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We investigate the origin of ubiquitous low energy kinks found in Angle Resolved Photoemission
(ARPES) experiments in a variety of correlated matter. Such kinks are unexpected from weakly in-
teracting electrons and hence identifying their origin should lead to fundamental insights in strongly
correlated matter. We devise a protocol for extracting the kink momentum and energy from the
experimental data which relies solely on the two asymptotic tangents of each dispersion curve, away
from the feature itself. It is thereby insensitive to the different shapes of the kinks as seen in exper-
iments. The body of available data is then analyzed using this method. We proceed to discuss two
alternate theoretical explanations of the origin of the kinks. Some theoretical proposals invoke local
Bosonic excitations (Einstein phonons or other modes with spin or charge character), located exactly
at the energy of observed kinks, leading to a momentum independent self energy of the electrons.
A recent alternate is the theory of extremely correlated Fermi liquids (ECFL). This theory predicts
kinks in the dispersion arising from a momentum dependent self energy of correlated electrons. We
present the essential results from both classes of theories, and identify experimental features that
can help distinguish between the two mechanisms. The ECFL theory is found to be consistent with
currently available data on kinks in the nodal direction of cuprate superconductors, but conclusive
tests require higher resolution energy distribution curve data.

I. INTRODUCTION

High precision measurements of electronic spectral dis-
persions has been possible in recent years, thanks to the
impressive enhancement of the experimental resolution in
the angle resolved photoemission spectroscopy (ARPES).
This technique measures the single electron spectral func-

tion A(~k, ω) multiplied by the Fermi occupation function;

it can be scanned at either fixed ~k as a function of ω or at
fixed ω as a function of ~k. These scans produce respec-
tively the energy distribution curves (EDCs) and momen-
tum distribution curves (MDCs). The line shapes in both
these scans are of fundamental interest, since they pro-
vide a direct picture of the quasiparticle and background
components of interacting Fermi systems, and thus un-
ravel the roles of various interactions that are at play in
strongly correlated Fermi systems. The dispersion rela-
tion of the electrons can be studied through the location

of the peaks of A(~k, ω) in constant ω or constant ~k scans.
Recent experimental studies have displayed a surpris-

ing ubiquity of kinks in the dispersion of strongly cor-
related matter at low energies ∼ 50 − 100 meV. The
kinks are bending type anomalies (see Fig. (1)) of the

simple ω = vF (~k−~kF ), i.e. linear energy versus momen-

tum dispersion that is expected near ~kF from band the-
ory. The special significance of kinks lies in the fact that
their existence must signal a departure from band theory.

This departure could be either due to electron-electron
interactions, or to interaction of the electrons with other
Bosonic degrees of freedom. Either of them are there-
fore significant enough to leave a direct and observable
fingerprint in the spectrum. The goal of this work is to
elucidate the origin of the observed kinks, and therefore
to throw light on the dominant interactions that might
presumably lead to high Tc superconductivity.

The purpose of this paper is multifold, we (i) survey
the occurrence of the kinks in a variety of correlated sys-
tems of current interest, (ii) provide a robust protocol
for characterizing the kinks which is insensitive to the
detailed shape of the kink, (iii) discuss how these kinks
arise in two classes of theories, one based on coupling
to a Bosonic mode and the other to strong correlations,
and (iv) identify testable predictions that ARPES exper-
iments can use to distinguish between these.

The fifteen systems reporting kinks are listed in Ta-
ble (I); these include (1) most high Tc cuprates in the
(nodal) direction 〈11〉 at various levels of doping from in-
sulating to normal metallic states in the phase diagram1,2

(2) charge density wave systems, (3) cobaltates and (4)
ferromagnetic iron surfaces. The kinks lose their sharp-
ness as temperature is raised2–4, and appear to evolve
smoothly between the d-wave superconducting state and
the normal state.



2

Name of the compounds Local Bosonic Mode

Above Tc Below Tc

MDC EDC MDC EDC Charge Spin Not reported

LSCO X3,13 X1,3,13,14 X15 X16–18 X19

Bi2201 X3,5,13,20,21 X23 X5,21 X24

Bi2212 X2–5,13,25,26 X4 X2–5,13,25,26 X27 X28,29

Bi2223 X5,30 X5,30,31 X

YBCO X32 X33,34 X35–38

Hg1201 X39 X40 X41–43

F0234 X44 X

CCOC X45 X

LSMO X46 X46 X

2H-TaSe2 (CDW) X47 X48

Iron (110) surface X49 X

BiBaCo1 X50 5K X50 5K X

BiBaCo2 X50 5K X50 5K X

BiBaCo X50 200K X50 200K X

NaCoO X50 5K X50 5K X

TABLE I: Comprehensive survey for ARPES kinks

The kinks above Tc are smoothed out as one moves
away from nodal direction5. Recent experiments6 resolve
this movement of the kinks more finely into two sub fea-
tures. Most of the studies in Table (I) focus on MDC
kinks, the EDC kinks data is available for only eight sys-
tems so far. Bosonic modes have been reported in six
systems using different probes such as inelastic x-rays or
magnetic scattering, with either charge (phonons, plas-
mons) or spin (magnetic) character, while the remaining
nine systems do not report such modes. A few theoreti-
cal studies of the kinks have implicated the observed low
energy modes via electron-Boson type calculations; we
summarize this calculation in the Supplementary Infor-
mation (SI)7. We find, in agreement with earlier studies,
that the Boson coupling mechanism yields kinks in the
MDC dispersion, provided the electron-Boson coupling
is taken to be sufficiently large. In addition, we find in
all cases studied, this mechanism also predicts a jump
in the EDC dispersion. It also predicts an extra peak
in the spectral function pinned to the kink energy after
the wave vector crosses the kink. These two features are
experimentally testable and differ from the predictions of
the correlations mechanism discussed next.

Since kinks are also observed in cases where no obvi-
ous Bosonic mode is visible, it is important to explore
alternate mechanisms that give rise to such features. In
this context we note that a recent theoretical work using

the extremely strongly correlated Fermi liquid (ECFL)
theory8,9 calculates the dispersion using a low momen-
tum and frequency expansions of the constituent self en-
ergies. This calculation9 shows that both EDC and MDC
energy dispersions display qualitatively similar kinks, in
particular there is no jump in either dispersion. In
essence this work implies that a purely electronic mecha-
nism with a strong momentum dependence of the Dyson
self energy results in kink type anomalies. In terms of
parameter counting, the calculation is overdetermined, it
can be represented in terms of four parameters which can
be fixed from a subset of measurements. With this deter-
mination one can then predict many other measurables
and testable relations between these- as we show below.
We show below that the various predictions are reason-
ably satisfied in one case (of OPT Bi2212 below), while
in other cases, there is insufficient experimental data to
test the theories.

The ECFL theory incorporates strong Gutzwiller type
correlation effects into the electron dynamics7. It pro-
duces line shapes that are in close correspondence to ex-
perimental results for the high Tc systems11,12. The pres-
ence of a low energy kink in the theoretical dispersion was
already noted in Ref. (11), the present work substantially
elaborates this observation. In order to understand the
origin of a low energy scale in the ECFL theory, it is
useful to recall the predicted cubic correction to Fermi
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liquid self energy ℑmΣ(~kF , ω) ∼ ω2(1− ω
∆0

) from equa-

tions (SI-42, 8,9). Here ∆0 is an emergent low energy
scale, it is related to the correlation induced reduction of
the quasiparticle weight Z. It reveals itself most clearly
in the observed particle hole asymmetry of the spectral
functions, and therefore can be estimated independently
from spectral lineshape analysis. A related and similar
low value of the effective Fermi temperature is found in
recent studies of the resistivity10. Here and in our earlier
studies it is coincidentally found that ∆0 ∼ 20−50 meV,
i.e. it is also roughly the energy scale of the kinks when
the bandwidth is a few eV.

II. ARPES SPECTRAL DISPERSIONS, KINKS
AND A PROTOCOL FOR DATA ANALYSIS

A. Summary of variables in the theory

A few common features of spectral dispersions found in
experiments are summarized in Fig. (1). The schematic
figure shows a region of low spectral velocity near the
Fermi level followed by a region of steeper velocity, these
are separated by a bend in the dispersion- namely the
kink. While the kink itself has a somewhat variable shape
in different experiments, the “far zone” is much better
defined and is usually independent of the temperature,
we denote the velocities in the far zones VL, VH for the
MDC dispersion and the EDC dispersion counterparts
by V ∗

L , V
∗

H . In terms of the normal component of the
momentum measured from the Fermi surface

k̂ = (~k − ~kF ).~∇εkF
/|~∇εkF

|, (1)

the kink momentum k̂kink is uniquely defined by extrap-
olating the two asymptotic tangents, and the binding
energy at this momentum defines the ideal kink energy
Eideal

kink (see Eq. (7)), which serves as a useful reference
energy.
Our picture is that all lines of temperature varying

MDC dispersion curves in near zone converges into one
line in the far zone in Fig. (1). We find that both the low
and high velocities are independent of the temperature
while depending on the doping levels. Lastly, the new
laser ARPES data reveals that we need low temperature
dispersion data to determine VL because temperature ef-
fect strongly influences the spectrum near the Fermi level.
We first define the important ratio parameter r (1 ≤

r ≤ 2) from the MDC dispersion velocities as

r =
2VH

VH + VL

. (2)

The EDC dispersion relation E∗(k̂) locates the maximum

of the spectral function A(~k, ω) in ω at constant k̂, while

the MDC dispersion and E(k̂) locates the maximum k̂ at
a fixed energy ω. These are found from the ECFL theory

(see SI7 and Ref. (9)) as:

E∗(k̂) =

(

r VLk̂ +∆0 −
√

Γ2
0 +Q2

)

, (3)

E(k̂) =
1

2− r

(

VLk̂ +∆0 −
√

r(2 − r) Γ2
0 +Q2

)

,(4)

where we introduced an energy parameter related to r, VL

and k̂kink

∆0 = k̂kinkVL(1− r), (5)

and a momentum type variableQ = (r−1)VL (k̂−k̂kink).
The variable Γ0 is temperature like,

Γ0 = η + π{πkBT }2/ΩΦ; (6)

here η is an elastic scattering parameter dependent upon
the incident photon energy, it is very small for laser
ARPES experiments and can be neglected to a first ap-
proximation. Here ΩΦ is a self energy decay constant ex-

plained further in the SI7. The ideal kink energy VLk̂kink
can be expressed in terms of ∆0 scale as:

Eideal
kink = − 1

r − 1
∆0. (7)

It is important to note that these dispersion relations
equations (3,4) are different from the standard disper-

sion relations EFLT (k̂) = E∗

FLT (k̂) = VH k̂, which fol-
low in the simplest Fermi Liquid Theory (FLT) near the

Fermi energy AFLT (~k, ω) = 1
π

Γ0

(ω−VH k̂)2+Γ2

0

. The FLT

dispersions are identical in EDCs and MDCs, and are
independent of the temperature-like variable Γ0, and do
not show kinks. On the other hand equations (3,4) do
have kinks- as we show below, and the temperature-like
variable Γ0 plays a significant role in the dispersion. At
Γ0 = 0 one has an ideal spectrum, where the kinks are
sharpest. When Γ0 6= 0, due to either finite temperature
or finite damping η, related to the energy of the incoming
photon, the kinks are rounded.
A few consequences of equations (3,4) can be noted

for the purpose of an experimental determination of the
Fermi momentum. The chemical potential is usually
fixed by referencing an external metallic contact and is
unambiguous. Experimentally the Fermi momentum is
usually found from the MDC, as the momentum where
the spectral function is maximum with energy fixed at
the chemical potential, i.e. ω = 0. This corresponds to

the generally wrong expectation, that E(k̂peak) = 0 im-

plies k̂peak = 0. When Γ0 ≥ 0, from Eq. (4) we see that

the condition E(k̂peak) = 0 gives k̂peak =

√
∆2

0
+r2 Γ2

0
−∆0

rVL

,
a positive number that equals zero only in the ideal case
Γ0 = 0. Thus there is an apparent enlargement of the
Fermi surface due to a finite Γ0 that needs to be cor-
rected. By the same token, at the true (Luttinger the-

orem related) Fermi momentum k̂ = 0, the MDC en-

ergy E(0) =
∆0−

√
∆2

0
+r(2−r)Γ2

0

2−r
, a negative number when
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Γ0 6= 0. In recent laser ARPES Bi2201 data Ref. (21)

(panel (a) in Fig. (4)), we see that E(k̂peak) vanishes

at increasing k̂peak as T is raised, as predicted in our
calculation. Recent laser ARPES experiment on OPT
Bi2212 compounds reports a similar temperature depen-
dence of momentum of MDC dispersion at the Fermi level
in Ref. (26), strongly supporting our picture of its origin.
Similarly, the EDC peak at the true Luttinger theo-

rem related Fermi surface k̂ = 0 is non-zero. We find
E∗(0) =

(

∆0 −
√

∆2
0 + Γ2

0

)

≤ 0. Clearly E∗(0) is neg-

ative unless Γ0 = 0, i.e. it is generically red-shifted. If
we are tempted to identify the Fermi momentum from

the condition E∗(k̂∗peak) = 0, a similar cautionary re-

mark is needed. The condition E∗(k̂∗peak) = 0 gives

k̂∗peak =

√
∆2

0
+(2r−1)Γ2

0
−∆0

(2r−1)VL
, again a positive number as

in the MDC case, and thus a slightly different enlarge-
ment of the apparent Fermi surface.

The above comments illustrate the difficulty of finding
the correct Fermi surface when Γ0 is non-negligible, as in
the case of synchrotron ARPES with substantial values
Γ0

>∼ 50meV. On the other hand the laser ARPES studies
have a much smaller η <∼ 10 meV, where our analysis can
be tested by varying the temperature and the consequent
change of the spectrum. In the following, we analyse
the data from the Bi2201 system where the laser data is
available at various T, and allows us to test the above
in detail. Our analysis below of two other synchrotron
data, the OPT Bi2212 has 10 ≤ η ≤ 40 meV, while the
low T LSCO data is assumed to be in the limit of η = 0
because of the lack of high temperature dispersion data.

VL

 (
e
V

)

K ( -1 )

(EDC) VH*

(MDC)VH
Far zone

Far zone

Near zone

Ideal Kink

Low T

High T

(MDC and EDC)

Kkink(
-1)

} ∝�0

FIG. 1: A schematic MDC and EDC spectrum displaying typical features of experiments discussed below. Here

k̂ = (~k − ~kF ).~∇εkF
/|~∇εkF

|, is the momentum component normal to the Fermi surface, and we label EDC variables with

a star. (The sketch uses parameters VL = 2 eV Å, VH = 6 eV Å, r = 1.5, k̂kink = −0.03 Å−1, ∆0 = 0.03 eV, and Γ0 = 0.01 eV
in equation (3,4)). The tangents in the far zones identify the asymptotic velocities VL < VH and V ∗

L < V ∗

H that characterize

the MDC and EDC spectra. The intersection of the extrapolated MDC tangents fixes the kink momentum k̂kink and the ideal
energy Eideal

kink . The dispersion is rounded with raising T, as in the lower (red) curve. We define the MDC kink energy EMDC

kink as

E(k̂kink), i.e. the binding energy measured at the kink momentum, and similarly the EDC kink energy. In all cases VL = V ∗

L .
A testable consequence of the ECFL theory is that V ∗

H is fixed in terms of the two MDC velocities by a strikingly simple
relation: V ∗

H = 3VH−VL

VH+VL
× VL, see Eq. (10). This easily testable prediction is tried against experimental data in Fig. (2) where

both EDC and MDC data is available. In contrast the electron-Boson theory predicts a jump in the EDC dispersion at the
kink energy, followed by V ∗

H = VH . Note that the difference between the EDC (MDC) kink energy, EEDC

kink = Eideal

kink − Γ0 and

EMDC

kink = Eideal

kink − Γ0

√

r

2−r
, and the ideal kink energy is equal (proportional) to Γ0
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The spectral function at low frequencies close to ~kF
is also obtainable from these parameters, the relevant
formula is noted below. In terms of ξ

ξ =
1

∆0
(ω − r VLk̂) (8)

the spectral function is:

A(~k, ω) =
z0
π

Γ0

(ω − VLk̂)2 + Γ2
0

× {1− ξ
√

1 + caξ2
},

(9)

Here z0 is the quasiparticle weight and ca ∼ 5.4 (see
SI7). We should keep in mind that these expressions fol-
low from a low energy expansion, and is limited to small

k̂ and ω; in practical terms the dimensionless variable

|ξ| <∼ 4, so that ω (or k̂) is bounded by the kink energy
(or momentum), as defined below. Finally we note a
strikingly simple relation that relates the high velocity of
the EDC spectrum to the two velocities VH and VL in
the MDC dispersion defined in Fig. (1):

V ∗

H =
3VH − VL

VH + VL

× VL. (10)

The origin of this simple but key formula lies in the fact
that the entire ECFL spectrum is determined in terms of
a few parameters, and therefore one should expect inter-
relationships of this kind on general grounds. The de-
tails are provided in the supplementary material Ref. (7)
Eq. (SI-36).

III. OPT BI2212 ARPES DISPERSION DATA

In the well studied case of optimally doped Bi2212
(BSCCO) superconductors, the kink has been observed
in both EDC and MDC. We summarize the ECFL fit
parameters in Table (II) obtained from literature4. We
also display the predicted energy and high velocity of
the EDC dispersion. The velocity ratio VH/V ∗

H ∼ 1.3 in
this case, is quite large and measurable. In this case the
EDC dispersion has fortunately already been measured,
allowing us to test the prediction. From Table (II) we
see that the energy of the EDC kink and its velocity are
close to the predictions.

MDCs EDCs

OPT Bi2212 ARPES data EMDC

kink (meV) EEDC

kink (meV) V ∗

H (eV Å)

VL (eV Å) VH (eV Å) k̂kink (Å−1) Calculated Measured Calculated Measured Predicted Measured

1.47 ± 0.07 3.3± 0.3 - 0.037± 0.005 67± 21 67± 8 63± 21 65± 8 2.60± 0.56 2.1± 1.1

TABLE II: Parameter table for ARPES kink analysis for OPT Bi22124 in Fig. 2 presents three essential parameters, VL,
VH , and k̂kink. From the high and low temperature MDC dispersions, we measured Γ0 . 10 meV in Panel (b) of Fig. 2.
With the measured experimental parameters and determining the velocity ratio r in Eq. (2), we are able to estimate the finite

temperature kink energy for EDC and MDC dispersions by EEDC

kink = Eideal

kink − Γ0 and EMDC

kink = Eideal

kink − Γ0

√

r

2−r
and predict

V ∗

H by V ∗

H = 3VH−VL

VH+VL
× VL in Eq. (10). The uncertainties for calculated variables were determined by error propagation, and

the uncertainties for experimental variables were given by the half of the instrumental resolution.

In Panel (a) in Fig. 2, we plot the predicted EDC dis-
persion using the parameters extracted from the MDC
dispersion in Panel (b), and compare with the ARPES
data measured4. It is interesting that the predicted slope
of the EDC dispersion from Eq. (10) is close to the mea-
sured one. Indeed the measured EDC dispersion is close
to that expected from the ECFL theory. To probe fur-

ther, in Panel (c) in Fig. (2) we compare the theoretical
EDC line shape (solid blue line) given by the same pa-
rameters through Eq. (9), with the ARPES line shape
measured at high temperature4. Panel (d) compares
the theoretical MDC curve with the data. The theoreti-
cal curves are from the low energy expansion and hence
are chopped at the high end, corresponding to roughly
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|ξ|max ∼ rVL k̂kink

∆0

for MDC and |ξ|max ∼ Eideal

kink

∆0

for the
EDC. With this cutoff, the momentum is less than the
kink momentum and the energy is less than the kink en-

ergy. We used Γ0 = 40 meV since it provides a rough fit
for both EDC and MDC spectral functions.

k ( Å-1 )

T = 115 K

( a )

OPT Bi2212

ω
 (

e
V

)

MDCTh-Fit

MDC data

EDCTh-Prediction

EDC data

kkink

In
te

n
tity

 (a
rb

. u
n
it) 

ω (eV)

0 = 40meV

T = 115 K

OPT Bi2212

(c)

0

KF

EDCTh-Fit

 = 0

MDCTh-Fit

(d)

k ( -1)

0 = 40meV

T = 40 K

OPT Bi2212 In
te

n
tity

 (a
rb

. u
n
it) 

0

 (
e
V

)
MDC
OPT Bi2212
( b ) VH

VL

)

k ( -1)

kkink

�0= 8.4 meV 

VL = 1.47 eV  

VH = 3.3 eV  

kkink= - 0.037( -1) 

T = 40 K
T = 115 K

FIG. 2: ARPES kinks data for OPT Bi2212 from Ref. (4) compared to theoretical ECFL curves (solid lines) using parameters
listed in Table. II. Panel:(a) The predicted EDC spectrum (blue) from Eq. (3), versus the experimental EDC data (magenta
symbols) at T=115K. For reference we also show the MDC data (red dashed curve) and the corresponding ECFL fit (green
solid curve). Panel:(b) Experimental MDC spectra at 40K (below Tc in green dashed line) and 115K (above Tc in red
dashed line) yield common asymptotes shown in black lines from the far zone. These determine the parameters displayed in
Table (II). Panel:(c) At low energy ± 60 meV, the EDCs spectral function (blue solid line) from Eq. (9) is contrasted with the
corresponding ARPES data from4. Panel:(d) At ω = 0 we compare the MDCs spectral function (blue solid line) from Eq. (9)

with the corresponding ARPES data from Ref. (4). The range of validity for the theoretical expansion is ± k̂kink ( 0.037Å
−1 ),

the data points in the range are shown in black circle symbols, while the light gray circle symbols are outside this range. The
peak position of the theoretical curve has been shifted to left by 0.007 Å−1, a bit less than the instrumental resolution. A similar

shift is made in Panel (l) Fig. 3. For analogous reasons the EDC peak in A(k,ω) at ~kF is shifted to the left i.e. E∗(0) ≤ 0. A
small shift to the right is made in Panel (k) of Fig. (3), in order to compensate for this effect. These shift effects are within the
resolution with present setups, but should be interesting to look for in future generation experiments, since they give useful
insights into the energy momentum dependence of the spectral function.

This value is somewhat larger than the bound ∼ 10
meV given in Table (II), a smaller value leads to nar-
rower lines but with the same shape. In rigorous terms
the same Γ0 must fit the dispersion and also the spectral
functions. Our fit, requiring a different Γ0, is not ideal
in that sense. However the resolution of the available
data is somewhat rough, and should improve with the
newer experimental setups that have become available.

We thus expect that higher resolution data with laser
ARPES should provide an interesting challenge to this
theory. We also stress that from Eq. (9), the MDC line
shapes look more symmetric than the EDC line shapes at
low energies. While many experimental results do show
rather symmetric MDCs, there are well known excep-
tions. For instance MDCs asymmetry has indeed been
reported for nearly optimally doped Hg1201 (Tc = 95



7

K ) at binding energy very close to the Fermi level, ω ∼ -
5 meV and ω ∼ -18 meV in Fig. 5 in Ref. (39). Note that
the ω = 0 MDC plot of the spectral function A(k, ω)

from Eq. (9), locates the peak momentum k̂peak > 0, i.e.

slightly to the right of the physical Fermi momentum ~kF ,
and we consider this implies that the experimental Fermi
momentum determination is subject to such a correction,
whenever the spectral function Eq. (9) has a momentum
dependent caparison factor (see caption in Fig. (2)).

IV. LSCO LOW TEMPERATURE DATA

Here we analyze the LSCO data at low temperature
(20 K) and at various doping levels raging from the insu-
lator (x = 0.03) to normal metal (x = 0.3) from Ref. (1).
The parameters are listed in Table (III), where we ob-
serve that the velocity VL is roughly independent of x,
and has a somewhat larger magnitude to that in OPT
Bi2212 in Table (II). The kink momentum decreases with

decreasing x, roughly as k̂kink = −(0.37x− 0.77x2)Å−1,
and the kink energies of EDC and MDC dispersions are
essentially identical. In the region beyond the kink, the
prediction for V ∗

H is interesting since it differs measur-
ably from the MDC velocity VH . We find the ratio
VH/V ∗

H ∼ 1.02− 1.5 is quite spread out at different dop-
ing.
Our analysis becomes unreliable as lower doping level

x < 0.075 in Panels (h) to (j) in Fig. 3, where the dis-
persion kink is no longer a simple bending kink, an ex-

tra curving tendency begins to appear. To put this in
context, recall that the line shape of LSCO becomes ex-
tremely broad at small x14, and so the peak position of
the spectral function becomes more uncertain than at
higher energy.

We should point out that in Fig. (3) Panel (k) the
spectral function has been shifted to right by 4 meV for
a better fit. This shifting is consistent with our argument
that the Fermi momentum determination has a possible

small error of in order 0.006 Å−1, arising from the k̂ de-
pendent caparison factor, and hence the peak position
has an uncertainty VL × .006 ∼ 10 meV.

V. BI2201 LASER ARPES DATA

In this section, we present our analysis of the high
resolution laser ARPES data of the single layered com-
pounds Bi2201, at various different doping levels taken
from a recent study in Ref. (21). In earlier studies of this
compound using synchrotron emitted high energy pho-
tons, as also LSCO3, the ARPES kinks were observed to
have only a weak temperature dependence5. However,
the new high resolution laser ARPES data enables us to
observe clear and significant temperature dependence of
the ARPES kinks; it is comparable to that of the double
layered Bi2212 compounds. In fact we find that the new
data of Bi2201 compounds in Ref. (21) seems to provide
a textbook example of our ECFL kink analysis.
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MDCs EDCs

LSCO low temperature ARPES data EMDC

kink (meV) EEDC

kink (meV) V ∗

H (eV Å)

x ( doping level ) VL (eV Å) VH (eV Å) k̂kink (Å−1) Calculated Measured Calculated Measured Calculated Measured

0.3 2.4± 0.2 3.0± 0.3 - 0.047± 0.005 113± 29 110± 10 113± 29 2.93± 0.45

0.22 2.0± 0.1 3.6± 0.2 - 0.042± 0.005 84± 18 85± 10 84± 18 3.14± 0.35

0.18 1.7± 0.3 4.5± 0.6 - 0.040± 0.005 68± 43 72± 10 68± 43 3.2± 1.2

0.15 1.75± 0.07 4.3± 0.1 - 0.037± 0.005 65± 11 64± 10 65± 11 3.23± 0.20

0.12 2.0± 0.3 3.7± 0.5 - 0.029± 0.005 58± 28 55± 10 58± 28 3.19± 0.89

0.1 1.8± 0.2 5.0± 0.7 - 0.035± 0.005 63± 44 64± 10 63± 44 3.5± 1.4

0.075 1.9± 0.2 5.6± 0.8 - 0.026± 0.005 49± 37 51± 10 49± 37 3.8± 1.7

0.063 1.8± 0.3 6.0± 0.5 - 0.022± 0.005 40± 21 43± 10 40± 21 3.7± 1.1

0.05 1.7± 0.2 5.7± 0.6 - 0.023± 0.005 39± 25 41± 10 39 ± 25 3.5± 1.3

0.03 2.0± 0.3 6.1± 0.4 - 0.016± 0.005 32± 15 32± 10 32± 15 4.02± 0.85

TABLE III: Data table for ARPES kink analysis for OPT LSCO ( T = 20 K )1 in Fig. 3. We were unable to reliably estimate
Γ0 here due to the lack of data at high temperature, and hence set it at zero. The uncertainties for measured values were given
by half of the instrumental resolution (10 meV, ∼0.005 Å−1). The uncertainties for the calculated values were determined by
error propagation.
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FIG. 3: ARPES kinks data for LSCO data1 compared to theoretical ECFL curves (solid lines) using parameters listed in
Table. III. The doping level x varies between (normal metal) 0.3 ≤ x ≤ 0.03 (insulator) in Panels (a) to (j). Each panel shows
MDC nodal dispersion data (symbols), whose uncertainties are ± 10 meV. The blue dashed line is the theoretical prediction
for EDC dispersion by Eq. (3). Panel:(k) We compare the spectral line shape for EDCs at kF from Eq. (9) (blue solid line)
in the range ±Eideal

kink ∼ 65 meV with the corresponding ARPES data (black circles)12 . Panel:(l) At ω = 0 we compare the
MDCs spectral function (blue solid line) from Eq. (9) with the corresponding ARPES data from Ref. (12). The range of validity

for the theoretical expansion is ± k̂kink ( 0.037Å
−1 ), the data points in the range are shown in black circle symbols, while the

light gray circle symbols are outside this range. The peak position of the theoretical curve MDC has been shifted to left by
0.006 Å−1.
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EDCTh-Prediction (15K)

FIG. 4: ARPES kink analysis for laser ARPES data of Bi2201 at various different doping levels in Ref. (21). Panels:(a) to
(f) we predict EDC dispersions (blue dashed lines) using Eq. (3) for various different doping levels of Bi2201 laser ARPES
data. Panel:(g) and (h) first in panel (g), we present ECFL MDC fit (green solid line) for low temperature (15 K) laser
ARPES dispersion data of OTP Bi2201 from panel (a) in Fig.4 in Ref. (21) (black circles) and predict low temperature EDC
dispersion (green dashed line). Next, in (g) and (h), we predict high temperature EDC (blue dashed lines) dispersions (g) 200K
and (h) 100K for laser ARPES data of OPT Bi2201 (panel (a) in Fig.4 in Ref. (21)), and show the MDC dispersion fits for two
temperature also, blue solid line for 200 K data (red squares) in (g) and brown sold line for 100K data (yellow circles) in (h).
We estimate Γ0 from measuring the difference between the ideal kink energy and the MDC kink energy. In order to compare
with experiments, the x-axis representation in (g) and (h) are given by the physical k (rather than the momentum difference k̂).
In panel (g), the MDC dispersion fit (blue solid line) of 200 K vanishes at k = 0.404 ± 0.002 Å−1, very close to the measured
k = 0.405 ± 0.002 Å−1 of the MDC dispersion data at 200 K. Similarly in panel (h) the MDC dispersion fit (brown solid line)
at 100 K vanishes at k = 0.398 ± 0.002 Å−1, close to the measured k = 0.4 ± 0.002Å−1 of the MDC dispersion data at 100 K.
Note that the true fermi momentum as estimated from the low T (15 K) data is k = 0.394 ± 0.002 Å−1, so that the deviations
are bigger than the momentum resolution ∆k ∼ 0.004 Å−1. Panel:(i) we plot the temperature dependence of Γ0 in panel (a)
in Fig.4 in Ref. (21). Here, the temperature dependence data of Γ0 is fitted with Eq. (6), and η is determined 5.3 ± 2 meV
and ΩΦ = 410 ± 100 meV.
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MDCs EDCs

Bi2201 laser ARPES data EMDC

kink (meV) EEDC

kink (meV) V ∗

H (eV Å)

x ( doping level ) VL (eV Å) VH (eV Å) kkink (Å−1) Calculated Measured Calculated Measured Calculated Measured

0.1 1.47± 0.12 4.7± 0.3 - 0.022± 0.002 32± 3 37± 0.5 32± 6 3.0± 0.3

0.11 1.34± 0.06 2.78± 0.06 - 0.021± 0.002 28± 1 28± 0.5 28± 4 2.28± 0.12

0.13 1.37± 0.07 2.71± 0.18 - 0.025± 0.002 38± 3 39± 0.5 37± 5 2.27± 0.17

0.16 1.5± 0.1 3.5± 0.2 - 0.026± 0.002 39± 3 43± 0.5 39± 6 2.7± 0.2

0.23 2.1± 0.11 5.4± 0.3 - 0.036± 0.002 98± 6 97± 0.5 89± 10 3.9± 0.3

0.26 2.17± 0.16 4.8± 0.4 - 0.045± 0.002 123± 11 122± 0.5 114± 18 3.8± 0.4

0.16 ( 200K ) 1.61± 0.18 3.5± 0.3 0.364± 0.002 87± 11 89± 0.5 75± 11 2.8± 0.4

0.16 ( 100K ) 1.61± 0.18 3.5± 0.3 0.364± 0.002 69± 11 70± 0.5 62± 11 2.8± 0.4

TABLE IV: Parameter table for ARPES kink analysis for laser ARPES data of Bi2201 at various different doping levels21 in
Fig.4. From 0.1 < x < 0.16, we measured Γ0 ∼ 0. For x = 0.23 and 0.26, we measured Γ0 . 17 meV. For x = 0.16 data, we
report variables for high temperature kinks data 200 K (g) and 100 K (h) in Fig. (4), and Γ0 values for 200 K and 100 K data
are in corresponding panels (g) and (h) in Fig. (4). The uncertainties for the calculated parameters were determined by error
propagation, and the uncertainties for the experimental parameters were given by half of the instrumental resolution.
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In Table(IV) we list the kink parameters correspond-
ing to different doping levels of Bi2201 and tabulate the
kink parameters. The entries are in correspondence to
the panels in Fig. (4). In Fig. (4) panels (a) to (f), we
depict the measured MDC dispersion and the predicted
EDC dispersions at different doping levels. The latter
are found from Eq. (3) using the variables in Table (IV).
Panels (g) and (h) of OPT Bi2201 are especially inter-
esting. Combining the low T = 15K dispersion data and
the finite T value of Γ0, found from the depression of

the kink energy EMDC
kink = Eideal

kink − Γ0

√

r
2−r

, we can re-

construct the entire MDC dispersion at a finite T. This
may be compared with the measured finite T MDC data,
thus checking the validity of the formalism. This exer-
cise is carried out at T=200K in Panel (g) and T=100
K in panel (h), where we find a remarkably good fit in
all details. In panels (g,h) we show the actual momen-

tum (rather than k̂) to facilitate a comparison with data.

Panel (g) especially clearly shows that E(k̂) vanishes at

a k̂ that is different from 0. The shift corresponds to
∼ 0.01Å−1. We have commented above that this appar-
ent expansion of the Fermi surface with T is due to the
non trivial physics underlying Eq. (4) lying beyond the
simple minded FLT.
Panel (i) in Fig. (4) plots the temperature dependence

of Γ0 in panel (a) in Fig.(4) in Ref. (21). The measured
Γ0 curve is fitted with Eq. (6), and we estimate η = 5.3±2
meV and ΩΦ = 410± 100 meV.

VI. CONCLUSION

The main goal of this work is to understand the physi-
cal origin of kinks in the dispersion seen in ARPES stud-
ies of a wide class of systems. For this purpose we have
listed fifteen systems of topical interest where ARPES
kink data is available. Our focus is on the nodal direc-
tion data, since the largest volume is available here. We
have devised a useful protocol to extract kink param-
eters from data, where the asymptotic tangents of the
kink are used. Using this protocol we have analyzed in
detail three families of systems, two synchrotron and one
laser ARPES data of cuprate superconductors. The main
parameters of the kinks are the energy, momentum and
the dispersion velocities in EDC and MDC scans, these
provide a quantitative data set for testing various theo-
retical proposals for explaining kinks.
We have outlined two competing theories for the ori-

gin of kinks, and highlighted their distinctive predictions.
One is the electron-Bosonmodel, where an Einstein mode
of either spin or charge origin couples to the electrons,
resulting in a momentum independent self energy. This
theory gives rise to kinks in the electron dispersion. The
other theory is the strong or extreme correlation theory,
where the interactions lead to a momentum dependent
self energy in two dimensions. This theory also gives rise
to kinks in the electron dispersion. We expect that other

contemporary theories of strong correlations, such as the
cluster DMFT22 method would give comparable results
to those of the ECFL theory presented here, which pro-
vides the extra convenience of simple analytical expres-
sions.
The predictions of the two theories differ significantly

and in experimentally testable ways. Let us summarize
the proposed tests.
The Boson-mode theory7 predicts:

1. A kink in the continuous MDC dispersion, located
at the energy of the localized mode.

2. A momentum independent peak at the kink energy,
in the spectral function versus energy curve,

3. A jump discontinuity (rather than a kink) in the
EDC dispersion, and

4. The EDC and MDC velocities are identical both
above and below the kink energy.

The (extremely) strongly correlated Fermi liquid
theory7 predicts:

1. A kink in the continuous MDC dispersion, located
at a (calculable) emergent energy,

2. No peak in the spectral function at the kink energy,

3. A kink (rather than a jump discontinuity) in the
continuous EDC dispersion,

4. The EDC and MDC velocities are identical above
the kink energy.

5. Below the kink energy, the EDC velocity is deter-
mined by the two MDC velocities through a simple
relation.

It is remarkable that a knowledge of the two MDC dis-
persions (VH and VL) suffices to predict the EDC dis-
persion below the kink V ∗

H , through the relation V ∗

H =
3VH−VL

VH+VL

× VL see Eq. (10).
Thus the parameters obtained from the MDC disper-

sion enable us to reconstruct the spectral function at low
momentum and energy, in both MDC and EDC scans.
We have carried out this exercise in three cases above.
It is thus clear that EDC dispersions hold the key to

distinguishing between the two competing theories. EDC
dispersion data is sparse but exists, the work on OPT
Bi2212 from Ref. (4) shown in Fig. (2), presents both
EDC and MDC dispersions at 115 K. Its resolution is
presumably not optimal, since it was an early experi-
ment. Nevertheless we can use it to make a first pass
at comparing the two theories. This data set plotted in
Fig. (2) shows that the EDC dispersion is continuous,
i.e. has no jump. Further the EDC higher velocity V ∗

H is
close to that predicted by the ECFL analysis. The mea-
sured spectral function in EDC, overlooking the noise,
seem not to have any immovable feature at Ekink . Thus
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all three characteristics noted above appear to be consis-
tent with the ECFL predictions rather than the Bosonic
mode theory predictions. It is roughly fit by the low
energy parameterized curves as well, where the MDC is
seen to be more symmetric than the EDC cuts.
As noted in Table (I) the above case OPT Bi2212

is particularly interesting. Low energy Bosonic modes
have been observed in neutron scattering28,29, and in mo-
mentum resolved electron energy loss experiments27. In
Ref. (27) an MDC dispersion is presented using parame-
ters taken from the Bosonic data. This leads to a rather
detailed model, and is shown to provide a reasonable fit
to the MDC dispersion and the observed kink, but the
important EDC dispersion is not displayed.
While we focussed attention on dispersion kinks in the

nodal direction in the present work, the ECFL theory is
also valid for other directions, it has a momentum de-
pendence in the self energy both normal to the Fermi
surface and also along the tangent. The ECFL theory
applied to the d-wave superconducting state in the t-J
model is expected to lead to further interesting results
in the future. For now we note that the observed nodal

direction spectra are essentially unchanged at Tc, which
makes the nodal direction particularly interesting.

In conclusion, we have presented a current summary of
the physics of the kinks in dispersion of cuprate high Tc
superconductors, and given a set of measurements that
can distinguish between competing theories. We believe
that there is urgent need for further high resolution EDC
data, and also T dependent scans to explore the rounding
of kinks. Using such data one should be able to check the
predictions of the theory more thoroughly, and thereby
obtain definitive understanding of the origin of low en-
ergy ARPES kinks of strongly correlated matter.
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