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We demonstrate that spectrally diverse multiple magnetic dipole resonances can be excited in all-dielectric

structures lacking rotational symmetry, in contrast to conventionally used spheres, disks or spheroids. Such

multiple magnetic resonances arise from hybrid Mie-Fabry-Pérot modes, and can constructively interfere with

induced electric dipole moments, thereby leading to novel multi-frequency unidirectional scattering. Here we

focus on elongated dielectric nanobars, whose magnetic resonances can be spectrally tuned by their aspect ratios.

Based on our theoretical results, we suggest all-dielectric multimode metasurfaces and verify them in proof-of-

principle microwave experiments. We also believe that the demonstrated property of multimode directionality

is largely responsible for the best efficiency of all-dielectric metasurfaces that were recently shown to operate

across multiple telecom bands.

PACS numbers: 41.20.Jb, 42.25.Fx, 78.67.Bf, 85.50.-n

INTRODUCTION

Modern nanophotonics aims to efficiently manipulate light

at the nanoscale, with applications ranging from near-field mi-

croscopy and integrated optoelectronics to biomedical science

[1]. Recent decades have witnessed a growing research in-

terest in the study of plasmonic nanoparticles made of gold

or silver, recognized for their outstanding ability to squeeze

light into subwavelength volumes via surface plasmon reso-

nances. The resonant optical plasmonic modes supported by

metallic structures endow them with an ability to manipulate

light at subwavelength scales. These optical resonances are

highly dependent on the choice of the structure’s material and

geometry, allowing for further manipulations. Various types

of photonic devices based on plasmonic nanoparticles have

thus been demonstrated [1–5]. However, their overall func-

tionalities and performance are severely affected by high in-

trinsic losses in metals. When larger amounts of metals are

involved in complex plasmonic structures such as metamate-

rials or metadevices [6–8], the loss problem is exacerbated

and hinders their scalability for practical use.

Whereas new materials with improved plasmonic proper-

ties have been proposed, there has also been a growing realiza-

tion that the optical resonances of high-index resonant dielec-

tric structures can facilitate light manipulation below the free-

space diffraction limit with very low losses [9–26]. In con-

trast to plasmonic nanoparticles that are dominated by elec-

tric resonances, high-refractive-index dielectric nanoparticles

have proven to support both electric and magnetic Mie-type

dipole and multipole resonances, opening up new possibili-

ties for designer photonic metadevices [9–18]. For example,

by using an isolated magnetic dipole Mie resonance, a mag-

netic mirror can be realized [26]. While if we use a magnetic

dipole that is spectrally overlapped with an electric dipole,

these two dipole modes can satisfy the first Kerker condition

[27] and constructively interfere with each other, leading to

directional scattering and the realization of transparent Huy-

gens’ metasurfaces [9, 10]. Therefore, how to fully exploit

these intriguing optically-induced electric and magnetic reso-

nances becomes extremely crucial for realizing and function-

alizing dielectric metasurfaces.

FIG. 1. Classes of all-dielectric meta-atoms: (a) Sphere and nan-

odisk with high refractive index described by the three-dimensional

Mie scattering theory. Characteristic dimensions (d and L) are much

smaller than the free-space wavelength λ. (b) Finite-size nanorod

(L ∼ λ) with a high aspect ratio supporting the hybrid Mie-Fabry-

Pérot as described in this work. (c) Long nanorod (L ≫ λ) described

by the two-dimensional Mie scattering theory.

However, in all studied dielectric resonant structures pre-

sented so far, the geometry of dielectric nanoparticles is con-

sidered to be close to either spheres [11–13], spheroids/disks

[14–16], cubes [17, 18], or long rod [19, 20] [see Figs.

1(a,c)], so the exact Mie solutions of the two- (2D) and three-

dimensional (3D) scattering problems can be applied to ana-

lyze the scattering by such isotropic or symmetric nanostruc-

tures. These symmetric structures, as verified by Mie theory

and associated multiple expansions, can support a series of

different resonances, with first-order Mie resonance usually a
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single magnetic dipole mode, the second-order a single elec-

tric dipole and subsequent higher-order electric and magnetic

multipoles. By contrast, if we consider dielectric nanoparti-

cles with broken rotational symmetry such as finite-size nano-

bars [see Fig. 1(b)], as we will show in the following, such

asymmetric meta-atoms will not only introduce new physics

into the classical Mie scattering problem but can also bring

novel functionality to all-dielectric structures and metasur-

faces.

In this paper, we focus on silicon nanobars with a large as-

pect ratio and demonstrate that such elongated nanostructures

can support hybrid Mie-Fabry-Pérot modes associated with

multiple magnetic dipole resonances. These intriguing modes

arise from the combination of conventional magnetic dipole

modes excited in the transverse direction (Mie resonances)

and the standing waves excited in the longitudinal direction

(Fabry-Pérot cavity modes). Moreover, just like single mag-

netic dipoles, such multiple magnetic dipole modes can also

constructively interfere with induced electric dipoles, thereby

leading to multi-frequency directional scattering, character-

ized by multiple Kerker conditions. Based on our theoreti-

cal results, we further demonstrate novel all-dielectric Huy-

gens’ metasurfaces with spectrally diverse directionality veri-

fied in proof-of-principle microwave experiments. Due to the

existence of multiple magnetic dipoles, such metasurfaces can

work efficiently in both reflection and transmission modes and

also achieve all four quadrants of electromagnetic responses:

ǫ > 0, µ > 0; ǫ < 0, µ > 0; ǫ > 0, µ < 0; ǫ < 0, µ > 0,

where ǫ and µ are electric permittivity and magnetic perme-

ability, respectively. It is also worth noting that whereas there

are some recent efforts on metasurfaces using dielectric build-

ing blocks with broken rotational symmetry [28–30], most

designs do not directly rely on the resonances of single ele-

ments [10, 28, 29] and only fundamental electric and magnetic

dipole modes have been studied [30]. Finally, we also argue

that that the operation of the recently demonstrated broadband

all-dielectric metasurfaces [31] is largely due to the multiple

magnetic multipole modes of the constituent elements in the

form of tall dielectric rods, allowing to achieve destructive in-

terference in reflection over a large spectra bandwidth. Our

findings are expected to provide a new methodology to design

broadband and multifunctional all-dielectric metadevices.

SCATTERING AND MULTIPOLE DECOMPOSITION

The schematic of a designed silicon anisotropic nanobar is

shown in Fig. 2(a). The geometric parameters are all different

in three dimensions withW = 110 nm, Lz = 220 nm and Ly =

400 nm. For comparison, we also introduce a symmetric sili-

con nanobar with Ly = Lz = L =W = 400 nm, as depicted

in Fig. 2(b). Here we use 3D finite-difference time-domain

(FDTD) simulations [32] and the Cartesian multipole analysis

[see ] to calculate the response of the structures and identify

the contributions from each multipole moments. The optical

constants of silicon is taken from Palik’s handbook [33] while

FIG. 2. (a, b) Schematic diagrams of (a) an anisotropic (W = 110

nm, Ly = 400 nm and Lz = 220 nm) and (b) a symmetric (W = L

= 400 nm) silicon nanobar. (c, d) Simulated scattering spectra (solid

black line) and calculated multipole decompositions (total contribu-

tions: dotted red line, ED: dotted blue line, MD: dotted green line,

EQ: dotted magenta line) of (c) the anisotropic and (d) symmetric

nanobar, respectively.

the surrounding media is assumed to be air. The structures are

illuminated by a normally incident plane wave with electric

field along y direction.

Fig. 2(c) and 2(d) represent the calculated scattering effi-

ciency spectra and decomposed multipole contributions. The

scattering efficiency Qeff is defined as Qeff = Qsca/Qgeo,

where Qsca and Qgeo are scattering and geometrical cross sec-

tions of the particle, respectively. Here in our case, Qgeo =
W × Ly . For multipole expansions, we only consider the

first four terms, namely, electric dipole (ED), magnetic dipole

(MD) and electric quadrupole (EQ) and magnetic quadrupole

(MQ) modes. The scattering spectra obtained from the FDTD

simulations (solid black line) and the multipole expansions

(dotted red line) are in a good agreement with each other,

indicating that higher-order multipoles are negligible in our

case. At first glance, both scattering spectra of the nanobars

have similar optical responses with two pronounced maxima

[cf. dotted black curves in Figs. 2(c,d)]. However, through

the multipole expansion, we reveal that the underlying con-

tributions of each multipole moments to these peaks are com-

pletely different. For the symmetric nanobar, the peaks are

attributed to the separated MD and ED resonant modes, as

has been reported in many previous studies on all-dielectric

spheres, disks, or cubes. By contrast, the first peak in the scat-

tering spectrum of the anisotropic nanobar shows a resonance

overlap of MD and ED, while the second peak arises from the

second maximum in the magnetic dipole contribution, imply-

ing the existence of a second-mode magnetic dipole (MD2),

which has never been discussed or demonstrated before. We

would also like to note that this MD2 mode is essentially dif-

ferent from conventional MQ mode, which will be shown in

the following section.
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MULTI-FREQUENCY DIRECTIONAL SCATTERING

To further illustrate the properties of the isotropic nano-

bar and especially the MD2 mode, in Fig. 3 we plot the

near- and far-field distributions at two peak wavelengths (λ
= 992 nm and λ = 721 nm). For λ = 992 nm, the induced

ED (parallel to the incident polarization, py1) and MD (mx1)

dominate the near-field profiles with very close amplitudes

(|py1| = 1.03× |mx1|/c, where c is the speed of light in vac-

uum) and a moderate phase difference (∆φ ∼ 23◦), making

them approximately satisfy the first Kerker condition [27] and

thus resulting in unidirectional forward scattering along z di-

rection, as shown in Figs. 3(a,b). The simulated scattering

patterns (dotted black lines) are also in an excellent accor-

dance with the calculated radiation patterns from decomposed

multipoles (solid red lines).

Fig. 3(c) shows contrasting field distributions at λ = 721

nm. We observe that standing wave patterns appear in both

electric and magnetic fields, providing valuable insights into

the nature of the MD2 mode. The electric field is the su-

perposition of a standing wave Ez and an induced ED mode

(py2) in y direction, whereas the magnetic field is the con-

sequence of a standing wave Hx along with an induced MD

mode in x direction as well, leading to the appearance of the

hybrid Mie-Fabry-Pérot mode MD2 [see for theoretical stand-

ing wave decompositions]. In spite of the standing wave pat-

tern or fluctuations in the magnetic field distribution, the MD2

mode still has a net magnetic dipole moment (mx2) in −x di-

rection, just like the fundamental MD mode that we call now

MD1 mode. Interestingly, this magnetic dipole moment can

also nearly satisfy the first Kerker condition with the elec-

tric dipole (|py2| = 0.98× |mx2|/c,∆φ ∼ 13◦), thereby of-

fering the novel behavior of multimode (multi-frequency) uni-

directional scattering [see for theoretical explanations]. This

unique property is clearly shown in Fig. 3(d). We can find

good agreement between the simulated and calculated angu-

lar patterns. Meanwhile, we should remember about the exis-

tence of the EQ mode. Although it brings about small unde-

sired backscattering, it also substantially narrows the scatter-

ing pattern and boosts the directivity. A front-to-back power

ratio higher than 9 thus could be obtained in this case.

Besides the two well defined maxima in the scattering spec-

trum, there is also a noticeable dip around λ = 767 nm [see in

Fig. 2(c)], accompanied by a minimum near zero in the MD

contribution, indicating that the contribution of the MD mode

to the far field almost vanishes. This dip can be attributed to

the cancellation of the induced magnetic dipoles which have

opposite directions in the anti-nodes of the standing-wave pat-

tern, mimicking a magnetic ‘dark mode’. Specifically, the am-

plitude of the net magnetic dipole moment at λ = 767 nm is

only ∼1/5 of that of the electric dipole moment, correspond-

ing to ∼1/25 in the far-field contributions.

Since the MD2 mode arises from a magnetic standing wave

pattern, one can intuitively expect a strong dependence of ge-

ometric parameters on the mode characteristics and further

contributions to the scattering properties. In Fig. 4(a) and Fig.

4(c), we use two-dimensional color maps to show the impact

of the geometric parametersW and Ly on the scattering spec-

tra. With increasing length Ly and width W , we can see evi-

dent red-shifts and the newly emerged higher-order Mie reso-

nances. These red-shifts and new Mie resonances, along with

the Fabry-Pérot resonances, can further lead to other multi-

mode ED and MD besides the MD2 mode. For instance, the

scattering spectra for nanobars with Ly = 1000 nm and W
= 300 nm, marked by the dashed black lines in the 2D color

maps, show a fascinating property of triple-wavelength unidi-

rectional scattering supported by an individual nanobar [Figs.

4(b,d)]. This is exactly due to the interferences of the multi-

mode MD and ED as well as other multipole moments excited

inside the nanobars with increasing geometric parameters, ac-

companied by increasing-order Fabry-Pérot modes. In partic-

ular, it can be seen that, the increase in Ly results in higher-

mode MD while the increase in W brings about higher-mode

ED [see ].

MULTIMODE METASURFACES

Since the presented individual nanobar have proven to sup-

port multifrequency directional scattering, we expect that a

mteasurface composed of such nanobars can also have a mul-

timode response. In Fig. 5 we plot reflection and transmis-

sion full spectra (intensity and phase) of such a metasurface.

The inset diagrams the metasurface with Px = 160 nm and

Py = 500 nm (periodicities in x and y directions) on a glass

substrate (nglass = 1.5). One reflection peak R1 and two trans-

mission peaks T1 and T2 can be seen in the plots, indicating

that our metasurface can function as either a perfect mirror or

a transparent film at different wavelengths. At transmission

peak T1, the fundamental electric and magnetic dipole mo-

ments (ED1 and MD1) constructively interfere with each other

and lead to the high transmission. While at the high reflection

peak R1, a standing wave pattern appears and the magnetic

dipole moment has an opposite direction to that at T1. With

the electric field kept in the same direction, this will lead to a

reversal in the direction of power flow, i.e. changing from high

transmission to high reflection. By contrast, at second trans-

mission peak T2, the hybrid magnetic dipole moment once

again has the same direction as that in T1, thereby resulting

in a second high transmission peak. This phase-flipping phe-

nomenon of the magnetic dipoles and associated multimode

high transmission are directly due to the emergence of MD2

modes. Moreover, these multiple resonant modes also enable

both reflected and transmitted light to experience significant

phase changes with maintained high efficiency. The abrupt

phase changes arising from the resonances can be easily tuned

by varying the sizes of the nanostructures, which can be fur-

ther used in the implementation of perfect reflectors, magnetic

mirrors or gradient metasurfaces [9, 10]. Compared to previ-

ous studies where metasurfaces can only work in reflection or

transmission modes, our metasurface makes it possible to con-
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FIG. 3. (a, c) Near-field distributions in the middle cut plane (z = 0) and 3D far-field scattering patterns of the nanobar at (a) λ = 992 nm and

(c) λ = 721 nm, respectively. The colors represent normalized amplitudes of the electric and magnetic fields, and arrows show the field vectors.

(b, d) Simulated far-field scattering patterns (dotted black line) and calculated multipole radiation patterns (solid red line) at (b) λ = 992 nm

and (d) λ = 721 nm, respectively. The patterns are normalized to the maximum scattering intensity in the far field.

trol both reflected and transmitted light, which can remarkably

extend the functionality of metasurfaces.

FIG. 5 (c) shows the calculated impedance of the meta-

surface. The two transmission peaks T1 and T2 correspond

well to the impedance-matched points while reflection peak

R1 corresponds to a largely mismatched point where the wave

impedance becomes predominately imaginary. A striking flip

of the impedance phase also occurs around 990 nm from

+90◦to -90◦, indicating the metasurface switching fast from

a magnetic conductor to an electric conductor [17].

To better understand the optical response of the metasur-

face, we also adopted a standard S-parameter retrieval method

[34] to compute the effective permittivity and permeability,

as shown in Fig. 5 (d). Two notable magnetic resonances

and one electric resonance could be observed. Combing the

FIG. 4. Scattering efficiency spectra as a function of geometric pa-

rameters (a) Ly with fixed W =110 nm and Lz = 220 nm, and (b)

W with fixed Lz = 220 nm and Ly = 400 nm. (c, d) Scattering spec-

trum for a nanobar with dimensions marked by the dashed lines in (a)

and (b) correspondingly. The insets show the far-field unidirectional

scattering patterns at different resonance wavelengths.

corresponding near-field distributions, it is easy to verify the

existences of the ED, MD1 and MD2 mode induced in the

metasurface. The spectral positions of these modes are dif-

ferent from those induced in the individual nanobar because

of the substrate effect and the mutual interaction. Two in-

tersections between the plots of permittivity and permeability

indicate the impedance matched points and the fulfillment of

the Kerker condition. The first transmission T1 appears at the

tails of the fundamental ED and MD1 resonances, showing

an off-resonant directionality. In this region (λ > 1080 nm),

the permittivity and permeability of the metasurfaces are both

above zero, which means the overall response of the metasur-

face is similar to conventional dielectric materials. However,

for shorter wavelengths, the electric and magnetic resonances

lead to distinct phenomena. The MD1 mode makes the meta-

surface function as a magnetic mirror which has a negative

permeability (µ < 0) while the ED mode enables the meta-

surface to function as an electric mirror with a negative per-

mittivity (ǫ < 0). More interestingly, these two contrasting

behaviors can be switched to each other very fast since the

ED and MD1 modes are spectrally very close to each other.

This is also in good accordance with the impedance phase

flip occurring at 980 nm. Another fascinating feature of the

metasurface is its negative refractive index (ǫ < 0, µ < 0 )

attributed to the MD2 and the ED modes for λ < 950 nm.

In this region, the constructive interference of the MD2 and

ED modes happens in both of their resonance regimes, result-

ing in an efficient Huygens source with negative permittivity

and permeability. Therefore, our metasurface can support all

four quadrants of possible optical responses, which can bring

various unexplored possibilities and functionalities.

To verify the proposed concept experimentally, the silicon

nanobars are scaled up to the microwave frequency range.

Here we employ full-scale numerical simulations [35] to op-

timize bar scatterers and use Eccostock HiK ceramic powder

(permittivity ε = 10 and loss tangent tan θ = 0.0007) as the

high-index dielectric material to mimic silicon nanobars in the

microwave region.
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FIG. 5. (a, b) Reflection and transmission spectra of the metasurface composed of the anisotropic nanobars shown in FIG. 2a. The periodicities

in x and y directions are 160 nm and 500 nm, respectively. Insets diagram the configuration and corresponding near-field magnetic distributions

in xy plane at R1, T1, T2 peak wavelengths. (c) Calculated impedance of the metasurface. Solid black line is the real value Z′ of the impedance

Z, which corresponds predominately to radiation resistance. Green dotted line is the impedance phase. The blue dashed line indicates the

impedance matching condition Z′
= Z0 (d) Effective permittivity (blue) and permeability (red) of the metasurface obtained using S-parameter

retrieval.ǫ′ and µ′ denote the real parts of ǫ and µ.

First, we study experimentally the scattering from a single

bar scatter in an anechoic chamber. The experimental setup is

sketched in Fig. 6(a). To perform a plane wave excitation and

to receive the scattered signal, we utilized a pair of identical

rectangular linearly polarized wideband horn antennas (oper-

ational range 1–18 GHz) that were connected to the ports of a

Vector Network Analyzer (Agilent E8362C). The polarization

is along y direction. The transmitting antenna and the single

scatter have been fixed, whereas the receiving antenna was

moving around the scatter in xz plane. The scattering cross-

section patterns measured in xz plane at two distinct frequen-

cies f = 6.8 GHz and f = 9.2 GHz are plotted in Fig. 6(a) and

they are compared with the results of numerical simulations.

We find the best agreement for slightly shifted frequencies f
= 6.4 GHz and f = 9.0 GHz, and the difference between of the

measured Mie resonant frequencies and simulated resonances

can be explained by the tolerance of the antenna prototype

fabrication. These results clearly demonstrate the multifre-

quency directional scattering supported by a single dielectric

bar scatter.

Next, we consider all-dielectric metasurfaces composed of

the elongated anisotropic bars. A photograph of the exper-

imental metasurface prototype is shown in Fig. 6(b). The

transmission and reflection spectra of the metasurface have

been investigated both numerically and experimentally. We

observe that the metasurface exhibits an expected multimode

response with two pronounced maxima in the transmission co-

efficient (at the frequencies around 6.5 GHz and 9.5 GHz) and

one well-defined peak in the reflection coefficient (in the fre-

quency band 7.5–8 GHz), as predicted numerically for the op-

tical frequency range. The slight disagreement between the

measured and simulated results in the positions of frequen-

cies in the transmission/reflection maxima and minima can be

explained by the tolerance of the sample fabrication. The mis-

matching in the magnitudes of transmission/reflection coeffi-

cients is due to a deviation of permittivity in each particular

unit cell caused by different density of ceramic powder.
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FIG. 6. (a) Dielectric bar scatter. Left: a sketch of the experimen-

tal setup to measure the radiation pattern of the single scatter with

the dimensions W = 0.5 cm, Ly = 1.8 cm, Lz = 1.5 cm. Right:

experimentally measured (red dots) and CST numerically simulated

(solid curves) radiation patterns for the Kerker conditions. (b) Di-

electric metasurface. Left: photograph of the fabricated multimode

Huygens’ metasurface composed of anisotropic dielectric bars with

the dimensions W = 0.5 cm, Ly = 1.8 cm, Lz = 1.5 cm placed with

the periods Px = 0.9 cm and Py = 2.7 cm. Right:Experimentally

measured (solid curves) and CST numerically simulated (dashed

curves) reflection and transmission spectra magnitudes of the mul-

timode Huygens’metasurface.

CONCLUSION

We have presented the novel all-dielectric metasurfaces

with multimode directionality. Such metasurfaces can sup-

port all four possible quadrants of electromagnetic responses

and can also work efficiently with either high reflection or

high transmission, which may find many applications and

largely extends the possibilities of planar optics. We have also

demonstrated that this unique multimode property originates

from the hybrid Mie-Fabry-Pérot modes supported by high-

index dielectric structures with large aspect ratios. The re-

vealed hybrid modes and associated multiple magnetic dipole

resonances also open an universally new way for engineering

the properties of resonant nanostructures and metamaterials.

We also believe that the phenomenon of multimode mag-

netic dipole moments is responsible for the best efficiency of

broadband all-dielectric metasurfaces based on the general-

ized Huygens principle. Indeed, the superposition of the scat-

tering contributions from several electric and magnetic multi-

pole modes of the constituent metaatoms allows to achieve de-

structive interference in reflection over a large spectral band-

width, demonstrating reflectionless half-wave plates, quarter-

wave plates, and vector beam q-plates that can operate across

multiple telecom bands with ∼ 99 %polarization conversion

efficiency [31].

Multipole decomposition

We employed the Cartesian multipole expansion technique

[14, 36] to analyze different multipole modes inside the nano-

bars. The multipoles are calculated through the light-induced

polarization P = ǫ0(ǫr−1)E, where ǫ0 and ǫr are the vacuum

permittivity and relative permittivity of the nanobar, respec-

tively. We can write P as:

P(r) =

∫

P(r′)δ(r− r′)dr′, (1)

and then expand the delta function in a Talyor series with re-

spect to r’ around nanobar’s center (origin point r0). Then we

can get:

P(r) ≃ pδ(r) +
i

ω
[∇×mδ(r)]− 1

6
Q̂∇δ(r)

− i

2ω
[∇× M̂∇δ(r)], (2)

where the multipole moments (electric dipole p, mag-

netic dipole m, electric quadrupole tensor Q̂ and magnetic

quadrupole tensor M̂ ) are defined as:

p =

∫

P(r′)dr′, (3)

m = − iω
2

∫

[r′ ×P(r′)]dr′, (4)

Q̂ = 3

∫

r′P(r′) +P(r′)r′ − 2

3
[r′ ·P(r′)]Ûdr′ (5)

M̂ =
ω

3i

∫

{[r′ ×P(r′)]r′ + r′[r′ ×P(r′)]}dr′, (6)

with ω is the angular frequency and Û is the 3 × 3 unit tensor.

The scattered far-field electric field thus can be calculated by:

Esca(r) ≃
k20
4πǫ0

eik0r

r

{

[n× [p× n]] +
1

c
[m× n]

+
ik0
6

[n×[n× Q̂n]] +
ik0
2c

[n× (M̂n)]
}

, (7)

in which r = |r|, n is the unit vector directed along r, k0 is

the wave number and c is the speed of light in a vacuum. The

total radiation power Psca of the multipoles is:

Psca ≃ c2k40Z0

12π
|p|2 + k40Z0

12π
|m|2 + c2k60Z0

1440π

∑

|Qαβ|2

+
k60Z0

160π

∑

|Mαβ|2, (8)

where Z0 is the vacuum wave impedance and α, β ≡ x, y, z
denote Cartesian components.

Field decomposition of a dielectric resonator: theory vs

simulations

Herein we present a theoretical interpretation of the near-

field profiles of the hybrid Mie-Fabry-Pérot modes. The op-

tical resonances of a dielectric rectangular particle can be
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FIG. 7. Profile of the resonant cavity modes. Typical TM modes of

the rectilinear cavity with quantum numbers (a) n = 1,m = 0, l =

1, and (b) n = 3, m = 0, l = 1, and (c) n = 4,m = 0, l = 1, and

(d) n = 3, m = 0, l = 2. The blue arrows indicate electric vector

field and red arrows magnetic vector field. The TM101 and TM301

modes replicate the field distribution of two magnetic dipole modes

in Fig.3 in the main text.

described in terms of induced standing waves inside a high

impedance cavity. Consider a homogeneous, isotropic dielec-

tric rectangular resonator spanning x = −W/2 to x = W/2,

y = −Ly/2 to y = Ly/2, and z = −Lz/2 to z = Lz/2. To

decompose the electric and magnetic fields into standing wave

cavity modes we begin with the vector Helmholtz equation,

which can be obtained from the source-free Maxwell equa-

tions:

∇×∇× {E,H} − ω2µε{E,H} = 0. (9)

Solution of the vector Helmholtz equation (B1) can be ob-

tained via the rectilinear generating function ψ

∇2ψ − k2ψ = 0, (10)

where k2 = ω2µε. By separation of variables, the rectilinear

generating function may be written as ψ = X(x)Y (y)Z(z).
Inserting this into the scalar Helmholtz equation (B2) and di-

viding by X(x)Y (y)Z(z) yields:

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
+

1

Z

∂2Z

∂z2
= −k2, (11)

from which we deduce

1

X

∂2X

∂x2
+k2xX = 0,

1

Y

∂2Y

∂y2
+k2yY = 0,

1

Z

∂2Z

∂z2
+k2zZ = 0,

(12)

with k = k2x+k
2
y +k

2
z . The general solution of equation (B3)

can be written in the following form

X = Xe cos(kxx) +Xo sin(kxx),

Y = Ye cos(kyy) + Yo sin(kyy),

Z = Ze cos(kzz) + Zo sin(kzz), (13)

where the corresponding amplitudes are found from the corre-

sponding boundary conditions. For high refractive index par-

ticles, due to their high impedance for the wave inside the

cavity, perfect magnetic conductors (PMC) are typically used

as approximate boundary conditions [37–39]. PMC bound-

ary conditions are dual to the perfect electric conductor (PEC)

conditions used for metallic cavities. Using PMC boundary

conditions, i.e. B‖ = E⊥ = 0, we can deduce the following

electric and magnetic field profiles of the cavity modes:





Ex

Ey

Ez



 =





A sin(kxx) cos(kyy) cos(kzz)
B cos(kxx) sin(kyy) cos(kzz)
C cos(kxx) cos(kyy) sin(kzz)



 ,





Bx

By

Bz



 =
i

ω





(Cky −Bkz) cos(kxx) sin(kyy) sin(kzz)
(Akz − Ckx) sin(kxx) cos(kyy) sin(kzz)
(Bkx −Aky) sin(kxx) sin(kyy) cos(kzz)





(14)

Note that magnetic field satisfies the equation ∇ · B = 0.

The coefficients A, B, C are subject to the condition ∇ ·E =
0, which leads to the condition Akx + Bky + Ckz = 0. The

boundary conditions determine the eigenfrequency of the cav-

ity modes as:

f =
ω

2π
=

ck

2π
√
εµ

=
c

2π
√
εµ

√

k2x + k2y + k2z

=
c

2π
√
εµ

√

(
nπ

W
)2 + (

mπ

Ly

)2 + (
lπ

Lz

)2,

fnml =
c

2
√
εµ

√

(
n

W
)2 + (

m

Ly

)2 + (
l

Lz

)2, (15)

with kx = nπ
W
, ky = mπ

Ly

, kx = lπ
Lz

. It should be noted that

Eq. B7 holds both for dielectric and metallic cavities because

of the duality of PEC and PMC conditions, whereas the elec-

tric and magnetic fields obtained in Eq. B6 for dielectric res-

onators are distinct from those for metallic cavities [40]. To

relate this mode analysis to the scattering problem, we fix the

direction of propagation along z-axis. For TM modesBz = 0,

which requires that Bkx − Aky = 0, or B =
ky

kx

A and

C = − A
kz

(
k2

y

kx

+ kx). This yields the E- and B-fields for

TMnml modes:
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



Ex

Ey

Ez



 = A









sin(nπ
W
x) cos(mπ

Ly

y) cos( lπ
Lz

z)
mW
nLy

cos(nπ
W
x) sin(mπ

Ly

y) cos( lπ
Lz

z)

−Lz(n
2L2

y
+m2W 2)

nlWL2
y

cos(nπ
W
x) cos(mπ

Ly

y) sin( lπ
Lz

z)









,





Bx

By

Bz



 =
iA

ω









−(
mLz(n

2L2

y
+m2W 2)

nlWL3
y

+ mlW
nLyLz

) cos(nπ
W
x) sin(mπ

Ly

y) sin( lπ
Lz

z)

(
Lz(n

2L2

y
+m2W 2)

lW 2L2
y

+ l
Lz

) sin(nπ
W
x) cos(mπ

Ly

y) sin( lπ
Lz

z)

0









(16)

The cavity modes TM101 and TM301 [see Fig. 7(a,b)] repli-

cate the electromagnetic field structure of two magnetic dipo-

lar resonances in Fig. 3 (see main text). One might also con-

struct higher order magnetic dipole modes profiles for larger

values of n > 1 and l > 1 [see Fig. 7(c,d)] and corresponding

scattering resonant modes in Fig. 8 and Fig. 9. We would like

to emphasize that this theoretical treatment is based on the ap-

proximate PMC boundary conditions which is only applicable

to high-permittivity structures. There is no exact closed-form

expression available for the resonant frequencies or field dis-

tributions of such dielectric resonators, but we have provided

an approximate solution to extract the essential modal behav-

ior seen in simulations, as discussed in the main text.

Radiation of MD2 modes

It is worth noting that for the conventional multipole de-

composition, the MD mode is usually defined as only one

magnetic dipole positioned in the center of the particle (equa-

tion A4). However, here we can observe two separate mag-

netic dipoles in the near-field distributions of the MD2 mode

(Fig. 3c). Usually two dipoles cannot be equivalently replaced

by one dipole because the spatial distance between the two

dipoles can lead to an additional phase term in the far-field

response. However, in the following, we will show that, Eq.

A4 and conventional multipole decomposition are still valid

for MD2 mode and can clearly reveal its underlying physics.

First we consider two separate magnetic dipole m1 and m2

at the MD2 resonance with a spatial distance 2d, as shown in

FIG. 8.

FIG. 8. Equivalent model for second magnetic resonance.

Given the axial symmetry of the structure, we can assume

that these two magnetic dipoles are identical to each other

with mj = 1
2 mMD2 (j = 1, 2) , where mMD2 is the total

magnetic dipole moment that we can obtain through the mul-

tipole expansion. We note yj the position vectors of the two

magnetic dipoles and thus we can write the electric field Em

produced in the far-field by these two magnetic dipoles as:

Em(r) =
∑

j

k20
4πǫ0rc

eik|r−yj|(mj × n) (17)

At far-field limit where r ≫ d we can have:

|r− yj| − r =
√

x2 + (y ∓ d)2 + z2 − r

≈ r
(

√

1∓ 2yd

r2
− 1

)

≈ ∓d
(y

r

)

≈ ∓dsinθsinϕ. (18)

Then we can derive Em as follows:

Em =
k20

4πǫ0c
|mMD2|

eikr

r
cos(kdsinθsinϕ)

· (−sinϕθ̂ + cosθcosϕϕ̂). (19)

with θ̂ and ϕ̂ the unit vectors of the spherical basis. In

the above equation, one can clearly see the additional term

cos(kdsinθsinϕ) contributed by the spatial distance and how

it influences the far-field response. However, this additional

term will not have an impact on the total scattered power Pm

contributed by the two magnetic dipoles, which can be deter-

mined by the following expression:

Pm =

∫

Ω

dPmdΩ =
1

2Z0

∫ π

0

∫ 2π

0

|Em|2r2sinθdθdϕ

=
Z0k

4

12π
|mMD2|2. (20)

Equation (C4) shows that the power contribution Pm of two

separate identical magnetic dipoles is only determined by their

total magnetic dipole moment other than their relative posi-

tions. In our paper, we decompose the far-field scattering
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cross section into multipolar series, which is only related to

the power contribution of each multipoles. Therefore, the sec-

ond peak in the MD curve represents a local maximum con-

tribution from the MD modes to the total scattering power,

proving the existence of MD2 mode which consists of two

magnetic dipoles.

Next, we consider the interference of the MD2 and ED

mode. As shown in FIG. 8, there is also an induced electric

dipole p oscillating along y direction. One can write the total

electric field Epm induced by the three dipoles as:

Epm(r) =
k20

4πǫ0r
eikr

[

|p|(cosθsinϕθ̂ − cosϕϕ̂)

+ 2
|mj|
c
cos(kdsinθsinϕ)(−sinϕθ̂ + cosθcosϕϕ̂)

]

.

(21)

Given the incident light is along −z direction in our study,

the backward and forward radar cross sections of the nanobar

can be defined as:

σback = lim
r→∞

4πr2
|Epm(θ = 0, ϕ = 0)|2

|Einc|2

=
k4

4πǫ0|Einc|2
∣

∣

∣py − 2
mxj

c

∣

∣

∣

2

, (22)

σforward = lim
r→∞

4πr2
|Epm(θ = π, ϕ = 0)|2

|Einc|2

=
k4

4πǫ0|Einc|2
∣

∣

∣py + 2
mxj

c

∣

∣

∣

2

, (23)

with |Einc| is the amplitude of the incident electric field, |py|
and |mxj | are the amplitudes of the induced electric and mag-

netic dipole moments. Therefore, suppressed backscattering

and maximum forward scattering occur if the following con-

dition:

py =
2

c
mxj =

1

c
mMD2, (24)

is satisfied. Equation (C8) clearly reveals that, for a sys-

tem consisting of ED and MD2 modes, unidirectional forward

scattering can only appear when the electric dipole moment p
is equal to the total dipole momentmMD2 of the two magnetic

dipoles mj . When there is only one fundamental magnetic

dipole, equation (C8) becomes py = 1
c
mx, which is the well-

known first Kerker condition [27].

Near field distributions of higher-order hybrid modes

As predicted by the theory (Fig. 7) and demonstrated by

the numerical simulations (Fig. 4), we expect to find higher-

order hybrid modes accompanied by higher-order multipoles

FIG. 9. Near-field distributions of electric and magnetic fields of the

nanobar with Ly = 1000 nm, W = 110 nm, Lz = 220 nm.

FIG. 10. Near-field distributions of electric and magnetic fields of

the anisotropic nanobar with W = 300 nm, Ly = 400 nm, Lz = 220

nm.

and cavity modes with increasing geometric parameters. Here

we show their near-field distributions.

For increased length Ly = 1000 nm, to clearly illustrate the

“higher-mode” magnetic dipolar responses and the associated

higher-order cavity modes, here we plot field components Ez

and Hx. It can be readily seen that the three peaks (λ = 992

nm, 858 nm and 747 nm) in the scattering spectrum (see Fig.

4(c)) correspond to the existences of MD2, MD3 and MD4

mode, respectively.

For increased widthW = 300 nm, fundamental ED and MD

modes can be clearly seen at λ = 1228 nm, while at λ = 833

nm, an ED2 mode accompanied by a standing wave pattern (3

anti-nodes) in x direction can be observed. A MD2 mode can

also be seen at this wavelength. For shorter wavelength λ =

652 nm, we observe complex and hybrid modal distributions

while the higher-mode ED and MD responses could still be

distinguished.
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