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We determine the frequency dependence of four independent Cartesian tensor elements of the
dielectric function for CdWO4 using generalized spectroscopic ellipsometry within mid-infrared and
far-infrared spectral regions. Different single crystal cuts, (010) and (001), are investigated. From
the spectral dependencies of the dielectric function tensor and its inverse we determine all long-
wavelength active transverse and longitudinal optic phonon modes with Au and Bu symmetry as
well as their eigenvectors within the monoclinic lattice. We thereby demonstrate that such infor-
mation can be obtained completely without physical model line shape analysis in materials with
monoclinic symmetry. We then augment the effect of lattice anharmonicity onto our recently de-
scribed dielectric function tensor model approach for materials with monoclinic and triclinic crystal
symmetries [Phys. Rev. B, 125209 (2016)], and we obtain an excellent match between all measured
and modeled dielectric function tensor elements. All phonon mode frequency and broadening pa-
rameters are determined in our model approach. We also perform density functional theory phonon
mode calculations, and we compare our results obtained from theory, from direct dielectric function
tensor analysis, and from model lineshape analysis, and we find excellent agreement between all
approaches. We also discuss and present static and above reststrahlen spectral range dielectric con-
stants. Our data for CdWO4 are in excellent agreement with a recently proposed generalization of
the Lyddane-Sachs-Teller relation for materials with low crystal symmetry [Phys. Rev. Lett. 117,
215502 (2016)].

PACS numbers: 61.50.Ah;63.20.-e;63.20.D-;63.20.dk;

I. INTRODUCTION

Metal tungstate semiconductor materials (AWO4)
have been extensively studied due to their remarkable
optical and luminescent properties. Because of their
properties, metal tungstates are potential candidates for
use in phosphors, in scintillating detectors, and in op-
toelectronic devices including lasers.1–3 Tungstates usu-
ally crystallize in either the tetragonal scheelite or mon-
oclinic wolframite crystal structure for large (A = Ba,
Ca, Eu, Pb, Sr) or small (A = Co, Cd, Fe, Mg, Ni,
Zn) cations, respectively.4 The highly anisotropic mono-
clinic cadmium tungstate (CdWO4) is of particular in-
terest for scintillator applications, because it is non-
hygroscopic, has high density (7.99 g/cm3) and there-
fore high X-ray stopping power,2 its emission centered
near 480 nn falls within the sensitive region of typi-
cal silicon-based CCD detectors,5 and its scintillation
has high light yield (14,000 photons/MeV) with little
afterglow.2 Raman spectra of CdWO4 have been studied
extensively,6–10 and despite its use in detector technolo-
gies, investigation into its fundamental physical proper-
ties such as optical phonon modes, and static and high-
frequency dielectric constants is far less exhaustive.

Infrared (IR) spectra was reported by Nyquist and
Kagel,11 however, no analysis or symmetry assign-
ment was included.11 Blasse6 investigated IR spectra
of HgMoO4 and HgWO4 and also reported analysis of
CdWO4 in the spectral range of 200-900 cm−1 and iden-
tified 11 IR active modes but without symmetry as-
signment. Daturi et al.7 performed Fourier transform
IR (FT-IR) measurements of CdWO4 powder. An in-
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Figure 1. (a) Unit cell of CdWO4 with monoclinic angle β
and Cartesian coordinate system (x, y, z) used in this work.
(b) View onto the a - c plane along axis b, which points into
the plane. Indicated is the vector c⋆, defined for convenience
here. See section IIC 9 for details.

complete set of IR active modes was identified, and a
tentative symmetry assignment was provided. A broad
feature between 260-310 cm−1 remained unexplained.
Gabrusenoks et al.8 utilized unpolarized far-IR (FIR) re-
flection measurements from 50-5000 cm−1 and identified
7 modes with Bu symmetry but did not provide their fre-
quencies. Jia et al.12 studied CdWO4 nanoparticles using
FT-IR between 400-1400 cm−1, and identified 6 absorp-
tion peaks in this range without symmetry assignment.
Burshtein et al.13 utilized IR reflection spectra and iden-
tified 14 IR active modes along with symmetry assign-
ment but ignored the anisotropy of the monoclinic sample



2

in the analysis of the dielectric tensor. Lacomba-Perales
et al.9 studied phase transitions in CdWO4 at high pres-
sure and provided results of density functional theory
(DFT) calculations for all long-wavelength active modes.
Shevchuk and Kayun14 reported on the effects of temper-
ature on the dielectric permittivity of single crystalline
(010) CdWO4 at 1 kHz yielding a value of approximately
17 at room temperature. Many of these studies were con-
ducted on the (010) cleavage plane of CdWO4, and there-
fore, the complete optical response due to anisotropy in
the monoclinic crystal symmetry was not investigated.
However, in order to accurately describe the full set of
phonon modes as well as static and high-frequency dielec-
tric constants of monoclinic CdWO4, a full account for
the monoclinic crystal structure must be provided, both
during conductance of the experiments as well as during
data analysis. Overall, up to this point, the availability
of accurate phonon mode parameters and dielectric func-
tion tensor properties at long-wavelengths for CdWO4

appears rather incomplete.
In this work we provide a long-wavelength spec-

troscopic investigation of the anisotropic properties
of CdWO4 by generalized spectroscopic ellipsometry
(GSE). We apply our recently developed model for com-
plete analysis of the effects of long-wavelength active
phonon modes in materials with monoclinic crystal sym-
metry, which we have demonstrated for a similar analysis
of β-Ga2O3.

15 Our investigation is augmented by DFT
calculations.

Ellipsometry is an excellent non-destructive technique,
which can be used to resolve the state of polarization
of light reflected off or transmitted through a sample,
therefore, both real and imaginary parts of the complex
dielectric function can be determined at optical wave-
lengths.16–18 Generalized ellipsometry extends this con-
cept to arbitrarily anisotropic materials and, in princi-
ple, allows for determination of all 9 complex-valued el-
ements of the dielectric function tensor.19 Jellison et al.

first reported generalized ellipsometry analysis of a mon-
oclinic crystal, CdWO4, in the spectral region of 1.5 –
5.6 eV.20 It was shown that 4 complex-valued dielec-
tric tensor elements are required for each wavelength,
which were determined spectroscopically, and indepen-
dently of physical model line shape functions. Jellison et

al. suggested to use 4 independent spectroscopic dielec-
tric function tensor elements instead of the 3 diagonal
elements used for materials with orthorhombic, hexago-
nal, tetragonal, trigonal, and cubic crystal symmetries.
Recently, we have shown this approach in addition to
a lineshape eigendielectric displacement vector approach
applied to β-Ga2O3.

15 We have used a physical function
lineshape model first described by Born and Huang,21

which uses 4 interdependent dielectric function tensor el-
ements for monoclinic materials. The Born and Huang
model permitted determination of all long-wavelength
active phonon modes, their displacement orientations
within the monoclinic lattice, and the anisotropic static
and high-frequency dielectric permittivity parameters.
Here, we investigate the dielectric tensor of CdWO4 in
the FIR and mid-IR (MIR) spectral regions. Our goal
is the determination of all FIR and MIR active phonon
modes and their eigenvector orientations within the mon-

oclinic lattice. In addition, we determine the static and
high-frequency dielectric constants. We use generalized
ellipsometry for determination of the highly anisotropic
dielectric tensor. Furthermore, we observe and report
in this paper the need to augment anharmonic broad-
ening onto our recently described model for polar vi-
brations in materials with monoclinic and triclinic crys-
tal symmetries.15 With the augmentation of anharmonic
broadening we are able to achieve a near perfect match
between our experimental data and our model calcu-
lated dielectric function spectra. In particular, in this
work we exploit the inverse of the experimentally deter-
mined dielectric function tensor and directly obtain the
frequencies of the longitudinal phonon modes. We also
demonstrate the validity of a recently proposed general-
ization of the Lyddane-Sachs-Teller relation22 to mate-
rials with monoclinic and triclinic crystal symmetries23

for CdWO4. We also demonstrate the usefulness of
the generalization of the dielectric function for mono-
clinic and triclinic materials in order to directly deter-
mine frequency and broadening parameters of all long-
wavelength active phonon modes regardless of their dis-
placement orientations within CdWO4. This generaliza-
tion as a coordinate-invariant form of the dielectric re-
sponse was proposed recently.23 For this analysis proce-
dure, we augment the dielectric function form with an-
harmonic lattice broadening effects proposed by Berre-
man and Unterwald,24 as well as Lowndes25 onto the
coordinate-invariant generalization of the dielectric func-
tion proposed by Schubert.23 In contrast to our previous
report on β-Ga2O3,

15 we do not observe the effects of
free charge carriers in undoped CdWO4, and hence their
contributions to the dielectric response, needed for accu-
rate analysis of conductive, monoclinic materials such as
β-Ga2O3, are ignored in this work. The phonon mode
parameters and static and high frequency dielectric con-
stants obtained from our ellipsometry analysis are com-
pared to results of DFT calculations. We observe by
experiment all DFT predicted modes, and all parame-
ters including phonon mode eigenvector orientations are
in excellent agreement between theory and experiment.

II. THEORY

A. Symmetry

The cadmium tungstate belongs to the space group
13 and the unit cell contains two cadmium atoms, two
tungsten atoms, and eight oxygen atoms. The lattice pa-
rameters and representative atomic positions are listed in
Tab. I. CdWO4 possesses 33 normal modes of vibration
with the irreducible representation for acoustical and op-
tical zone center modes: Γ = 8Ag + 10Bg + 7Au + 8Bu,
where Au and Bu modes are active at MIR and FIR
wavelengths. The phonon displacement of Au modes is
parallel to the crystal b direction, while the phonon dis-
placement for Bu modes is parallel to the a − c crystal
plane. All modes split into transverse optical (TO) and
longitudinal optical (LO) phonons.
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Figure 2. Renderings of TO phonon modes in CdWO4 with Au (b: Au(7), g: Au(6), h: Au(5), i: Au(4), k: Au(3), m: Au(2),
o: Au(1)) and Bu symmetry (a: Bu(8), c: Bu(7), d: Bu(6), e: Bu(5), f: Bu(4), j: Bu(3), l: Bu(2), n: Bu(1)). The respective
phonon mode frequency parameters calculated using Quantum ESPRESSO are given in Tabs. II and III

B. Density Functional Theory

Theoretical calculations of long-wavelength active Γ-
point phonon frequencies were performed by plane wave
DFT using Quantum ESPRESSO (QE).27 We used the
exchange correlation functional of Perdew and Zunger
(PZ).28 We employ Optimized Norm-Conserving Vander-
bilt (ONCV) scalar-relativistic pseudopotentials,29 which
we generated for the PZ functional using the code
ONCVPSP30 with the optimized parameters of the SG15
distribution of pseudopotentials.31 These pseudopoten-
tials include 20 valence states for cadmium.32 A crystal
cell of CdWO4 consisting of two chemical units, with ini-
tial parameters for the cell and atom coordinates taken
from Ref. 26 was first relaxed to force levels less than 10−5

Ry/Bohr. A regular shifted 4 × 4 × 4 Monkhorst-Pack
grid was used for sampling of the Brillouin Zone.33 A con-
vergence threshold of 1×10−12 Ry was used to reach self
consistency with a large electronic wavefunction cutoff of
100 Ry. The equilibrium structural parameters are listed
in Tab. I and compared to available literature data. The
fully relaxed structure was then used for the calculation
of phonon modes which is discussed below in Sec. IVA.

C. Dielectric Function Tensor Properties

1. Transverse and longitudinal phonon modes

From the frequency dependence of a general, linear di-
electric function tensor, two mutually exclusive and char-
acteristic sets of eigenmodes can be unambiguously de-
fined. One set pertains to frequencies at which dielectric
resonance occurs for electric fields along directions êl.

These are the so-called transverse optical (TO) modes
whose eigendielectric displacement unit vectors are then
êl = êTO,l. Likewise, a second set of frequencies pertains
to situations when the dielectric loss approaches infin-
ity for electric fields along directions êl. These are the
so-called longitudinal optical (LO) modes whose eigendi-
electric displacement unit vectors are then êl = êLO,l.
This can be expressed by the following equations

| det{ε(ω = ωTO,l)}| → ∞, (1a)

| det{ε−1(ω = ωLO,l)}| → ∞, (1b)

ε−1(ω = ωTO,l)êTO,l = 0, (1c)

ε(ω = ωLO,l)êLO,l = 0. (1d)

where |ζ| denotes the absolute value of a complex number
ζ. At this point, l is an index which merely addresses the
occurrence of multiple such frequencies in either or both
of the sets. Note that as a consequence of Eqs. 1, the
eigendielectric displacement unit vector directions of TO
and LO modes with a common frequency must be per-
pendicular to each other, regardless of crystal symmetry.

2. The eigendielectric displacement vector summation
approach

It was shown previously that the tensor elements of ε
due to long-wavelength active phonon modes in materi-
als with any crystal symmetry can be obtained from an
eigendielectric displacement vector summation approach.
In this approach, contributions to the anisotropic di-
electric polarizability from individual, eigendielectric dis-
placements (dielectric resonances) with unit vector êl are
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Table I. Calculated equilibrium structural parameters of
CdWO4 determined in this work in comparison with selected
literature values. Atomic positions are given in fractional co-
ordinates of a, b, and c respectively. For the sake of con-
sistency literature data from different sources has been con-
verted to the same equivalent positions and rounded to the
same number of significant digits.

Calc. (LDA-PZ, this work); a = 4.959 Å, b = 5.812 Å,

c = 5.020 Å, β = 91.13◦, Cell Volume=144.7 Å
3

W (site:2e) 0 0.1759 0.25
Cd (site:2f) 0.5 0.6879 0.25
O1 (site:4g) 0.2021 0.9040 0.4445
O2 (site:4g) 0.2461 0.3716 0.3853

Calc. (GGA-PBE, Ref. 9); a = 5.096 Å, b = 6.015 Å,

c = 5.136 Å, β = 91.17◦, Cell Volume=157.4 Å
3

W (site:2e) 0 0.1758 0.25
Cd (site:2f) 0.5 0.6919 0.25
O1 (site:4g) 0.1999 0.9037 0.4481
O2 (site:4g) 0.2419 0.3663 0.3839

Exp. (Ref. 7); a = 5.026 Å, b = 5.867 Å,

c = 5.078 Å, β = 91.47◦, Cell Volume=149.7 Å
3

W (site:2e) 0 0.1784 0.25
Cd (site:2f) 0.5 0.6980 0.25
O1 (site:4g) 0.189 0.901 0.454
O2 (site:4g) 0.250 0.360 0.393

Exp. (Ref. 26); a = 5.040 Å, b = 5.870 Å,

c = 5.084 Å, β = 91.48◦, Cell Volume=150.4 Å
3

W (site:2e) 0 0.1786 0.25
Cd (site:2f) 0.5 0.6973 0.25
O1 (site:4g) 0.2018 0.9045 0.4504
O2 (site:4g) 0.2420 0.3703 0.3839

added to a high-frequency, frequency-independent ten-
sor, ε∞, which is thought to originate from the sum of
all eigendielectric displacement processes at much shorter
wavelengths than all phonon modes15,23

ε = ε∞ +

N
∑

l=1

̺l(êl ⊗ êl), (2)

where ⊗ is the dyadic product. Functions ̺l describe the
frequency responses of each of the l = 1 . . .N eigendi-
electric displacement modes.34 Functions ̺l must sat-
isfy causality and energy conservation requirements, i.e.,
the Kramers-Kronig integral relations and Im{̺l} ≥ 0, ∀
ω ≥ 0, 1, . . . l, . . .N conditions.35,36

3. The Lorentz oscillator model

The energy (frequency) dependent contribution to the
long-wavelength polarization response of an uncoupled
electric dipole charge oscillation is commonly described
using a Lorentz oscillator function with harmonic broad-
ening37,38

̺l (ω) =
Al

ω2
0,l − ω2 − iωγ0,l

, (3)

or anharmonic broadening

̺l (ω) =
Al − iΓlω

ω2
0,l − ω2 − iωγ0,l

, (4)

where Al, ω0,l, γ0,l, and Γl denote amplitude, resonance
frequency, harmonic broadening, and anharmonic broad-
ening parameter of mode l, respectively, ω is the fre-
quency of the driving electromagnetic field, and i2 = −1
is the imaginary unit. The assumption that functions
̺l can be described by harmonic oscillators renders the
eigendielectric displacement vector summation approach
of Eq. 2 equivalent to the result of the microscopic de-
scription of the long-wavelength lattice vibrations given
by Born and Huang in the so-called harmonic approxi-
mation.21 In the harmonic approximation the interatomic
forces are considered constant and the equations of mo-
tion are determined by harmonic potentials.39

From Eqs. 1-4 it follows that êl = êTO,l, and ω0,l =
ωTO,l. The ad-hoc parameter Γl introduced in Eq. 4 can
be shown to be directly related to the LO mode broad-
ening parameter γLO,l introduced to account for anhar-
monic phonon coupling in materials with orthorhombic
and higher symmetries, which is discussed below.

4. The coordinate-invariant generalized dielectric function

The determinant of the dielectric function ten-
sor can be expressed by the following frequency-
dependent coordinate-invariant form, regardless of crys-
tal symmetry15,23

det{ε(ω)} = det{ε∞}
N
∏

l=1

ω2
LO,l − ω2

ω2
TO,l − ω2

. (5)

5. The Berreman-Unterwald-Lowndes factorized form

The right side of Eq. 5 is form equivalent to the so-
called factorized form of the dielectric function for long-
wavelength active phonon modes described by Berre-
man and Unterwald,24 and Lowndes.25 The Berreman-
Unterwald-Lowndes (BUL) factorized form is convenient
for derivation of TO and LO mode frequencies from
the dielectric function of materials with multiple phonon
modes. In the derivation of the BUL factorized form,
however, it was assumed that the displacement direc-
tions of all contributing phonon modes must be parallel.
Hence, in its original implementation, the application of
the BUL factorized form is limited to materials with or-
thorhombic, hexagonal, tetragonal, trigonal, and cubic
crystal symmetries. Schubert recently suggested Eq. 5 as
generalization of the BUL form applicable to materials
regardless of crystal symmetry.23
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6. The generalized dielectric function with anharmonic
broadening

The introduction of broadening by permitting for pa-
rameters γTO,l and Γl in Eqs. 3, and 4 can be shown to
modify Eq. 5 into the following form

det{ε(ω)} = det{ε∞}
N
∏

l=1

ω2
LO,l − ω2 − iωγLO,l

ω2
TO,l − ω2 − iωγTO,l

, (6)

where γLO,l is the broadening parameter for the LO fre-
quency ωLO,l. A similar augmentation was suggested by
Gervais and Periou for the BUL factorized form identi-
fying γLO,l as independent model parameters to account
for a life-time broadening mechanisms of LO modes sep-
arate from that of TO modes.40 Sometimes referred to
as “4-parameter semi quantum” (FPSQ) model, the ap-
proach by Gervais and Periou allows for separate TO
and LO mode broadening parameters, γTO,l and γLO,l,
respectively, providing accurate description of effects of
anharmonic phonon mode coupling in anisotropic, multi-
ple mode materials with non-cubic crystal symmetry, for
example, in tetragonal (rutile) TiO2,

40,41 hexagonal (cor-
rundum) Al2O3,

42 and orthorhombic (stibnite) Sb2S3.
43

In this work, we suggest use of Eq. 6 to accurately match
the experimentally observed lineshapes and to determine
frequencies of TO and LO modes, and thereby to account
for effects of phonon mode anharmonicity in monoclinic
CdWO4.

7. Schubert-Tiwald-Herzinger broadening condition

The following condition holds for the TO and LO mode
broadening parameters within a BUL form42

0 < Im

{

N
∏

l=1

ω2
LO,l − ω2 − iωγLO,l

ω2
TO,l − ω2 − iωγTO,l

}

, (7a)

l (7b)

0 <

N
∑

l=1

(γLO,l − γTO,l). (7c)

This condition is valid for the dielectric function along
high-symmetry Cartesian axes for orthorhombic, hexag-
onal, tetragonal, trigonal, and cubic crystal symmetry in
materials with multiple phonon mode bands. For mon-
oclinic materials it is valid for the dielectric function for
polarizations along crystal axis b. Its validity for Eq. 6
has not yet been shown, and also not for the concep-
tual expansion for triclinic materials (Eq. 14 in Ref.23).
However, we test the condition for the a− c plane in this
work.

8. Generalized Lyddane-Sachs-Teller relation

A coordinate-invariant generalization of the Lyddane-
Sachs-Teller (LST) relation22 for arbitrary crystal sym-
metries was recently derived by Schubert (S-LST).23 The

S-LST relation follows immediately from Eq. 6 setting ω
to zero

det{ε (ω = 0)}

det{ε∞}
=

N
∏

l=1

(

ωLO,l

ωTO,l

)2

, (8)

and which was found valid for monoclinic β-Ga2O3.
15 We

investigate the validity of the S-LST relation for mono-
clinic CdWO4 with our experimental results obtained in
this work.

9. CdWO4 dielectric tensor model

We align unit cell axes b and a with −z and x, re-
spectively, and c is within the (x-y) plane. We introduce
vector c⋆ parallel to y for convenience, and we obtain a,
c
⋆, −b as a pseudo orthorhombic system (Fig. 1). Seven

modes with Au symmetry are polarized along b only.
Eight modes with Bu symmetry are polarized within the
a - c plane. For CdWO4, the dielectric tensor elements
are then obtained as follows

εxx = ε∞,xx +

8
∑

l=1

̺Bu

l cos2 αj , (9a)

εxy = εyx = ε∞,xy +

8
∑

l=1

̺Bu

l sinαj cosαj , (9b)

εyy = ε∞,yy +

8
∑

l=1

̺Bu

l sin2 αj , (9c)

εzz = ε∞,zz +

7
∑

l=1

̺Au

l , (9d)

εxz = εzx = εzy = εyz = 0, (9e)

where X = Au, Bu indicate functions ̺Xl for long-
wavelength active modes with Au and Bu symmetry, re-
spectively. The angle αl denotes the orientation of the
eigendielectric displacement vectors with Bu symmetry
relative to axis a. Note that the eigendielectric displace-
ment vectors with Au symmetry are all parallel to axis
b, and hence do not appear as variables in Eqs. 9.

10. Phonon mode parameter determination

The spectral dependence of the CdWO4 dielectric func-
tion tensor, obtained here by generalized ellipsometry
measurements, is performed in two stages. The first stage
does not involve assumptions about a physical lineshape
model. The second stage applies the eigendielectric dis-
placement vector summation approach described above.
Stage 1, according to Eqs. 1, the elements of experi-

mentally determined ε and ε−1 are plotted versus wave-
length, and ωTO,l and ωLO,l, are determined from extrema
in ε and ε−1, respectively. Eigenvectors êTO,l and êLO,l

can be estimated by solving Eq. 1(c) and 1(d), respec-
tively.
Stage 2, step (i): Eqs. 9 are used to match simulta-

neously all elements of the experimentally determined
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tensors ε and ε−1. As a result, ε∞ and eigenvector, am-
plitude, frequency, and broadening parameters for all TO
modes are obtained. Step (ii): (Bu symmetry) The gen-
eralized dielectric function (Eq. 6) is used to determine
the LO mode frequency and broadening parameters. All
other parameters in Eq. 6 are taken from step (i). The
eigenvectors êLO,l are calculated by solving Eq. 1(d). (Au

symmetry) The BUL form is used to parameterize εzz
and −ε−1

zz in order to determine the LO mode frequency
and broadening parameters.

D. Generalized Ellipsometry

Generalized ellipsometry is a versatile concept19,44–46

for analysis of optical properties of generally anisotropic
materials in bulk (e.g., rutile,,41 stibnite,43) as well as in
multiple-layer stacks (e.g., pentacene films,47 group-III
nitride heterostructures,48–50 and meta-materials51–53).
A multiple sample, multiple azimuth, and multiple angle
of incidence approach is required for monoclinic CdWO4,
following the same approach used previously for mono-
clinic β-Ga2O3.

15 Multiple, single crystalline sample cuts
under different angles from the same crystal must be in-
vestigated and analyzed simultaneously.

1. Mueller matrix formalism

In generalized ellipsometry, either the Jones or the
Mueller matrix formalism can be used to describe the
interaction of electromagnetic plane waves with layered
samples.37,38,54–56 In the Mueller matrix formalism, real-
valued Mueller matrix elements connect the Stokes pa-
rameters of the electromagnetic plane waves before and
after sample interaction







S0

S1

S2

S3







output

=







M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44













S0

S1

S2

S3







input

.

(10)
with the Stokes vector components defined by S0 =
Ip + Is, S1 = Ip − Is, S2 = I45 − I−45, S3 = Iσ+ − Iσ−,
where Ip, Is, I45, I−45, Iσ+, and Iσ−denote the intensities
for the p-, s-, +45◦, -45◦, right handed, and left handed
circularly polarized light components, respectively.56 The
Mueller matrix renders the optical sample properties at
a given angle of incidence and sample azimuth, and data
measured must be analyzed through a best match model
calculation procedure in order to extract relevant physi-
cal parameters.57,58

2. Model analysis

The 4 × 4 matrix formalism is used to calculate the
Mueller matrix. We apply the half-infinite two-phase
model, where ambient (air) and monoclinic CdWO4 ren-
der the two half infinite mediums separated by the plane
at the surface of the single crystal. The formalism has

been detailed extensively.37,44,46,56 The only free param-
eters in this approach are the elements of the dielectric
function tensor of the material with monoclinic crystal
symmetry, and the angle of incidence. The latter is
set by the instrumentation. The wavelength only en-
ters this model explicitly when the dielectric function
tensor elements are expressed by wavelength dependent
model functions. This fact permits the determination of
the dielectric function tensor elements in the so-called
wavelength-by-wavelength model analysis approach.

3. Wavelength-by-wavelength analysis

Two coordinate systems must be established such that
one that is tied to the instrument and another is tied to
the crystallographic sample description. The system tied
to the instrument is the system in which the dielectric
function tensor must be cast into for the 4×4 matrix al-
gorithm. We chose both coordinate systems to be Carte-
sian. The sample normal defines the laboratory coordi-
nate system’s ẑ axis, which points into the surface of the
sample.15,44 The sample surface then defines the labora-
tory coordinate system’s x̂ - ŷ plane. The sample surface
is at the origin of the coordinate system. The plane of
incidence is the x̂ - ẑ plane. Note that the system (x̂, ŷ,
ẑ) is defined by the ellipsometer instrumentation through
the plane of incidence and the sample holder. One may
refer to this system as the laboratory coordinate system.
The system (x, y, z) is fixed by our choice to the specific
orientation of the CdWO4 crystal axes, a, b, and c as
shown in Fig. 1 with vector c

⋆ defined for convenience
perpendicular to a− b plane. One may refer to system
(x, y, z) as our CdWO4 system. Then, the full dielectric
tensor in the 4×4 matrix algorithm is

ε =





εxx εxy 0
εxy εyy 0
0 0 εzz



 , (11)

with elements obtained by setting εxx, εxy, εyy, and εzz
as unknown parameters. Then, according to the crys-
tallographic surface orientation of a given sample, and
according to its azimuth orientation relative to the plane
of incidence, a Euler angle rotation is applied to ε. The
sample azimuth angle, typically termed ϕ, is defined by
a certain in plane rotation with respect to the sample
normal. The sample azimuth angle describes the mathe-
matical rotation that a model dielectric function tensor of
a specific sample must make when comparing calculated
data with measured data from one or multiple samples
taken at multiple, different azimuth positions.
As first step in data analysis, all ellipsometry data were

analyzed using a wavelength-by-wavelength approach.
Model calculated Mueller matrix data were compared
to experimental Mueller matrix data, and dielectric ten-
sor values were varied until best match was obtained.
This is done by minimizing the mean square error (χ2)
function which is weighed to estimated experimental er-
rors (σ) determined by the instrument for each data
point.19,37,41,42,59 The error bars on the best match model
calculated tensor parameters then refer to the usual
90% confidence interval. All data obtained at the same
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wavenumber from multiple samples, multiple azimuth an-
gles, and multiple angles of incidence are included (poly-
fit) and one set of complex values εxx, εxy, εyy, and εzz is
obtained. This procedure is simultaneously and indepen-
dently performed for all wavelengths. In addition, each
sample requires one set of 3 independent Euler angle pa-
rameters, each set addressing the orientation of axes a, b,
c
⋆ at the first azimuth position where data were acquired.

4. Model dielectric function analysis

A second analysis step is performed by minimizing
the difference between the wavelength-by-wavelength ex-
tracted εxx, εxy, εyy, and εzz spectra and those calculated
by Eqs. (9). All model parameters were varied until cal-
culated and experimental data matched as close as possi-
ble (best match model). For the second analysis step, the
numerical uncertainty limits of the 90% confidence inter-
val from the first regression were used as “experimental”
errors σ for the wavelength-by-wavelength determined
εxx, εxy, εyy, and εzz spectra. A similar approach was de-
scribed, for example, in Refs. 15, 37, 41, 42, and 60. All
best match model calculations were performed using the
software package WVASE32 (J. A. Woollam Co., Inc.).

III. EXPERIMENT

Two single crystal samples of CdWO4 with different
cuts, (001) and (010) surface orientations, were pur-
chased from MTI Corp. Both samples were double side
polished with dimensions of 10mm×10mm×0.5mm for
the (001) crystal and 10mm×10mm×0.2mm for the (010)
crystal.

MIR and FIR generalized spectroscopic ellipsometry
(GSE) were performed at room temperature on both
samples. The IR-GSE measurements were performed on
a rotating compensator infrared ellipsometer (J. A. Wool-
lam Co., Inc.) in the spectral range from 250 – 1500
cm−1 with a spectral resolution of 2 cm−1. The FIR-GSE
measurements were performed on an in-house built rotat-
ing polarizer rotating analyzer far-infrared ellipsometer
in the spectral range from 50 – 500 cm−1 with an average
spectral resolution of 1 cm−1.61 All GSE measurements
were performed at 50◦, 60◦, and 70◦ angles of incidence.
All measurements are reported in terms of Mueller ma-
trix elements, which are normalized to element M11. The
IR instrument determines the normalized Mueller matrix
elements except for those in the forth row. Note that
due to the lack of a compensator for the FIR range in
this work, neither element in the fourth row nor fourth
column of the Mueller matrix is obtained with our FIR
ellipsometer. Data were acquired at 8 in-plane azimuth
rotations for each sample. The azimuth positions were
adjusted by progressive, counterclockwise steps of 45◦.

IV. RESULTS AND DISCUSSION

A. DFT Phonon Calculations

The phonon frequencies and transition dipole compo-
nents were computed at the Γ-point of the Brillouin zone
for a structure previously relaxed to near equilibrium us-
ing density functional perturbation theory.62 The results
of the phonon mode calculations for all long-wavelength
active modes with Au and Bu symmetry are listed in
Tabs. II and III. Data listed include the TO and LO
resonance frequencies, and for modes with Bu symme-
try the angles of the transition dipoles relative to axis a
within the a−c plane. The parameters of the LO modes
were obtained as follows: Fot the Au modes, for which
the transition dipoles of TO and LO modes are parallel,
by setting a small displacement from the Γ point in the
direction of b; For the Bu modes, for which the tran-
sition dipoles of TO and LO modes do not need to be
parallel, by probing the a − c plane with a step of 10
degrees. The parameters of the LO modes were then ob-
tained by fitting a sin2 function close to the maximum for
each phonon mode. Renderings of atomic displacements
for each mode were prepared using XCrysDen63 running
under Silicon Graphics Irix 6.5, and are shown in Fig. 2.
Frequencies of TO modes calculated by Lacomba-Perales
et al. (Ref. 9) using GGA-DFT are included in Tabs. II
and III. We note that data from Ref. 9 are consider-
ably shifted with respect to ours, while our calculated
data agree very closely with our experimental results as
discussed below.

B. Mueller matrix analysis

Figs. 3 and 4 depict representative experimental and
best match model calculated Mueller matrix data for the
(001) and (010) surfaces investigated in this work. In-
sets in Figs. 3 and 4 show schematically axis b within
the sample surface and perpendicular to the surface, re-
spectively, and the plane of incidence is also indicated.
Graphs depict selected data, obtained at 3 different sam-
ple azimuth orientations each 45◦ apart. Panels with in-
dividual Mueller matrix elements are shown separately,
and individual panels are arranged according to the in-
dices of the Mueller matrix element. It is observed by ex-
periment as well as by model calculations that all Mueller
matrix elements are symmetric, i.e., Mij = Mji. Hence,
elements with Mij = Mji, i.e., from upper and lower di-
agonal parts of the Mueller matrix, are plotted within
the same panels. Therefore, the panels represent the up-
per part of a 4× 4 matrix arrangement. Because all data
obtained are normalized to element M11, and because
M1j = Mj1, the first column does not appear in this
arrangement. The only missing element is M44, which
cannot be obtained in our current instrument configu-
ration due to the lack of a second compensator. Data
are shown for wavenumbers (frequencies) from 80 cm−1

– 1100 cm−1, except for column M4j = Mj4 which only
contains data from approximately 250 cm−1 – 1100 cm−1.
All other panels show data obtained within the FIR range
(80 cm−1 – 500 cm−1) using our FIR instrumentation
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Figure 3. Experimental (dotted, green lines) and best match model calculated (solid, red lines) Mueller matrix data obtained
from a (001) surface at three representative sample azimuth orientations. (P1: ϕ = −1.3(1)◦, P2: ϕ = 43.7(1)◦, P3: ϕ =
88.7(1)◦). Data were taken at three angles of incidence (Φa = 50◦, 60◦, 70◦). Equal Mueller matrix data, symmetric in their
indices, are plotted within the same panels for convenience. Vertical lines indicate wavenumbers of TO (solid lines) and LO
(dotted lines) modes with Bu symmetry (blue) and Au symmetry (brown). Fourth column elements are only available from the
IR instrument limited to approximately 250 cm−1. Note that all elements are normalized to M11. The remaining Euler angle
parameters are θ = 88.7(1) and ψ = −1.3(1) consistent with the crystallographic orientation of the (001) surface. Note that
in position P1, axis b which is parallel to the sample surface in this crystal cut, is aligned almost perpendicular to the plane
of incidence. Hence, the monoclinic plane with a and c is nearly parallel to the plane of incidence, and as a result almost no
conversion of p to s polarized light occurs and vice versa. As a result, the off diagonal block elements of the Mueller matrix
are near zero. The inset depicts schematically the sample surface, the plane of incidence, and the orientation of axis b in P1.

and data obtained within the IR range (500 cm−1 – 1100
cm−1) using our IR instrumentation. Data from the re-
maining 5 azimuth orientations for each sample at which
measurements were also taken are not shown for brevity.

The most notable observation from the experimental
Mueller matrix data behavior is the strong anisotropy,
which is reflected by the non vanishing off diagonal block
elementsM13, M23, M14, andM24, and the strong depen-
dence on sample azimuth in all elements. A noticeable
observation is that the off diagonal block elements in po-
sition P1 for the (001) surface in Fig. 3 are close to zero.
There, axis b is aligned almost perpendicular to the plane
of incidence. Hence, the monoclinic plane with a and c

is nearly parallel to the plane of incidence, and as a re-
sult almost no conversion of p to s polarized light occurs
and vice versa. As a result, the off diagonal block ele-
ments of the Mueller matrix are near zero. The reflected
light for s polarization is determined by εzz alone, while
the p polarization receives contribution from εxx, εxy,
and εyy, which then vary with the angle of incidence.
A similar observation was made previously for a (2̄01)
surface of monoclinic β-Ga2O3.

15 While every data set
(sample, position, azimuth, angle of incidence) is unique,
all data sets share characteristic features at certain wave-
lengths. Vertical lines indicate frequencies, which further
below we will identify with the frequencies of all antici-
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Figure 4. Same as Fig. 4 for the (010) sample at azimuth orientation P1: ϕ = 0.5(1)◦, P2: ϕ = 45.4(1)◦, P3: ϕ = 90.4(1)◦.
θ = 0.03(1) and ψ = 0(1), consistent with the crystallographic orientation of the (010) surface. The inset depicts schematically
the sample surface, the plane of incidence, and the orientation of axis b, shown approximately for position P1.

pated TO and LO phonon mode mode frequencies with
Au and Bu symmetries. All Mueller matrix data were
analyzed simultaneously during the polyfit, wavelength-
by-wavelength best match model procedure. For every
wavelength, up to 528 independent data points were in-
cluded from the different samples, azimuth positions, and
angle of incidence measurements, while only 8 indepen-
dent parameters for real and imaginary parts of εxx, εxy,
εyy, and εzz were searched for. In addition, two sets of
3 wavelength independent Euler angle parameters were
looked for. The results of polyfit calculation are shown
in Figs. 3 and 4 as solid lines for the Mueller matrix ele-
ments. We note in Figs. 3 and 4 the excellent agreement
between measured and model calculated Mueller matrix
data. Furthermore, the Euler angle parameters, given
in captions of Figs. 3 and 4, are in excellent agreement
with the anticipated orientations of the crystallographic
sample axes.

C. Dielectric tensor analysis

The wavelength-by-wavelength best match model di-
electric function tensor data obtained during the polyfit
are shown as dotted lines in Fig. 5 for εxx, εxy, εyy, and
εzz, and in Fig. 6 as dotted lines for ε−1

xx , ε
−1
xy , ε

−1
yy , and

ε−1
zz . A detailed preview into the phonon mode proper-
ties of CdWO4 is obtained here without physical line-
shape analysis. In Fig. 5, a set of frequencies can be
identified among the tensor elements εxx, εxy, εyy, where
their magnitudes approach large values. In particular,
the imaginary parts reach large values. These frequen-
cies are common to all elements εxx, εxy, εyy, and thereby
reveal the frequencies of 8 TO modes with Bu symme-
try. The same consideration holds for εzz revealing 7
TO modes with Au symmetry. The imaginary part of
εxy exhibits positive as well as negative extrema at these
frequencies, and which is due to the respective eigendi-
electric displacement unit vector orientation relative to
axis a. As can be inferred from Eq. 9(b), the imagi-
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Figure 5. Dielectric function tensor element εxx (a), εxy (b), εyy (c), and εzz (d). Dotted lines (green) indicate results from
wavelength-by-wavelength best match model regression analysis matching the experimental Mueller matrix data shown in
Figs. 4 and 3. Solid lines are obtained from best match model lineshape analysis using Eqs. 9 with Eq. 4. Vertical lines in
panel group [(a), (b), (c)], and in panel (d) indicate TO frequencies with Bu and Au symmetry, respectively. Vertical bars in
(a), (c), and (d) indicate DFT calculated long-wavelength transition dipole moments in atomic units projected onto axis x, y,
and z, respectively.

nary part of εxy takes negative (positive) values when
αTO,l is within {0 · · · − π} ({0 . . . π}). Hence, Bu TO
modes labeled 2, 6, and 7 are oriented with negative an-
gle towards axis a. A similar observation can be made in
Fig. 6, where a set of frequencies can be identified among
the tensor elements ε−1

xx , ε
−1
xy , ε

−1
yy when magnitudes ap-

proach large values. These frequencies are again common
to all elements ε−1

xx , ε
−1
xy , ε

−1
yy , and thereby reveal the fre-

quencies of 8 LO modes with Bu symmetry. The same
consideration holds for εzz revealing 7 LO modes with Au

symmetry. The imaginary part of ε−1
xy attains positive as

well as negative extrema at these frequencies, and which
is due to the respective LO eigendielectric displacement
unit vector orientation relative to axis a. We note that
depicting the imaginary parts of ε and ε−1 alone would
suffice to identify the phonon mode information discussed
above. We further note that the inverse tensor does not
contain new information, however, in this presentation
the properties of the two sets of phonon modes are most

conveniently visible. We finally note that up to this point
no physical lineshape model was applied.

D. Phonon mode analysis

a. TO modes: Figs. 5 and 6 depict solid lines ob-
tained from the best match mode calculations using
Eqs. 9 and the anharmonic broadened Lorentz oscilla-
tor functions in Eq. 4. We find excellent match between
all spectra of both tensors ε and ε−1. The best match
model parameters are summarized in Tabs. II and III.
As a result, we obtain amplitude, broadening, frequency,
and eigendielectric displacement unit vector parameters
for all TO modes with Au and Bu symmetries. We find
8 TO mode frequencies with Bu symmetry and 7 with
Au symmetry. Their frequencies are indicated by ver-
tical lines in panel group [(a), (b), (c)] and panel (d)
of Fig. 5, respectively, and which are identical to those
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Figure 6. Same as Fig. 5 for the inverse dielectric tensor elements. Vertical lines in panel group [(a), (b), (c)], and in panel (d)
indicate LO frequencies with Bu and Au symmetry, respectively.

observed by the extrema in the imaginary parts of the di-
electric tensor components discussed above. As discussed
in Sect. II C, element εxy provides insight into the rela-
tive orientation of the eigendielectric displacement unit
vectors for each TO mode within the a - c plane. In
particular, modes Bu-2, Bu-6, and Bu-7 reveal eigenvec-
tors within the interval {0 · · · − π}, and cause negative
imaginary resonance features in εxy. Accordingly, their
eigendielectric displacement unit vectors in Tab. II reflect
values larger than 90◦. The remaining mode unit vectors
possess values between {0 . . . π} and their resonance fea-
tures in the imaginary part of εxy are positive.

Previous reports have been made of CdWO4 TO mode
frequencies and their symmetry assignments for,6–8,13

however, none provide a complete set of IR active TO
and LOmodes and their eigendielectric displacement unit
vectors. Due to biaxial anisotropy from the monoclinic
crystal, reflectivity measurements do not provide enough
information to determine directions of the TO eigenvec-
tors. No previously determined TO mode frequencies
could be accurately compared here. See also discussion
below in paragaph “LO modes”.

b. TO displacement unit vectors: A schematic pre-
sentation of the oscillator function amplitude parame-
ters ABu

k and the mode vibration orientations according
to angles αTO,k from Tab. II within the a - c plane is
shown in Fig. 7(a). In Fig. 7(b) we depict the projections
of the DFT calculated long-wavelength transition dipole
moments (intensities) onto axes a and c

⋆, for comparison.
Overall, the agreement is remarkably good between the
TO mode eigendielectric displacement vector distribu-
tion within the a - c plane obtained from GSE and DFT
results. We note that the angular sequence of the Bu

mode eigenvectors follows those obtained by GSE analy-
sis. Overall, the DFT calculated angles α agree to within
less than 22◦ of those found from our GSE model anal-
ysis. Note that the eigendielectric displacement vectors
describe a uni-polar property without a directional as-
signment. Hence, α and α± π render equivalent eigendi-
electric displacement vector orientations.
c. LO modes: We use the generalized coordinate-

invariant form of the dielectric function in Eq. 6 and
match the function εxxεyy − ε2xy obtained from the
wavelength-by-wavelength obtained tensor spectra. All
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Table II. Phonon parameters for modes with Bu symmetry. Experimental parameters for the TO mode resonance frequency
(ωTO,l), TO mode broadening (γTO,l), eigendielectric displacement unit vector orientation of the TO mode (αTO,l), amplitude
(Al), and anharmonic broadening (Γl) are obtained by best match model analysis of ε and ε−1 using model functions in Eq. 4.
Experimental parameters for the LO mode resonance frequency (ωLO,l) and LO mode broadening (γLO,l) are obtained from
Eq. 6. Experimental parameters for the orientation of the eigendielectric displacement unit vector of the LO mode (αLO,l) are
obtained from numerical solution of Eq. 1(d) and ε expressed by model functions in Eq. 4 with all broadening parameters set
to zero. All angles are give with respect to axis a. The last digit, which is determined within the 90% confidence interval, is
indicated with brackets for each parameter.

X = Bu

Parameter l=1 2 3 4 5 6 7 8

Calc. [This work]
AX

l ((eB)2/2) 2.61 3.31 0.29 1.38 0.12 0.18 0.27 0.10
ωX

TO,l (cm
−1) 786.47 565.46 458.33 285.00 264.05 225.70 156.97 108.50

αTO,l (
◦) 22.9 111.5 8.3 69.9 59.8 126.8 157.2 28.3

ωX
LO,l (cm

−1) 897 749 476 366 266 242 184 119
αLO,l (

◦) 26 113 21 63 180 154 167 30

Exp. [This work]
ωX

TO,l (cm
−1) 779.5(1) 549.0(1) 450.6(2) 276.3(1) 265.2(2) 227.3(1) 149.1(1) 98.1(1)

γX
TO,l (cm

−1) 15.0(1) 15.3(1) 12.5(4) 11.3(1) 12.0(4) 5.0(1) 5.7(1) 3.5(1)
αTO,l (

◦) 24.3(1) 113.1(1) 0.8(8) 65.6(1) 81.9(4) 127.6(5) 145.1(3) 18.9(3)
AX

l (cm−1) 908(1) 1018(1) 279(2) 645(3) 326(6) 236(1) 294(1) 236(1)
ΓX
l (cm−1) 31(1) -22(2) -17(2) -67(7) 88(8) 7(1) -27(1) 70(1)
ωX

LO,l (cm
−1) 901.4(1) 754.4(1) 466.5(1) 369.8(1) 269.1(2) 243.5(1) 180.0(1) 117.0(1)

γX
LO,l (cm

−1) 5.6(1) 20.2(2) 16.6(2) 9.1(1) 12.9(4) 5.1(1) 8.0(1) 7.5(2)
αLO,l (

◦) 33.8 112.5 20.2 57.4 148.4 155.2 162.0 21.9

Calc. [Ref. 9]
ωX

TO,l (cm
−1) 743.6 524.2 420.9 255.2 252.9 225.9 145.0 105.6

Exp. [Ref. 13]
ωX

LO,l (cm
−1) 910 755 475 372 272 245 182 118

Bu TO mode parameters, and parameters ε∞,xxε∞,yy −
ε2
∞,xy are used from the previous step. Fig. 8 presents

the imaginary parts of the functions εxxεyy − ε2xy, and

−(εxxεyy − ε2xy)
−1. The best-match model calculated

data are obtained using the BUL form24,25 to represent
the coordinate invariant generalization of the dielectric
function for materials with monoclinic symmetry, sug-
gested in this present work. The presentation of the
imaginary parts of the function and its inverse highlights
the TO modes and LO modes as the broadened poles, re-
spectively. The form results in an excellent match to the
function calculated from the wavelength-by-wavelength
experimental data analysis. Both TO and LO mode fre-
quencies and broadening parameters can be determined,
in principle, and regardless of their unit vector orienta-
tion and amplitude parameters. However, in our analysis
here, we assumed values for all TO modes and only varied
LO mode parameters, indicated by vertical lines in Fig. 8.
As a result, we find 8 LO modes with Bu symmetry, and
their broadening parameters, which are summarized in
Tab. II. An observation made in this work is noted by the
spectral behavior of the imaginary parts of εxxεyy − ε2xy
and -(εxxεyy − ε2xy)

−1, which are found always positive
throughout the spectral range investigated. This sug-
gests that the generalized coordinate-invariant form of
the dielectric function in Eq. 6 (and the negative of its

inverse) possesses positive imaginary parts as a result of
energy conservation. A direct proof for this statement
is not available at this point and will be presented in a
future work.
The BUL form is used for analysis of functions εzz and

ε−1
zz for LO modes with Au symmetry. All TO mode
parameters, and ε∞,zz are used from the previous step.
We find 7 LO modes, and their parameter values are
summarized in Tab. III. The best match calculated data
and the wavelength-by-wavelength obtained spectra are
depicted in Fig. 5 for εzz (panel [d]), and Fig. 6 for ε−1

zz

(panel [d]).
Burshtein et al. (Ref. 13) investigated CdWO4 using

reflectance measurements with an angle of incidence of
about 10◦ in the 50–5000 cm−1 spectral region and as-
signed 14 long-wavelength active modes. The model anal-
ysis assumed isotropic sample properties, and ignored the
angle of incidence dependence. TO and LO modes were
assigned from poles and zeros in series of effective di-
electric function spectra obtained from Kramers-Kronig
integration of the reflectance spectra. TO and LO mode
eigendielectric displacement unit vectors were not pro-
vided. TO modes do not agree with our findings, while
the LO modes are in good agreement. The latter can
be explained because the a-c plane dielectric function
tensor determinant vanishes at LO frequencies. Hence,
polarized reflectance spectra taken in the a-c plane re-
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Table III. Same as for Tab. II but for phonon modes with Au symmetry. Note that êTO,l and êLO,l are parallel to axis b for
all modes.

X = Au

l=1 2 3 4 5 6 7

Calc. [This work]
AX

l ((eB)2/2) 0.52 1.47 0.65 0.28 0.43 0.03 0.15
ωX

TO,l (cm
−1) 863.40 669.13 510.16 407.97 329.74 285.88 138.11

ωX
LO,l (cm

−1) 899.64 747.17 540.84 423.36 351.6 287.32 155.02

Exp. [This work]
ωX

TO,l (cm
−1) 866.6(1) 653.7(1) 501.0(1) 400.3(1) 341.2(1) 285.5(8) 121.8(1)

γX
TO,l (cm

−1) 7.5(1) 15.8(1) 15.1(2) 10.2(2) 3.4(1) 17(1) 2.0(1)
AX

l (cm−1) 392(1) 679(1) 445(1) 299(1) 364(1) 93(6) 226(1)
ΓX
k (cm−1) 8.6(3) 14(1) -29(1) -24(1) -16(1) 57(3) -9.4(4)
ωX

LO,l (cm
−1) 904.0(1) 742.4(1) 532.8(1) 418.0(1) 360.2(1) 286.8(1) 144.0(1)

γX
LO,l (cm

−1) 5.1(1) 15.0(1) 19.5(2) 12.1(1) 3.5(1) 11.8(2) 3.5(1)

Calc. [Ref. 9]
ωX

TO,l (cm
−1) 839.1 626.8 471.4 379.4 322.1 270.1 121.5

Exp. [Ref. 13]
ωX

LO,l (cm
−1) 912 755 530 422 362 - 148

veal loss at the LO frequencies common to all spectra
regardless of the polarization direction. (A proof for this
statement can be found by the correct description of the
anisotropic reflectance, e.g., in Eq. 14 of Ref. 64.) Ac-
cordingly, the polarization-dependent effective dielectric
function spectra determined in Ref. 13 all reveal zero
crossings in the real part of the polarization-dependent
effective dielectric functions at the LO modes. Thus, the
LO mode frequencies obtained from monoclinic materi-
als by an erroneous isotropic assumption can be accurate.
However, the LO mode unit vectors could not be found.13

TOmodes determined from reflectance analysis assuming
isotropic boundary conditions are erroneous. The poles
appearing in the effective dielectric functions shift with
the polarization condition, and no unambiguous assign-
ment of frequencies was given by Burshtein et al. Here,
the LO mode frequencies assigned in Ref. 13 are included
in Tabs. II and III for comparison.

d. LO displacement unit vectors: The LO mode
eigendielectric displacement unit vectors are parallel to
axis b for Au modes, and located within the a - c plane
for Bu modes. The angular parameters αLO,l given in
Tabl. II provide the angle between the respective unit
vector and axis c. The experimental parameters are ob-
tained from numerical solution of Eq. 1d and ε expressed
by model functions in Eq. 4 with all broadening param-
eters set to zero.

e. Schubert-Tiwald-Herzinger condition: The condi-
tion for the TO and LO broadening parameters in mate-
rials with multiple phonon modes and orthorhombic and
higher crystal symmetry (Eq. 7) is fulfilled for polariza-
tion along axis b (See Tab. III). The application of this
rule for the TO and LO mode broadening parameters for
phonon modes with their unit vectors within the mono-
clinic plane, and with general orientations in triclinic ma-
terials has not been derived yet. Hence, its applicability
to modes with Bu symmetry is speculative. However, we

do find this rule fulfilled when summing over all differ-
ences between LO and TO mode broadening parameters
in Tab. II.
f. “TO-LO rule” In materials with multiple phonon

modes, a so-called TO-LO rule is commonly observed.
According to this rule, a given TO mode is always fol-
lowed first by one LO mode with increasing frequency
(wavenumber). This rule can be derived from the eigendi-
electric displacement vector summation approach when
the unit vectors and functions ̺l possess highly sym-
metric properties. A requirement for the TO-LO rule
to be fulfilled can be suggested here, where the TO and
LO modes must possess parallel unit eigendielectric dis-
placement vectors. For example, this is the case for po-
larization along axis b, hence, the TO-LO rule is found
fullfilled for the 7 pairs of TO and LO modes with Au

symmetry. For the TO and LO modes with Bu symme-
try, none of their unit vector is parallel to one another,
hence, the TO-LO rule is not applicable. For mono-
clinic β-Ga2O3 we observed that the rule was broken.
The explanation was given by the fact that the phonon
mode eigendielectric displacement vectors are not paral-
lel within the a−c plane.15 Nonetheless, we note that the
rule is not broken for CdWO4. Whether or not the TO-
LO rule is violated in a monoclinic (or triclinic) material
may depend on the strength of the individual phonon
mode displacement amplitude and their orientation.
g. Static and high frequency dielectric constant:

Tab. IV summarizes static and high frequency dielectric
constants obtained in this work. Parameter values for
εDC were estimated from extrapolation of the tensor el-
ements in the wavelength-by-wavelength determined ε.
Values for εDC,xx and εDC,yy agree well with the value of
17 given by Shevchuk and Kayun14 measured at 1 kHz
on a (010) surface. We find that with the data reported
in Tabs. II and III as well as Tab. IV, the S-LST relation
in Eq. 8 is fulfilled.
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Figure 7. (a): Schematic presentation of the Bu symmetry
TO mode eigendielectric displacement unit vectors within the
a - c plane according to TO mode amplitude parameters ABu

k

and orientation angles αTO,k with respect to axis a obtained
from GSE analysis (Tab. II). (b) DFT calculated Bu mode
TO phonon mode long-wavelength transition dipoles (inten-
sities) in coordinates of axes a and c⋆ (Fig. 1).

Table IV. Best match model parameters for high frequency
dielectric constants. The static dielectric constants are ob-
tained from extrapolation to ω = 0. The S-LST relation is
found valid with TO and LO modes given in Tabs. II and III.

εxx (a) εyy (c⋆) εyx εzz(b)

ε∞,(j) 4.46(1) 4.81(1) 0.086(6) 4.25(1)
εDC,(j) 16.16(1) 16.01(1) 1.05(1) 11.56(1)

V. CONCLUSIONS

A dielectric function tensor model approach suitable
for calculating the optical response of monoclinic and
triclinic symmetry materials with multiple uncoupled
long-wavelength active modes was applied to monoclinic
CdWO4 single crystal samples. Different single crystal
cuts, (010) and (001), are investigated by generalized
spectroscopic ellipsometry within MIR and FIR spec-
tral regions. We determined the frequency dependence
of 4 independent CdWO4 Cartesian dielectric function
tensor elements by matching large sets of experimental
data using a polyfit, wavelength-by-wavelength data in-
version approach. From matching our monoclinic model
to the obtained 4 dielectric function tensor components,
we determined 7 pairs of transverse and longitudinal op-
tic phonon modes with Au symmetry, and 8 pairs with
Bu symmetry, and their eigenvectors within the mon-
oclinic lattice. We report on density functional theory
calculations on the MIR and FIR optical phonon modes,
which are in excellent agreement with our experimental
findings. We also discussed and presented monoclinic di-
electric constants for static electric fields and frequencies
above the reststrahlen range, and we observed that the
generalized Lyddane-Sachs-Teller relation is fulfilled ex-
cellently for CdWO4.
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