4103 -18.291 0.0000 0.6167 -24.915 0.0000 0.6667
Parallel -0.9796 0.1752 0.1752 -10.468 0.3891 0.3891 -22.384 0.4363 0.4363

Plaquette (O-centered)  -4.572 0.2503 0.2503 -16.022 0.3653 0.3653 -26.580 0.4015 0.4015
Plaquette (v-centered) — -4.269 0.3044 0.3044 -17.856 0.4535 0.4535 -29.084 0.4989 0.4989
AFM Layers -0.6150  0.09566 0.09566  -9.154  0.3890 0.3890 -22.803 0.4866 0.4866

TABLE I. A summary of the magnetic energies for the collinear magnetic patterns depicted in Fig. 6 using LSDA and GGA
functionals and Hubbard U’s of 2.5 eV and 3.5 €V. The reported energies are referenced against the nonmagnetic (NM) state.
For the DS patterns, the M, sites are those with NNN FM bonds bridging oxygen and M are NNN FM bonds bridging
vacancies. The “O-FM” and “v-FM” versions of DS are special cases when half the sites are nonmagnetic, with the magnetic
sites either bridging across an oxygen site or a vacancy respectively. The plaquette patterns are labeled similarly, depending
on whether they center around oxygen or vacancy sites.

Functional U J1 Jo Js3s J. R Ki K, eters are consistent across functionals and values of U
(eV) (meV) with the exception of J , which is slightly ferromagnetic
LDA-U 2.5 0.076 -1.04 1.59 0.32 0.38 in LSDA+U = 3.5 €V, but antiferromagnetic otherwise.

LDA+U 3.5 0.89 -2.83 2.79 -0.26 1.00 -0.37 2.06
GGA+U 25 1.66 -2.41 1.89 0.52 0.92

3. Structural relaxation data

TABLE II. The calculated exchange parameters for

BaTizSb,0. The structural relaxations we computed using VASP
are summarized in Table III. For all functionals we first
performed a baseline relaxation calculation where we en-
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FIG. 9. Noncollinear energies as a function of the rotation angle 6. The dashed lines are the fits to the model. The insets in
each panel show the inequivalent Ti local moments as a function of 6. The red circles refer to NNN FM O-bridging Ti sites
and the blue triangles to NNN FM vacancy-bridging Ti sites when § = 0. (a) Noncollinear energies for the rotations analogous
to fluctuations of the 14+ order parameter (see Fig. 8(a)). (b) Noncollinear energies for the rotations analogous to fluctuations
of the ¢ order parameter (see Fig. 8(b))

Functional U — J Distortion Energy Q(Tii) Q(Ti2) 6Oy n

(eV) (eV/Ti) (elec.) (deg) %

GGA 0.0 None -19.59 10.2 10.2 0.0 0.0
GGA 0.0 Rotation -19.59  10.2 10.2 3.5 0.028
GGA 0.0 Orthorhombic -19.59 10.2 10.2 0.0 0.40
LSDA+U 3.0 None -19.48 10.1 10.2 0.0 0.0
LSDA+U 3.0 Rotation -19.48 10.2 10.2  2.19 0.08
LSDA+U 3.0 Orthorhombic -19.48 10.1 10.2 0.0 0.51
LSDA+U 3.0 Double stripe -19.49 10.2 10.1 0.0 14

TABLE III. A summary of the results of structural relaxations of BaTiaSb2O for different exchange-correlation functionals and
kinds of distortions. The DFT+U calculations used the rotationally invariant approach with a single parameter U — J%¢. The
Q(Ti1) and Q(Tiz) columns report the calculated charge on the inequivalent Ti sites, the 6r; column reports how many degrees
the oxygen-centered Ti plaquettes are rotated in each distortion (if at all), and the final column calculates n = 2 - Z—;Z -100%,
which quantifies the degree of the orthorhombic distortion.

forced the high temperature structure with P4/mmm
symmetry. We then considered up to three kinds of
distortions. The nonmagnetic distortions are the “ro-
tation” distortion, which refers to rotations of Ti pla-
quettes about the oxygen sites by an angle f1;, and the
“orthorhombic” distortion, which is a spitting of the a
and b lattice parameters quantified with the parameter
(=2 Z__HZ: -100%. The “double stripe” distortion, on the
other hand, is obtained by performing a structural relax-
ation for the magnetic double stripe pattern. We then
compared the energies, the calculated charges on the two
inequivalent Ti sites, and the distortion parameters Or;
and (.

We found that for the vanilla DFT calculations with
the GGA functional, the plaquette rotation distortion

is lowest in energy, with E(rotation) - E(none) = -5.8
meV/Ti compared with E(orthorhombic) - E(none) =

0.03/TimeV. The undistorted structures feature a charge
imbalance on the inequivalent Ti sites, while the distorted
sites do not. The rotated plaquettes structure also has a
minor orthorhombic distortion of 0.03%, which is negli-
gible.

For the LSDA+U (U - J = 3.0 €V) calculations,
the double stripe distortion is clearly the lowest in
energy, with E(ds) - E(none) = -18.4 meV/Ti com-
pared with E(rotation) - E(none) = -0.88 meV/Ti and
E(orthorhombic) - E(none) = -0.079 meV/Ti. The non-
magnetic distortions do not provide much of an energy
gain, particularly when compared with the relaxed mag-
netic state. As in the case of vanilla GGA, the nonmag-
netic distortions remove the charge imbalance between
My and M> found in the high temperature structure. In
contrast, the charge imbalance still persists after relaxing
the double stripe pattern.



In terms of symmetry breaking, only the relaxed mag-
netic calculations break rotational, reflection, and trans-
lational symmetry, induce a orthorhombic lattice distor-
tion, and preserve a charge imbalance between the in-
equivalent Ti sites. The nonmagnetic distortions may
or may not break the right symmetries compared with
experiment, and after relaxation the charge imbalance
disappears.

4. BaTiQASQO

Config E-E(NM) M; M>
(meV/Ti)  (un)

FM -0.8245 0.3116 0.3116
DS (O-FM only) -4.562  0.3226 0.0000
DS (v-FM only) -9.787  0.0000 0.4673
Parallel -3.354  0.1987 0.1987
Plaquette (O-centered) -4.843  0.2359 0.2359
Plaquette (v-centered)  -9.246  0.3260 0.3260
AFM Layers -3.257  0.3242 0.3242

TABLE IV. The magnetic energies for the collinear magnetic
patterns that are stable in BaTizAs:O for LSDA+U with
U =35¢eV and J = 0.5 eV. Energies are referenced against
the nonmagnetic (NM) state. The inequivalent magnetic mo-
ments M; and Ms in the double stripe and site-selective pat-
terns are the same as those labeled in Fig. 6

We performed a set of DFT calculations for
BaTisAs;O in order to compare with the main
BaTisSb,O results, and found that an extremely polar-
ized version of double-stripe order was stabilized, with
the moment on the Ti(1) site vanishing (see Table IV).
These calculations used the LSDA+U functional with
U =35¢eVand J = 0.5eV. We used the experimen-
tal crystal structure for these calculations*, which has
space group symmetry P4/mmm, lattice parameters a =
4.04561 Aand ¢ = 7.27228 A, and the following Wyckoff
positions in fractional coordinates: Ba [1d] (0.5, 0.5, 0.5),
Ti [2f] (0.5, 0, 0), As [2g] (0, 0, 0.7560), and O [1c| (0.5,
0.5, 0). We used the same k-meshes and parameters as
was used for BaTisSh,O.

The results of the collinear calculations are summa-
rized in Table IV. BaTisAs;O is less supportive of mag-
netism compared to BaTizSboO, as the full double stripe
and checkerboard patterns cannot be stabilized and the
stable patterns yield less of an energy gain compared to
their BaTisSboO counterparts. Because of this, there are
not enough stable collinear magnetic patterns that we can
use to fit to Eq. (3). Trying to include the patterns with
nonmagnetic sites further complicates the model, as we
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would need to add Stoner-like on-site terms to capture
variations in the local moments.

Even though we cannot resolve all the exchange pa-
rameters through a fit, we can at least estimate the NNN
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FIG. 10. Noncollinear energies for rotations connecting the
two double stripe patterns where one of the local Ti moments
has collapsed. € = 0 corresponds to moments with oxygen-
bridging FM NNN interactions and # = 180° to moments with
vacancy-bridging FM NNN interactions. The dashed line is
the fit to the model. The inset shows the Ti local moment as
a function of 6.

biquadratic parameter. We do this by performing non-
collinear calculations with rotations that interpolate be-
tween the two kinds of double stripe patterns where half
the sites are nonmagnetic. The results of these calcu-
lations are presented in Fig. 10. Applying Eq. (3), we
obtain the following expression,

E(0) — E(0) = 2K5sin® 0 + 2 (Jay — J20) sin? (g)

(B3)

In Eq. (B3) the anisotropic splitting of J enters as a
difference instead of a sum, so we can’t use the aver-
age value J, here. However, we also note that the en-
ergy difference between the two plaquette configurations
is E(Plaq,) — E(Plaqy) = 2(Jay — J20), which can be
substituted in Eq. (B3) to allow us to resolve Ky. We
obtain Ko = 0.418 meV from this fit, but without Js,,
Joo and J3 available for comparison, it is unclear what
regime of the model in Section II C BaTizAs,O is in.
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